JPH0259001A - Device for removal of harmful substance from exhaust gas - Google Patents

Device for removal of harmful substance from exhaust gas

Info

Publication number
JPH0259001A
JPH0259001A JP63208050A JP20805088A JPH0259001A JP H0259001 A JPH0259001 A JP H0259001A JP 63208050 A JP63208050 A JP 63208050A JP 20805088 A JP20805088 A JP 20805088A JP H0259001 A JPH0259001 A JP H0259001A
Authority
JP
Japan
Prior art keywords
exhaust gas
reaction tank
gases
tank
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63208050A
Other languages
Japanese (ja)
Other versions
JP2774108B2 (en
Inventor
Manabu Tsujimura
学 辻村
Yukio Ikeda
幸雄 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP63208050A priority Critical patent/JP2774108B2/en
Publication of JPH0259001A publication Critical patent/JPH0259001A/en
Application granted granted Critical
Publication of JP2774108B2 publication Critical patent/JP2774108B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To remove harmful substance from exhaust gases by installing an addition- reaction tank, wherein gases, which are able to be liquefied or sublimated under atmospheric temperature and pressure, a selectively condensed or sublimated, on the upstream side of an exhaust-gas reaction tank to prevent blocking of the exhaust-gas reaction tank. CONSTITUTION:When a group of gases A, which are easily liquefied or sublimated under atmospheric temperature and pressure, and a group of gases B in gaseous state, being mixed together, flow into an addition-reaction tank 12, a majority of the group of gases A is liquefied or sublimated since the temperature of the tank 12 is located slightly lower than that of an exhaust-gas reaction tank 5 situated downstream, while the group of gases B remain in gaseous state, whereby the group of gases B which haven't been condensed or sublimated and a part of the group A flow into the tank 5, while, since the temperature in the tank 5 is higher than that of the tank 12, the gases having flowed into the tank 5 are subjected to an adsorption reaction in gaseous state, without being liquefied or sublimated. Consequently, blocking of the interior of the tank 5 is avoided and harmful substances are removed from the exhaust gases without fail.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、反応装置の下流側に配置されて有毒気体を含
んだ排ガスを無害化する排ガス除害装置に関する。より
詳細には、四塩化炭素(CCa4)や三塩化アルミニウ
ム(11!  Cl23>等のように、常温・常圧状態
では液化あるいは昇華し易い性質を有する有毒気体を含
む排ガスを無害化するための排ガス除害装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an exhaust gas abatement device that is disposed downstream of a reaction device and detoxifies exhaust gas containing toxic gases. More specifically, it is used to detoxify exhaust gas containing toxic gases that tend to liquefy or sublimate at room temperature and pressure, such as carbon tetrachloride (CCa4) and aluminum trichloride (11!Cl23>). Regarding exhaust gas abatement equipment.

[従来の技術] 第4図に従来の排ガス除害システムがブロック図として
示されている。反応装置1において発生した有毒気体を
含む排ガスは、メインパルプ2を介して真空ポンプ3に
よって吸引される。そして、出口配管(フレキ)4より
成る配管系を介して排ガス反応槽5より成る排ガス処理
系に送られる。
[Prior Art] FIG. 4 shows a conventional exhaust gas abatement system as a block diagram. Exhaust gas containing toxic gases generated in the reactor 1 is sucked through the main pulp 2 by the vacuum pump 3. Then, it is sent to an exhaust gas treatment system consisting of an exhaust gas reaction tank 5 via a piping system consisting of an outlet piping (flexible) 4.

この排ガス反応!5において有毒気体が除去された後、
排ガスは集合排気管6を介して外部へ排出される。
This exhaust gas reaction! After the toxic gas is removed in step 5,
The exhaust gas is discharged to the outside via the collective exhaust pipe 6.

反応装置1内で例えば半導体のエツチング工程が行われ
る場合には、ハロゲン系ガス(塩素Cl22、三塩化ホ
ウ素BCj23、四塩化炭素C0g4、四フッ化炭素C
F4その他)によりアルミニウム(AJ2)やシリコン
(Sl)をエツチングするので、排気系(第4図におい
てメインバルブ2の下流側)には、前記、ハロゲン系ガ
スに加えて三塩化アルミニウム(AJ  C(23)や
四フッ化ケイ素(SiF4)等の気体が反応生成物とし
て排出される。
For example, when a semiconductor etching process is carried out in the reaction apparatus 1, halogen-based gases (chlorine Cl22, boron trichloride BCj23, carbon tetrachloride C0g4, carbon tetrafluoride C
Since aluminum (AJ2) and silicon (Sl) are etched by aluminum (AJ2) and silicon (Sl), the exhaust system (downstream side of main valve 2 in Fig. 4) is filled with aluminum trichloride (AJ2) in addition to the halogen gas mentioned above. Gases such as 23) and silicon tetrafluoride (SiF4) are discharged as reaction products.

第5図の蒸気圧線図から明らかなように、排ガス中に含
濾れる気体は、塩素C1や三塩化ホウ素BCl23のよ
うに蒸気圧が比較的高く常温・常圧では気相状態となっ
ているものく第5図中気体群Bで示す)と、三塩化アル
ミニウムA6  C<13や四塩化炭素CCiのように
常温・常圧では液化あるいは昇華し易いもの(第5図中
気体群Aで示す)とに大別される。
As is clear from the vapor pressure diagram in Figure 5, the gases contained in the exhaust gas, such as chlorine C1 and boron trichloride BCl23, have relatively high vapor pressures and are in a gas phase at room temperature and pressure. gas group B in Figure 5), and substances that easily liquefy or sublimate at room temperature and pressure, such as aluminum trichloride A6C<13 and carbon tetrachloride CCi (gas group A in Figure 5). (shown).

[発明が解決しようとする課題] 従来の排ガス除害系で上記気体群A、Hの混合気体を処
理する場合には、気体群Aは真空ポンプ3(第4図)を
含むポンプ系あるいは出口配管4から成る配管系でその
大部分が液化あるいは昇華し、付着してしまう、そのた
め、排ガス反応槽5には気相状態の気体群Aはほとんど
流入せず、配管系で付着しなかった残留分が液化あるい
は昇華したものとして流入する。
[Problems to be Solved by the Invention] When a conventional exhaust gas abatement system processes a mixture of gas groups A and H, gas group A must be treated in a pump system including the vacuum pump 3 (FIG. 4) or at an outlet. Most of it liquefies or sublimates and adheres to the piping system consisting of the piping 4. Therefore, almost no gas group A in the gas phase flows into the exhaust gas reaction tank 5, and the remaining gas that did not adhere to the piping system The fraction flows in as liquefied or sublimated material.

ここで排ガス反応槽5は気相状態の物質の処理を目的と
するものであり、液化あるいは昇華した物質を処理する
よう設計がなされていない、そのなめ、液化あるいは昇
華した物質により排ガス反応槽が全閉塞や一部閉塞の不
具合が生じた。全閉塞の場合には、排ガス反応槽5より
上流に圧力上昇を起こさせる原因となる。一部閉塞の場
合には排ガス反応槽5内の吸着剤が有効に使われないた
めに処理の寿命を縮めるという不具合が生じる。
Here, the exhaust gas reaction tank 5 is intended to treat substances in a gas phase, and is not designed to treat liquefied or sublimated substances. Problems such as total occlusion or partial occlusion occurred. In the case of complete blockage, this causes a rise in pressure upstream of the exhaust gas reaction tank 5. In the case of partial blockage, the adsorbent in the exhaust gas reaction tank 5 is not used effectively, resulting in a problem that the life of the treatment is shortened.

これに対して、ポンプ系、配管系から気体群Aを気相状
態のまま排ガス反応槽5へ導入する技術が提案されてい
る。しかし、排ガス反応槽5を含む排ガス処理系に気相
状態の気体群Aが流入すると直ちに液化あるいは昇華し
てしまう、そして、前記したように排ガス反応槽は液化
あるいは昇華した物質を処理するようには設計されてい
ないので、排ガス反応槽が閉塞して排ガス反応槽5の性
能不良の原因になるという問題がある。
In contrast, a technique has been proposed in which the gas group A is introduced into the exhaust gas reaction tank 5 in a gaseous state from a pump system or a piping system. However, when the gas group A in the gas phase flows into the exhaust gas treatment system including the exhaust gas reaction tank 5, it immediately liquefies or sublimates, and as described above, the exhaust gas reaction tank processes the liquefied or sublimated substances. Since this is not designed, there is a problem that the exhaust gas reaction tank is clogged, which causes poor performance of the exhaust gas reaction tank 5.

また、液化窒素(LN2 )を用いて気相状態の有毒物
質を排ガス反応槽5の上流側で事前に凝集トラップする
技術も提案されている。しかし、この液化窒素トラップ
技術では上記した気体群A、Bを共にトラップしてしま
うので、再気化工程あるいは再昇華工程において純度の
高い有毒物質がトラップ内に残留して危険であり、その
取扱いが困難だった。
Furthermore, a technique has also been proposed in which toxic substances in a gas phase are preliminarily coagulated and trapped on the upstream side of the exhaust gas reaction tank 5 using liquefied nitrogen (LN2). However, since this liquefied nitrogen trap technology traps both gas groups A and B, highly pure toxic substances remain in the trap during the re-vaporization or re-sublimation process, making it dangerous and difficult to handle. It was difficult.

本発明は上記した従来技術の問題点を解消すべく提案さ
れたもので、上記した気体群Aが排ガス反応槽の内部で
液化あるいは昇華して閉塞の原因となることを防止する
ために、気体群Aだけを排ガス反応槽の上流側で選択的
にトラップすることができる排ガス除害装置を提供する
ことを目的としている。
The present invention was proposed in order to solve the problems of the prior art described above, and in order to prevent the gas group A described above from liquefying or sublimating inside the exhaust gas reaction tank and causing blockage. It is an object of the present invention to provide an exhaust gas abatement device that can selectively trap only group A on the upstream side of an exhaust gas reaction tank.

[課題を解決するための手段] 本発明の排ガス除害装置は、有毒気体を含む排ガスを無
害化する排ガス除害装置において、常温・常圧で液化あ
るいは昇華する気体を選択的に凝集せしめる付加反応槽
を排ガス反応槽の上流側に設けている。
[Means for Solving the Problems] The exhaust gas abatement device of the present invention is an exhaust gas abatement device that detoxifies exhaust gas containing toxic gases. A reaction tank is provided upstream of the exhaust gas reaction tank.

本発明の実施に際して、前記付加反応槽は、排ガス反応
槽内部の温度よりも借かに低温となっているのが好まし
い。
In carrying out the present invention, it is preferable that the temperature of the addition reaction tank is slightly lower than the temperature inside the exhaust gas reaction tank.

また、前記付加反応槽は、外部から冷却媒体を供給され
るクーラより成り、そのクーラによる冷却の程度は冷却
媒体流産調節弁によって調節されるように構成するのが
好ましい。
Preferably, the addition reaction tank includes a cooler supplied with a cooling medium from the outside, and the degree of cooling by the cooler is adjusted by a cooling medium miscarriage control valve.

さらに、前記付加反応槽は上記した気体群A、Bと冷却
された不活性ガスとを混合する混合ケース、および外部
からの冷却媒体により不活性ガスを冷却する不活性ガス
用クーラを有しているのが好ましい、この場合、不活性
ガス流量調節弁により冷却された不活性ガスの流量を調
節することによって冷却の程度が設定されるように構成
するのが好ましい。
Furthermore, the addition reaction tank has a mixing case that mixes the above-mentioned gas groups A and B with a cooled inert gas, and an inert gas cooler that cools the inert gas with an external cooling medium. In this case, the degree of cooling is preferably set by adjusting the flow rate of the cooled inert gas using an inert gas flow control valve.

[作用] 上記のような構成を具備する本発明によれば、排ガス反
応槽の上流側(排ガスの発生源である反応装置に近い側
)に設けた付加反応槽によって、気体群A(常温・常圧
で液化あるいは昇華し易い気体)の大部分はその内部に
おいて凝集される。
[Function] According to the present invention having the above-described configuration, the additional reaction tank provided upstream of the exhaust gas reaction tank (the side closer to the reaction device that is the source of exhaust gas) collects the gas group A (normal temperature, Most of the gases that tend to liquefy or sublimate at normal pressure are condensed inside.

この付加反応槽で凝集されなかった気体(蒸気気体群B
および一部の気体群A)はそのまま排ガス反応槽へ流入
するが、これ等の気体は排ガス反応槽内部で液化あるい
は昇華することはないので、閉塞等のトラブルを生ずる
ことなく吸着反応が行われる、ここで、付加反応槽内の
温度を排ガス反応槽内の温度よりも僅かに低温にすれば
、排ガス反応槽に流入する気体が液化あるいは昇華しな
いこと、および気体群Aのみが選択的に凝集されること
が保証される。これに伴い、液化窒素による凝集トラッ
プ技術のように気体群A、B双方をトラップしてしまう
不都合は生じない。
Gas that was not coagulated in this addition reaction tank (steam gas group B
Although some of the gases in group A) flow into the exhaust gas reaction tank as they are, these gases do not liquefy or sublimate inside the exhaust gas reaction tank, so the adsorption reaction takes place without causing problems such as blockage. Here, if the temperature inside the addition reaction tank is made slightly lower than the temperature inside the exhaust gas reaction tank, the gas flowing into the exhaust gas reaction tank will not liquefy or sublimate, and only gas group A will selectively coagulate. guaranteed. Accordingly, there is no problem of trapping both gas groups A and B as in the agglomeration trap technique using liquefied nitrogen.

[実施例コ 以下、第1図ないし第3図を参照して、本発明の実施例
について説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3.

第1図は本発明の排ガス除害装置10を用いた系のブロ
ック図を示している。ここで、第4図と同一の部材は同
一の符号を付してし示している。
FIG. 1 shows a block diagram of a system using an exhaust gas abatement device 10 of the present invention. Here, the same members as in FIG. 4 are designated by the same reference numerals.

排ガス除害装置10は、排ガス反応槽5とその上流側に
設けられた付加反応槽12とから構成されている。なお
、第1図中符号14は排ガス処理系における配管である
The exhaust gas abatement device 10 includes an exhaust gas reaction tank 5 and an additional reaction tank 12 provided upstream thereof. Note that the reference numeral 14 in FIG. 1 is a pipe in the exhaust gas treatment system.

この付加反応槽12は、例えば第2図で示すようになっ
ている。第2図の例において、付加反応槽12はクーラ
16より構成されている。このクーラ16は、冷却媒体
用配管18を介して外部の冷媒源S(詳細は図示せず)
から供給される冷却媒体によって冷却され、その下流の
排ガス反応槽5(第1図)の内部よりも僅かに低温とな
っている。クーラ16におけるこの温度設定を行うのに
は、冷却媒体流量調節弁20の開度を適当に選択して冷
却媒体の流量を調節すれば良い。
This addition reaction tank 12 is, for example, as shown in FIG. In the example shown in FIG. 2, the addition reaction tank 12 is comprised of a cooler 16. This cooler 16 is connected to an external refrigerant source S (details not shown) via a refrigerant pipe 18.
The temperature is slightly lower than that of the inside of the exhaust gas reaction tank 5 (FIG. 1) located downstream thereof. To set this temperature in the cooler 16, the opening degree of the cooling medium flow rate regulating valve 20 may be appropriately selected to adjust the flow rate of the cooling medium.

第3図は付加反応W112のその他の例を示している。FIG. 3 shows another example of addition reaction W112.

付加反応槽12は混合ケース22を備えている。そして
、配管24および弁26を介して、冷却され窒素ガス(
N2)等の不活性ガスGが混合ケース22内に流入する
。不活性ガスGの冷却は不活性ガス用クーラ28によっ
て行われ、その不活性ガス用クーラ28には配管30を
介して冷却媒体が導入されている。混合ケース22内の
温度は、第2図の場合と同様に、その下流の排ガス反応
槽5(第1図)の内部よりも僅かに低温に設定される。
The addition reaction vessel 12 is equipped with a mixing case 22 . Then, the cooled nitrogen gas (
An inert gas G such as N2) flows into the mixing case 22. The inert gas G is cooled by an inert gas cooler 28, and a cooling medium is introduced into the inert gas cooler 28 via a pipe 30. As in the case of FIG. 2, the temperature inside the mixing case 22 is set to be slightly lower than the inside of the downstream exhaust gas reaction tank 5 (FIG. 1).

そのような温度設定は、弁26の開度を適当に選択して
混合ケース22内へ流入する冷却された不活性ガスの流
量を調節することによって行われる。
Such temperature setting is performed by appropriately selecting the opening degree of the valve 26 to adjust the flow rate of the cooled inert gas flowing into the mixing case 22.

再び第1図を参照して、上記した実施例による排ガスの
除害処理を説明する。常温・常圧で液化あるいは昇華し
易い気体すなわち気体群Aと、常温・常圧でも気相状態
にある気体すなわち気体群Bとは、混在した状態で付加
反応槽12内に流入する。前述の通り付加反応槽12は
その下流の排ガス反応槽5の温度よりも但かに低温とな
っているので、流入した気体群Bはその気相状態を保つ
が、気体群Aの大部分は液化あるいは昇華して凝集され
る。
Referring again to FIG. 1, the exhaust gas abatement process according to the above embodiment will be described. Gases that are easily liquefied or sublimated at normal temperature and pressure, ie, gas group A, and gases that are in a gas phase even at normal temperature and pressure, ie, gas group B, flow into the addition reaction tank 12 in a mixed state. As mentioned above, the temperature of the addition reaction tank 12 is slightly lower than that of the downstream exhaust gas reaction tank 5, so the gas group B that has flowed in remains in its gas phase, but most of the gas group A It is liquefied or sublimated and aggregated.

付加反応槽12で凝集されなかった気体、すなわち気体
群Bと一部の気体群Aは、排ガス反応槽5へ流入する。
The gases that are not aggregated in the addition reaction tank 12, that is, the gas group B and a part of the gas group A, flow into the exhaust gas reaction tank 5.

ここで、排ガス反応槽5内の温度は付加反応槽12内よ
りも高温なので、上記の流入した気体は液化あるいは昇
華することなく、気相状態のままで吸着反応が行われる
。そのため、排ガス反応槽5の内部が閉塞することはな
く、そして有毒な気体は排ガス中から確実に除去される
のである。
Here, since the temperature inside the exhaust gas reaction tank 5 is higher than the inside of the addition reaction tank 12, the adsorption reaction is performed on the inflowing gas without being liquefied or sublimated, but in a gaseous state. Therefore, the inside of the exhaust gas reaction tank 5 is not clogged, and toxic gases are reliably removed from the exhaust gas.

[発明の効果] 以上説明した通り、本発明においては排ガス反応槽の上
流側に設けた付加反応槽により、常温・常圧で液化ある
いは昇華し易い気体が凝集される。
[Effects of the Invention] As explained above, in the present invention, gases that are easily liquefied or sublimed at normal temperature and pressure are aggregated by the additional reaction tank provided upstream of the exhaust gas reaction tank.

そのため、液相あるいは固相の状態で排ガス反応槽へ流
入することがない、また、排ガス反応槽内で液化あるい
は昇華することも防止される。そのため、排ガス反応槽
における閉塞も防止される。
Therefore, it does not flow into the exhaust gas reaction tank in a liquid or solid state, and is also prevented from liquefying or sublimating within the exhaust gas reaction tank. Therefore, clogging in the exhaust gas reaction tank is also prevented.

しかも、常温・常圧で気相状態となっているか否かに拘
らず、排ガス中から有害物質を除去することができるの
である。
Furthermore, harmful substances can be removed from the exhaust gas regardless of whether it is in the gas phase at room temperature and pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すブロック図、第2図は本
発明の第1実施例の要部を示す概要図、第3図は本発明
の第2実施例の要部を示す概要図、第4図は従来技術を
示すブロック図、第5図は蒸気圧線図である。 1・・・反応装置  5・・・排ガス反応槽10・・・
排ガス除害装置  12・・・付加反応槽  16・・
・クーラ  22・・・混合ケース 28 ・ ・不活性ガス用クーラ 第 図 1゜ 第 図
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a schematic diagram showing the main parts of the first embodiment of the invention, and FIG. 3 is a schematic diagram showing the main parts of the second embodiment of the invention. 4 is a block diagram showing the prior art, and FIG. 5 is a vapor pressure diagram. 1... Reactor 5... Exhaust gas reaction tank 10...
Exhaust gas abatement device 12...Additional reaction tank 16...
・Cooler 22...Mixing case 28 ・・Inert gas cooler diagram 1゜ diagram

Claims (1)

【特許請求の範囲】[Claims] 有毒気体を含む排ガスを無害化する排ガス除害装置にお
いて、常温・常圧で液化あるいは昇華する気体を選択的
に凝集せしめる付加反応槽を排ガス反応槽の上流側に設
けたことを特徴とする排ガス除害装置。
An exhaust gas abatement device for detoxifying exhaust gas containing toxic gases, characterized in that an additional reaction tank for selectively condensing gases that liquefy or sublimate at normal temperature and pressure is provided upstream of the exhaust gas reaction tank. Elimination equipment.
JP63208050A 1988-08-24 1988-08-24 Exhaust gas abatement system Expired - Lifetime JP2774108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63208050A JP2774108B2 (en) 1988-08-24 1988-08-24 Exhaust gas abatement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63208050A JP2774108B2 (en) 1988-08-24 1988-08-24 Exhaust gas abatement system

Publications (2)

Publication Number Publication Date
JPH0259001A true JPH0259001A (en) 1990-02-28
JP2774108B2 JP2774108B2 (en) 1998-07-09

Family

ID=16549815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63208050A Expired - Lifetime JP2774108B2 (en) 1988-08-24 1988-08-24 Exhaust gas abatement system

Country Status (1)

Country Link
JP (1) JP2774108B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314869A (en) * 2005-05-10 2006-11-24 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude System for detoxifying exhaust gas from semiconductor process chamber

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010782A (en) * 1973-06-06 1975-02-04
JPS5269869A (en) * 1975-12-08 1977-06-10 Daikin Ind Ltd Organic solvent recovering apparatus
JPS5346475A (en) * 1976-10-09 1978-04-26 Sumitomo Spec Metals Apparatus for deodorizing nasty gases from shellmold facilities
JPS54133764A (en) * 1978-04-08 1979-10-17 Chiba Fine Chemical Method of and device for burning and deodorizing smelly waste gas
JPS5663823A (en) * 1979-10-15 1981-05-30 Zaporozhsky Titano Magnievy Device for separating titanium tetrachloride
JPS60232235A (en) * 1984-05-01 1985-11-18 Daido Steel Co Ltd Treatment of exhaust gas
JPS62273038A (en) * 1986-05-21 1987-11-27 Kanto Denka Kogyo Kk Treatment of chemical vapor deposition exhaust gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010782A (en) * 1973-06-06 1975-02-04
JPS5269869A (en) * 1975-12-08 1977-06-10 Daikin Ind Ltd Organic solvent recovering apparatus
JPS5346475A (en) * 1976-10-09 1978-04-26 Sumitomo Spec Metals Apparatus for deodorizing nasty gases from shellmold facilities
JPS54133764A (en) * 1978-04-08 1979-10-17 Chiba Fine Chemical Method of and device for burning and deodorizing smelly waste gas
JPS5663823A (en) * 1979-10-15 1981-05-30 Zaporozhsky Titano Magnievy Device for separating titanium tetrachloride
JPS60232235A (en) * 1984-05-01 1985-11-18 Daido Steel Co Ltd Treatment of exhaust gas
JPS62273038A (en) * 1986-05-21 1987-11-27 Kanto Denka Kogyo Kk Treatment of chemical vapor deposition exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314869A (en) * 2005-05-10 2006-11-24 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude System for detoxifying exhaust gas from semiconductor process chamber

Also Published As

Publication number Publication date
JP2774108B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
EP0529982B1 (en) Exhaust apparatus for epitaxial growth system.
TWI411462B (en) Fluid purification system with low temperature purifier
EP0345686B1 (en) Pressure swing adsorption apparatus and process for recovery of oil-soluble vapors
JPH0259001A (en) Device for removal of harmful substance from exhaust gas
JP2001522982A (en) Freezing separation of gas components from gas mixtures
JP3156452B2 (en) Clean air supply device and supply method
JP2001248964A (en) Apparatus and method for gas refining
JPH07253272A (en) Gas separating device
JPH1129301A (en) Production apparatus of ultrapure hydrogen gas
JPH0729962A (en) Method and device for evacuation
JPH04124001A (en) Purification of arsine
JP2644823B2 (en) Regeneration method of helium gas purification adsorber
JPH0635650B2 (en) Ultra high purity gas supply device
JPS6410252B2 (en)
JPH07124438A (en) Waste treatment equipment of vapor growth device
JP3617575B2 (en) Vacuum exhaust system
US3451196A (en) Gas purification
JP5109870B2 (en) Film forming apparatus and film forming method using the same
JPH04208386A (en) Gas purifying method
JP3181686B2 (en) Hydrogen recovery and purification equipment
JP4380136B2 (en) Ozonolysis equipment
JPS627408A (en) Apparatus for recirculating and purifying pump oil of hydraulic rotary pump for vacuum processing apparatus
JPS62136570A (en) Cvd reactive gas trapping device
JPH0631104A (en) Method for purifying gas to high purity
JPS6115703A (en) Exhaust apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11