JPH0259426A - 結晶性チタン酸バリウム超微粒子の製造方法 - Google Patents
結晶性チタン酸バリウム超微粒子の製造方法Info
- Publication number
- JPH0259426A JPH0259426A JP21053788A JP21053788A JPH0259426A JP H0259426 A JPH0259426 A JP H0259426A JP 21053788 A JP21053788 A JP 21053788A JP 21053788 A JP21053788 A JP 21053788A JP H0259426 A JPH0259426 A JP H0259426A
- Authority
- JP
- Japan
- Prior art keywords
- titanium
- barium titanate
- barium hydroxide
- crystalline
- superfine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 title claims abstract description 19
- 229910002113 barium titanate Inorganic materials 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000002245 particle Substances 0.000 title abstract description 12
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 claims abstract description 18
- 229910001863 barium hydroxide Inorganic materials 0.000 claims abstract description 17
- 239000010936 titanium Substances 0.000 claims abstract description 16
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 16
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000011164 primary particle Substances 0.000 claims abstract description 6
- 239000011882 ultra-fine particle Substances 0.000 claims description 13
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 abstract description 4
- 150000004689 octahydrates Chemical class 0.000 abstract description 2
- HKJYVRJHDIPMQB-UHFFFAOYSA-N propan-1-olate;titanium(4+) Chemical compound CCCO[Ti](OCCC)(OCCC)OCCC HKJYVRJHDIPMQB-UHFFFAOYSA-N 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 229910052788 barium Inorganic materials 0.000 description 4
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 4
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- -1 titanium tetraline propoxide Chemical compound 0.000 description 2
- SNOJPWLNAMAYSX-UHFFFAOYSA-N 2-methylpropan-1-ol;titanium Chemical compound [Ti].CC(C)CO.CC(C)CO.CC(C)CO.CC(C)CO SNOJPWLNAMAYSX-UHFFFAOYSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 238000006136 alcoholysis reaction Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はエレクトロニクスの分野において主としてコン
デンサーなどに広範に使用されているチタン酸バリウム
の中でも特に工業的に要望の強い結晶性チタン酸バリウ
ム超微粒子を製造する方法に関するものである。
デンサーなどに広範に使用されているチタン酸バリウム
の中でも特に工業的に要望の強い結晶性チタン酸バリウ
ム超微粒子を製造する方法に関するものである。
(従来の技術)
従来、工業的なチタン酸バリウムの製造方法として一般
的に知られているものを例示すると次の通りである。
的に知られているものを例示すると次の通りである。
■ 酸化チタンと炭酸バリウムを原料として用い、高温
の固相反応による製造方法 (リ バリウム、チタンをアルコールと反応させて得ら
れる金属アルコキシドを出発原料とし、その溶液に水を
加えて加水分解する方法@ pH1l−14の水酸化
カリウム水溶液中でチタニウムイソプロポキシドと水酸
化バリウムを加水分解させる方法(J、Amer−CI
ve+s、Soc、77.6194■ 水酸化バリウム
とチタニアを100℃以、にの温度で48時間以上反応
させる方法(特開昭82(従来技術に残された課題) 前記■の方法においては得られるチタン酸バリウムの粒
径が数fiLm以上で、不純物も多くかつチタンとバリ
ウムの比を一定に保つことが困難であり、性能的にも高
レベルを要求される現在のエレりトロニクス分野におい
ては実用上満足できるものとはいえない欠点があった。
の固相反応による製造方法 (リ バリウム、チタンをアルコールと反応させて得ら
れる金属アルコキシドを出発原料とし、その溶液に水を
加えて加水分解する方法@ pH1l−14の水酸化
カリウム水溶液中でチタニウムイソプロポキシドと水酸
化バリウムを加水分解させる方法(J、Amer−CI
ve+s、Soc、77.6194■ 水酸化バリウム
とチタニアを100℃以、にの温度で48時間以上反応
させる方法(特開昭82(従来技術に残された課題) 前記■の方法においては得られるチタン酸バリウムの粒
径が数fiLm以上で、不純物も多くかつチタンとバリ
ウムの比を一定に保つことが困難であり、性能的にも高
レベルを要求される現在のエレりトロニクス分野におい
ては実用上満足できるものとはいえない欠点があった。
それを解決するものとして前記■が提案されているが、
この場合は取扱い上難点があり、かつ高価な金属バリウ
ムや金属チタンを用いるためにコストが高くつくという
問題があり、実用的な工業技術としては解決すべき課題
を残していた。
この場合は取扱い上難点があり、かつ高価な金属バリウ
ムや金属チタンを用いるためにコストが高くつくという
問題があり、実用的な工業技術としては解決すべき課題
を残していた。
また、水酸化バリウムを出発原料としてチタン酸バリウ
ムを製造する方法として、前記■および(4)が提案さ
れているが、前者(■)はアルカリ金属を共存させなけ
ればならないことや、生成した粒子径が1〜57zmと
、大きいことなどの問題があり、後者(■)はその特許
請求の範囲の記載からも明らかなように100℃以上の
温度で極めて長時間の反応を必要とするなど、それぞれ
実用的な工業技術としてはなお改善すべき課題を残して
いた。
ムを製造する方法として、前記■および(4)が提案さ
れているが、前者(■)はアルカリ金属を共存させなけ
ればならないことや、生成した粒子径が1〜57zmと
、大きいことなどの問題があり、後者(■)はその特許
請求の範囲の記載からも明らかなように100℃以上の
温度で極めて長時間の反応を必要とするなど、それぞれ
実用的な工業技術としてはなお改善すべき課題を残して
いた。
さらに、前記(す〜■の方法はいずれも工程が複雑であ
るために、工業的にはコスト高になるという問題点をも
有していた。
るために、工業的にはコスト高になるという問題点をも
有していた。
さらに、従来−・般に用いられていたチタン酸バリウム
は、積層コンデンサーとして用いた場合その粒径が数p
mと大きいために1300℃程度の高い焼結温度を必要
とし、このため高価なパラジウムが内部電極として必要
となり、大幅なコストアップを招くという問題点を残し
ていた。
は、積層コンデンサーとして用いた場合その粒径が数p
mと大きいために1300℃程度の高い焼結温度を必要
とし、このため高価なパラジウムが内部電極として必要
となり、大幅なコストアップを招くという問題点を残し
ていた。
(課題を解決するための手段)
本発明者等は斯かる従来技術に残された課題を解決すべ
く鋭意研究の結果、水和された水酸化バリウムとチタニ
ウムテトラアルコキシドを原料として用いることにより
、新たに水を加えるという操作を行うことなく上記の課
題を解決し得ることを知見し、芸に提案するものである
。
く鋭意研究の結果、水和された水酸化バリウムとチタニ
ウムテトラアルコキシドを原料として用いることにより
、新たに水を加えるという操作を行うことなく上記の課
題を解決し得ることを知見し、芸に提案するものである
。
すなわち、本発明の特色とするところは、水和された水
酸化バリウムとチタニウムテトラアルコキシドを、アル
コール中において70℃以上の温度で3時間以上反応さ
せることによって、一次粒子の平均粒径が0.05μm
以下の超微粒子を得ることを特徴とする結晶性チタン酸
バリウム超微粒子の製造方法を提供するところにある。
酸化バリウムとチタニウムテトラアルコキシドを、アル
コール中において70℃以上の温度で3時間以上反応さ
せることによって、一次粒子の平均粒径が0.05μm
以下の超微粒子を得ることを特徴とする結晶性チタン酸
バリウム超微粒子の製造方法を提供するところにある。
本発明において使用される水和された水酸化バリウムと
しては、8水塩が一般的であるがそれ以外のものを用い
ることも可能である。また、チタニウムテトラアルコキ
シドとしてはチタニウムテトラプロポキシド、チタニウ
ムテトラインプロポキシド、チタニウムテトラブトキシ
ド、チタニウムテトライソブトキシドなどがあげられる
。これらの原料については通常の市販品を適宜に使用し
得るが、生成される結晶性チタン酸バリウム超微粒子の
特性に悪影!を及ぼすことの無い限り特に限定されるも
のではないが、可能な限り純度の高いものを選択して用
いることが好ましい。
しては、8水塩が一般的であるがそれ以外のものを用い
ることも可能である。また、チタニウムテトラアルコキ
シドとしてはチタニウムテトラプロポキシド、チタニウ
ムテトラインプロポキシド、チタニウムテトラブトキシ
ド、チタニウムテトライソブトキシドなどがあげられる
。これらの原料については通常の市販品を適宜に使用し
得るが、生成される結晶性チタン酸バリウム超微粒子の
特性に悪影!を及ぼすことの無い限り特に限定されるも
のではないが、可能な限り純度の高いものを選択して用
いることが好ましい。
本発明において使用されるアルコールとしてはメタノー
ル、エタノール、プロパツール、ブタノールなどを用い
ることができるが、生成される結晶性チタン酸バリウム
超微粒子に悪影響を及ぼすことの無い限り、前記以外の
アルコールを適宜選択して用いることも可能である。但
し、これらのアルコールも生成される結晶性チタン酸バ
リウム超微粒子の純度を考慮し、可能な限り不純物の少
ないものを用いることが好ましい。
ル、エタノール、プロパツール、ブタノールなどを用い
ることができるが、生成される結晶性チタン酸バリウム
超微粒子に悪影響を及ぼすことの無い限り、前記以外の
アルコールを適宜選択して用いることも可能である。但
し、これらのアルコールも生成される結晶性チタン酸バ
リウム超微粒子の純度を考慮し、可能な限り不純物の少
ないものを用いることが好ましい。
本発明における水和された水酸化バリウムとチタニウム
テトラアルコキシドとの反応は、アルコール中で両者を
接触させることによって進められるが、この際の添加順
序、添加方法などについては特に限定されるものではな
く、例えばアルコール中に懸濁させた水和された水酸化
バリウムに、攪拌下でチタニウムテトラアルコキシドを
添加するなど適宜な方法を選択し得る。
テトラアルコキシドとの反応は、アルコール中で両者を
接触させることによって進められるが、この際の添加順
序、添加方法などについては特に限定されるものではな
く、例えばアルコール中に懸濁させた水和された水酸化
バリウムに、攪拌下でチタニウムテトラアルコキシドを
添加するなど適宜な方法を選択し得る。
本発明において使用されるアルコール酸は特に限定され
るものではなく、生成される結晶性チタン酸バリウム超
微粒子の特性に影響を与えることなく、しかも反応が十
分に進行し得る量であればよい。
るものではなく、生成される結晶性チタン酸バリウム超
微粒子の特性に影響を与えることなく、しかも反応が十
分に進行し得る量であればよい。
本発明における水和された水酸化バリウムと、チタニウ
ムテトラアルコキシドの反応は、アルコール中で70℃
以上の温度で3時間以上行われるが、この際70℃以下
および3時間以下では反応が十分に進行せず、未反応の
原料が残存するという不都合が生じる。
ムテトラアルコキシドの反応は、アルコール中で70℃
以上の温度で3時間以上行われるが、この際70℃以下
および3時間以下では反応が十分に進行せず、未反応の
原料が残存するという不都合が生じる。
また、水酸化バリウムとチタニウムテトラアルコキシド
の量比は生成される結晶性チタン酸バリウム超微粒子の
特性によって変化させることが必要であるが、通常モル
比で1を中心として若干変化させる程度である。
の量比は生成される結晶性チタン酸バリウム超微粒子の
特性によって変化させることが必要であるが、通常モル
比で1を中心として若干変化させる程度である。
(作用と発明の効果)
本発明によれば水を加えて加水分解するという工程を省
略することができ、極めて簡便な方法で結晶性チタン酸
バリウム超微粒子を得ることができる。
略することができ、極めて簡便な方法で結晶性チタン酸
バリウム超微粒子を得ることができる。
本発明によって得られた結晶性チタン酸バリウム超微粒
子は一次粒子の平均粒径が0.054m以下、通常的0
.O1〜0.02JLmの分布域にあるため、積層コン
デンサーに使用した場合にチタン酸バリウム層を極めて
薄くできるので、コンデンサー本体の厚みを薄くするこ
とができ、その容量を大きくすることが可能となる。ま
た、焼結温度を低くすることや、従来使用されていた内
部電極としてのパラジウムの代りにより安価な銀または
銀とパラジウムとの合金を使用できることで大巾なコス
トダウンを達成し得る。
子は一次粒子の平均粒径が0.054m以下、通常的0
.O1〜0.02JLmの分布域にあるため、積層コン
デンサーに使用した場合にチタン酸バリウム層を極めて
薄くできるので、コンデンサー本体の厚みを薄くするこ
とができ、その容量を大きくすることが可能となる。ま
た、焼結温度を低くすることや、従来使用されていた内
部電極としてのパラジウムの代りにより安価な銀または
銀とパラジウムとの合金を使用できることで大巾なコス
トダウンを達成し得る。
さらに、水和されていな゛い水酸化バリウムは不安定で
あり、空気中の二酸化炭素と反応して容易に炭酸バリウ
ムに変化し、生成された結晶性チタン酸バリウム超微粒
子中に不純物として残存してしまう可能性がある。しか
し、水和された水酸化バリウムは比較的安定であるため
、斯かる不純物のIl’jtを極めて低くおさえること
ができる。
あり、空気中の二酸化炭素と反応して容易に炭酸バリウ
ムに変化し、生成された結晶性チタン酸バリウム超微粒
子中に不純物として残存してしまう可能性がある。しか
し、水和された水酸化バリウムは比較的安定であるため
、斯かる不純物のIl’jtを極めて低くおさえること
ができる。
(実施例および比較例)
以下、本発明を実施例および比較例により更に具体的に
説明する。
説明する。
実施例1゜
攪拌装置および冷却管をつけた内容量500m文の丸底
フラスコにN2雰囲気下でBa(OH)?・8H207
,9g(Ba: 0.025−0党)およびエタノール
200曹交を装入し、攪拌下で懸濁状態として78℃ま
で昇温し、Ti(0−iGzH7)a 7.1g(Ti
:0.025■O文)を加える。
フラスコにN2雰囲気下でBa(OH)?・8H207
,9g(Ba: 0.025−0党)およびエタノール
200曹交を装入し、攪拌下で懸濁状態として78℃ま
で昇温し、Ti(0−iGzH7)a 7.1g(Ti
:0.025■O文)を加える。
この後4時間反応させ生成物を得た。該生成物のX線回
折から結晶性BaT io3が生成していることが確認
された。
折から結晶性BaT io3が生成していることが確認
された。
なお、該生成粒子を電子顕微鏡で観察したところ、その
粒径は一次粒子で約0.02pmであった。
粒径は一次粒子で約0.02pmであった。
実施例2゜
熟成時間を6時間とした以外は実施例1と同様にして実
験を行なった。得られた生成物のX線回折から結晶性B
aTiO3の生成が確認され、また該生成物の顕微鏡観
察から一次粒子の粒径は0.03ルmであった・ 比較例1゜ 熟成時間を2時間とした以外は実施例1と同様にして実
験を行なった。得られた生成物のX線回折から結晶性B
aT io3の生成は確認されたが、同時に未反応原料
の存在も確認された。
験を行なった。得られた生成物のX線回折から結晶性B
aTiO3の生成が確認され、また該生成物の顕微鏡観
察から一次粒子の粒径は0.03ルmであった・ 比較例1゜ 熟成時間を2時間とした以外は実施例1と同様にして実
験を行なった。得られた生成物のX線回折から結晶性B
aT io3の生成は確認されたが、同時に未反応原料
の存在も確認された。
比較例2゜
60℃まで昇温してTi(0−ic3H1)4を加え、
4時間反応させた以外は実施例1と同様にして実験を行
った。得られた生成物のX線回折から結晶性BaT i
03の生成は確認されたが、同時に未反応原料の存在も
確認された。
4時間反応させた以外は実施例1と同様にして実験を行
った。得られた生成物のX線回折から結晶性BaT i
03の生成は確認されたが、同時に未反応原料の存在も
確認された。
Claims (1)
- (1)水和された水酸化バリウムとチタニウムテトラア
ルコキシドを、アルコール中において70℃以上の温度
で3時間以上反応させることによって、一次粒子の平均
粒径が0.05μm以下の超微粒子を得ることを特徴と
する結晶性チタン酸バリウム超微粒子の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21053788A JPH0259426A (ja) | 1988-08-26 | 1988-08-26 | 結晶性チタン酸バリウム超微粒子の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21053788A JPH0259426A (ja) | 1988-08-26 | 1988-08-26 | 結晶性チタン酸バリウム超微粒子の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0259426A true JPH0259426A (ja) | 1990-02-28 |
Family
ID=16590999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21053788A Pending JPH0259426A (ja) | 1988-08-26 | 1988-08-26 | 結晶性チタン酸バリウム超微粒子の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0259426A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02252617A (ja) * | 1989-03-24 | 1990-10-11 | Koroido Res:Kk | 複合酸化物の製造方法 |
JPH0815228A (ja) * | 1994-06-27 | 1996-01-19 | Marktec Corp | 湿式磁粉探傷試験方法に用いられる磁粉液用分散剤 |
JP5270528B2 (ja) * | 2007-02-20 | 2013-08-21 | 日本化学工業株式会社 | 無定形微粒子粉末、その製造方法およびそれを用いたペロブスカイト型チタン酸バリウム粉末 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62297214A (ja) * | 1986-06-16 | 1987-12-24 | コ−ニング グラス ワ−クス | チタン酸バリウムの微細粉末とその製造方法 |
-
1988
- 1988-08-26 JP JP21053788A patent/JPH0259426A/ja active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62297214A (ja) * | 1986-06-16 | 1987-12-24 | コ−ニング グラス ワ−クス | チタン酸バリウムの微細粉末とその製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02252617A (ja) * | 1989-03-24 | 1990-10-11 | Koroido Res:Kk | 複合酸化物の製造方法 |
JPH0815228A (ja) * | 1994-06-27 | 1996-01-19 | Marktec Corp | 湿式磁粉探傷試験方法に用いられる磁粉液用分散剤 |
JP5270528B2 (ja) * | 2007-02-20 | 2013-08-21 | 日本化学工業株式会社 | 無定形微粒子粉末、その製造方法およびそれを用いたペロブスカイト型チタン酸バリウム粉末 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4764493A (en) | Method for the production of mono-size powders of barium titanate | |
CN100506701C (zh) | 钛酸钡及其制造方法 | |
JP6583637B2 (ja) | チタン酸ストロンチウム微粒子粉末及びその製造方法 | |
WO2000035811A1 (fr) | Oxyde composite de type perovskite renfermant du titane | |
WO2008102785A9 (ja) | 無定形微粒子粉末、その製造方法およびそれを用いたペロブスカイト型チタン酸バリウム粉末 | |
KR20100124776A (ko) | 티탄산바륨의 제조 방법 | |
JP5932397B2 (ja) | ペロブスカイト構造を有するセラミック粉末の製造方法及びこれにより製造されたペロブスカイト構造を有するセラミック粉末 | |
US20070086941A1 (en) | Fine barium titanate particles | |
JP3875589B2 (ja) | 酸化物粉末の製造方法 | |
JP3319807B2 (ja) | ペロブスカイト型化合物微細粒子粉末およびその製造法 | |
JPH0259426A (ja) | 結晶性チタン酸バリウム超微粒子の製造方法 | |
US9695061B2 (en) | Method for producing barium titanate powder | |
KR101438121B1 (ko) | 티탄산바륨 나노선의 제조방법 | |
JP4073018B2 (ja) | チタン酸バリウム焼結体用原料粉末 | |
JP2012188325A (ja) | チタン酸ランタンの製造方法 | |
JP2750526B2 (ja) | 結晶性チタン酸バリウム超微粒子の製造方法 | |
CN104941539B (zh) | 钙钛矿型复合氧化物纳米晶体胶的制备方法 | |
US7091154B2 (en) | Perovskite titanium-type composite oxide particle and production process thereof | |
JP2787328B2 (ja) | 結晶性チタン酸バリウム超微粒子の製造方法 | |
JPS58213633A (ja) | 酸化アルミニウムの製造方法 | |
JPH10203867A (ja) | チタン酸バリウム焼結体及びその製造方法 | |
JPH10236824A (ja) | チタニア−ジルコニア系複合酸化物微粉末及びその製造法 | |
JP6394324B2 (ja) | チタン酸バリウム粉体とその製造方法 | |
JP4441306B2 (ja) | カルシウムドープチタン酸バリウムの製造方法 | |
JPH0524865B2 (ja) |