JPH04124001A - Purification of arsine - Google Patents

Purification of arsine

Info

Publication number
JPH04124001A
JPH04124001A JP24653390A JP24653390A JPH04124001A JP H04124001 A JPH04124001 A JP H04124001A JP 24653390 A JP24653390 A JP 24653390A JP 24653390 A JP24653390 A JP 24653390A JP H04124001 A JPH04124001 A JP H04124001A
Authority
JP
Japan
Prior art keywords
arsine
alumina gel
purification
temperature
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24653390A
Other languages
Japanese (ja)
Other versions
JP3105529B2 (en
Inventor
Akio Tomimoto
富本 昭雄
Takuya Ikeda
拓也 池田
Sadashi Takahashi
高橋 貞司
Isao Matsumoto
功 松本
Masato Sato
正人 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP02246533A priority Critical patent/JP3105529B2/en
Publication of JPH04124001A publication Critical patent/JPH04124001A/en
Application granted granted Critical
Publication of JP3105529B2 publication Critical patent/JP3105529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To improve purity of arsine by purifying arsine at a prescribed temperature using an activated alumina gel. CONSTITUTION:A three-way changeover valve 12 is operated and N2 gas heated to 110-200 deg.C from a gas generating means 15 is fed to a purification device 11 to activate granular alumina gel A in a column 1 made of stainless steel, etc. Then after finishing activation, unpurified arsine is fed from a bomb 13 to a purification device 11 at a flow rate of about 100-250ml/min based on 10g alumina gel A by operating the three-way valve to start purification. In the column 1, the inside is heated by installing a heater and a temperature when unpurified arsine is brought into contact with alumina gel A is raised to >=10 deg.C. Thereby purified arsine removed impurities is obtained from an outlet pipe 3 of the purification device 11.

Description

【発明の詳細な説明】 [産業上の利用分野〕 この発明は、化合物半導体などの製造原料であるアルシ
ン(A、5H3)の精製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for purifying arsine (A, 5H3), which is a raw material for manufacturing compound semiconductors and the like.

〔従来の技術〕[Conventional technology]

ガリウムヒ素(GaAs)などの化合物半導体の製造に
用いられるアルシンは極めて高純度であることが絶対的
に必要である。
It is absolutely necessary that arsine used in the manufacture of compound semiconductors such as gallium arsenide (GaAs) be of extremely high purity.

従来、このようなアルシンの精製には、モレキュラー/
−ブ(分子ふるい)か用いられている。
Conventionally, such purification of arsine has been carried out using molecular/
- Molecular sieves are used.

しかしながら、モレキュラーシーブによって精製された
アルシンを用いて製造された化合物半導体、特に半導体
レーザーなどの光半導体では、十分な性能が得られない
問題かあった。
However, compound semiconductors manufactured using arsine purified by molecular sieves, especially optical semiconductors such as semiconductor lasers, have the problem of not being able to obtain sufficient performance.

これは、モレキュラーシーブによる精製では、水分や二
酸化炭素等は除去し得るか、アルシン中には製造過程で
、その外の不純物か混入するものと思われ、モレキュラ
ーシーブにより精製したものでは、所望するに足りる充
分な性能を有する化合物半導体が得られないのが実情で
ある。これはその他に何等かの不純物か極微量混入して
いるものと考えられ、その対応解決か望まれていた。
This is because purification using molecular sieves does not remove moisture, carbon dioxide, etc., or other impurities may be mixed into arsine during the manufacturing process. The reality is that compound semiconductors with sufficient performance cannot be obtained. This is thought to be due to a trace amount of some other impurity being mixed in, and a solution was desired.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

よって、この発明の課題は、微量の不純物の除去か十分
に行われ、優れた性能の光半導体などを得ることができ
るアルシンの精製方法を提供することにある。
Therefore, an object of the present invention is to provide a method for purifying arsine that can sufficiently remove trace amounts of impurities and produce optical semiconductors with excellent performance.

〔課題を解決するための手段〕[Means to solve the problem]

かかる課題解決のため種々実験を試みた結果、精製剤と
してアルミナゲルを用いて精製することによって得られ
たアルシンを使用すると極めて良好な性能を有する化合
物半導体を製造し得ることを知見し得たものである。
As a result of conducting various experiments to solve this problem, we have discovered that it is possible to produce a compound semiconductor with extremely good performance by using arsine obtained by purification using alumina gel as a purifying agent. It is.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

この発明で精製剤として用いられるアルミナケルは、従
来より気体の乾燥などの用途に用いられる吸着剤の1種
であるが、この発明では、このものを活性化処理して精
製剤として用いる。このアルミナゲルとしては、アルミ
ナ単独からなるものは勿論、少量のシリカや酸化ナトリ
ウムなどを含んでいるものでも使用しうる。具体的なも
のとしては、例えば活性化アルミナとして水沢化学工業
(株)製の「ネオビートD」、 「ネオビードPJ。
Alumina gel used as a purification agent in this invention is a type of adsorbent conventionally used for purposes such as drying gases, but in this invention, this material is activated and used as a purification agent. As this alumina gel, it is possible to use not only one made of alumina alone but also one containing a small amount of silica or sodium oxide. Specifically, activated aluminas include "Neobeet D" and "Neobead PJ" manufactured by Mizusawa Chemical Industry Co., Ltd.

[ネオビーF’MHBJ、rネオビードCゴ、 「ネオ
ビー)” G B jなどを使うことができる。活性化
処理は、このアルミナゲルを110〜200℃の温度範
囲で200〜300分程度加熱する方法や1、1.0〜
200℃に加熱されたアルゴン、窒素などの不活性ガス
と接触させる方法なとかある。活性化温度は上記温度範
囲内であれば、高い方か高活性化されて好ましいが、2
00℃を越えるとアルミナゲルの粉化か生して好ましく
ない。110℃未満では実質的に活性化か困難である。
[You can use neobee F'MHBJ, r neobie C go, "neobee" G B j, etc. The activation treatment can be carried out by heating this alumina gel in a temperature range of 110 to 200°C for about 200 to 300 minutes, or by heating the alumina gel in a temperature range of 1.
There is a method of contacting with an inert gas such as argon or nitrogen heated to 200°C. If the activation temperature is within the above temperature range, it is preferable to have a higher activation temperature or a higher activation temperature.
If the temperature exceeds 00°C, the alumina gel may turn into powder, which is undesirable. Activation is substantially difficult at temperatures below 110°C.

又、アルシン精製時の温度は、少なくとも10℃以上で
あることか必要であり、不純物の除去効率の点からは5
0℃以上、好ましくは100’c前後が望ましい。
In addition, the temperature during purification of arsine must be at least 10°C or higher, and from the point of view of impurity removal efficiency, it is necessary to
The temperature is desirably 0°C or higher, preferably around 100'c.

具体的な精製方法としては、カラムなどに活性化処理さ
れたアルミナケルを充填し、カラムの一方から未精製の
アルシンを上記温度範囲にて他方に流す方法やアルミナ
ゲルを充填したカラムに、予め加熱された不活性ガスを
流してアルミナゲルを活性化したのち、未精製アルシン
をカラムに流す方法などが簡便であるが、要はアルミナ
ゲルと未精製アルシンとか接触すればよく、これら以外
の方法でも勿論採用可能である。
Specific purification methods include filling a column with activated alumina gel and flowing unpurified arsine from one side of the column to the other at the above temperature range, or pre-heating a column filled with alumina gel. A simple method is to activate the alumina gel by flowing an inert gas, and then flow the unpurified arsine into the column, but the point is that the alumina gel and the unpurified arsine only need to come into contact, and other methods can also be used. Of course, it can be adopted.

第1図はこの発明の方法に用いられる精製装置の一例を
示すもので、図中符号1はステンレス鋼などからなるカ
ラムである。このカラム】の両端にはそれぞれ流入バイ
ブ2と流出バイブ3とか取り付けられており、これら2
つのバイブ2,3の先端にはフランジ4,5が取り付け
られている。
FIG. 1 shows an example of a purification apparatus used in the method of the present invention, and reference numeral 1 in the figure is a column made of stainless steel or the like. An inflow vibrator 2 and an outflow vibrator 3 are attached to both ends of this column, and these two
Flanges 4 and 5 are attached to the tips of the two vibrators 2 and 3.

カラム1内には、粒状のアルミナゲルAが充填されてお
り、カラム1内の両端側にはアルミナゲルAの流出を防
止するためのフィルタ6.7か設けられている。
The column 1 is filled with granular alumina gel A, and filters 6 and 7 are provided at both ends of the column 1 to prevent the alumina gel A from flowing out.

この精製装置11は、例えば第2図に示すような精製系
によって使用に供される。精製装置11の流入バイブ2
に三方切換弁】2を介して未精製アルシンが充填された
ポンベ13が接続されている。また、三方切換弁12に
は管14を経て加熱窒素ガス発生手段15が接続されて
いる。また、精製装置11の流出パイプ3は管16を経
て図示しない供給先に接続されている。
This purification apparatus 11 is put to use by a purification system as shown in FIG. 2, for example. Inflow vibe 2 of purifier 11
A pump 13 filled with unrefined arsine is connected to the pump via a three-way switching valve 2. Further, heated nitrogen gas generating means 15 is connected to the three-way switching valve 12 via a pipe 14. Further, the outflow pipe 3 of the purification device 11 is connected to a supply destination (not shown) via a pipe 16.

まず、三方切換弁12を操作し、加熱窒素ガス発生手段
15からの温度110〜200℃に加熱された窒素ガス
を精製装置に送り込み、カラム1内のアルミナゲルAを
活性化する。加熱窒素ガスの流量はアルミナケル1g当
たり20〜50yρ程度で十分である。活性化処理か終
了したら、三方切換弁】2を操作し、ポンベ13から未
精製アルシンが精製装置11に流入するようにして精製
を開始する。カラム1にヒータを設けて内部を加熱し、
アルミナゲルとの接触の際の温度を高めるようにしても
よい。未精製アルシンの流速はアルミナゲル10g当た
#) 100〜250x(1/分程度が好ましい。
First, the three-way switching valve 12 is operated to send nitrogen gas heated to a temperature of 110 to 200° C. from the heated nitrogen gas generating means 15 into the purification device to activate the alumina gel A in the column 1. A flow rate of the heated nitrogen gas of about 20 to 50 yρ per gram of alumina kel is sufficient. When the activation process is completed, the three-way switching valve 2 is operated to allow unrefined arsine to flow from the pump 13 into the refining device 11 to start refining. A heater is installed in column 1 to heat the inside.
The temperature during contact with the alumina gel may be increased. The flow rate of unpurified arsine is 100 to 250x (per 10 g of alumina gel) (preferably about 1/min).

かくして、精製装置11の流出パイプ3からは不純物が
除去された精製アルシンが得られ供給先に送られる。
In this way, purified arsine from which impurities have been removed is obtained from the outflow pipe 3 of the purification device 11 and sent to the supply destination.

なお本発明での使用によって精製能力を失ったアルミナ
ゲルは、吸着剤の如き再生することができず、再使用は
不可能である。従って再生か不可能であり、精製効率が
高い温度の方か高いことから考えて、ここでのアルミナ
ゲルの精製作用は少なくとも吸着作用によるものではな
いと考えられる。
Note that alumina gel that has lost its purification ability due to use in the present invention cannot be regenerated like an adsorbent and cannot be reused. Therefore, considering that regeneration is impossible and purification efficiency is higher at higher temperatures, it is thought that the purification effect of alumina gel here is not at least due to adsorption.

以下、実験例を示す。Experimental examples are shown below.

(実験例1) ステンレス鋼製の精製装置(内径36rM、長さ150
 xm)に、アルミナゲルとして「ネオビートDr  
(粒径16〜32  ) ッシx )を150JIc(
約85g)充填した。そして充填したアルミナゲルは別
に窒素ガス雰囲気下、200℃で120分加熱して活性
化処理したものを用いた。
(Experiment Example 1) Stainless steel purification equipment (inner diameter 36 rM, length 150 m)
xm) as alumina gel, “Neobeat Dr.
(particle size 16-32) 150 JIc (
Approximately 85g) was filled. The filled alumina gel was separately activated by heating at 200° C. for 120 minutes in a nitrogen gas atmosphere.

サンプルガスとしてアルシンの精製装置への流速を】4
7分と一定とし、精製温度を60℃として、サンプルガ
スを流しつづけて精製した。
Flow rate of arsine to the purification device as sample gas】4
Purification was carried out by keeping the sample gas flowing at a constant time of 7 minutes and at a purification temperature of 60°C.

このようにしてアルミナゲルを用いて精製したアルシン
と未精製のアルシンとを用いて、それぞれ金属酸化物気
相エピタキシャル成長法(MOVPE)によって、Ga
Asエピタキシャル層を成長させ、これらエピタキシャ
ル層についてホール測定および低温ホトルミネッセンス
によって比較評価した。成長条件は温度630℃,速度
5μ辺/時間、V/III比30である。
Using arsine thus purified using alumina gel and unpurified arsine, Ga was grown by metal oxide vapor phase epitaxial growth (MOVPE).
As epitaxial layers were grown and these epitaxial layers were comparatively evaluated by Hall measurements and low temperature photoluminescence. The growth conditions were a temperature of 630° C., a speed of 5 μm/hour, and a V/III ratio of 30.

未精製アルシンを用いて得られたエピタキシャル層の不
純物濃度は、室温で1.35XI014G、−377に
で1.9X 101′cm−”であり、移動度は、室温
で7980cy’/Vs、77にて105800Q1r
2/Vsであった。これに対して、精製アルシンを用い
て得られたエピタキシャル層では高抵抗であり、ホール
測定はできなかった。
The impurity concentration of the epitaxial layer obtained using unpurified arsine is 1.9X 101'cm-'' at 1.35XI014G, -377 at room temperature, and the mobility is 7980cy'/Vs at room temperature, at 77 te105800Q1r
It was 2/Vs. In contrast, the epitaxial layer obtained using purified arsine had a high resistance, and hole measurements were not possible.

第3図は、未精製アルシンによるエビタキンセル層の4
.2Kにお(するホトルミネッセンススペクトラムを示
し、第6図は精製アルシンによる同様のホトルミネッセ
ンススペクトラムを示すものである。これらのスペクト
ラムにおいて、(BA)はバントアクセプタ遷移、(A
−、X)はイオン化アクセプとエキシトンの複合体、(
D−A)はドナーアクセプタペア発光によるビーつてあ
り、820nm付近のピークはトナーに関連したエキシ
トンからの発光である。
Figure 3 shows the four layers of Evitakin cell layer with unrefined arsine.
.. Figure 6 shows a similar photoluminescence spectrum for purified arsine. In these spectra, (BA) is the band acceptor transition, (A
-, X) is a complex of ionized accept and exciton, (
D-A) is the beat due to donor-acceptor pair emission, and the peak around 820 nm is emission from excitons related to toner.

第3図と第4図を比較すると、第4図でのスペクトルで
は、(B−A)、(A−、X)のピークか高くなってお
り、(I)−A)のピークか低くなっている。このこと
から、精製アルシンによるエピタキシャル層はP−であ
ると推定され、N型不純物が減少したことが推定された
Comparing Figure 3 and Figure 4, in the spectrum in Figure 4, the (B-A), (A-, X) peaks are higher, and the (I)-A) peak is lower. ing. From this, it was estimated that the epitaxial layer made of purified arsine was P-, and it was estimated that the N-type impurity was reduced.

以上の結果から、アルミナゲルによる精製によって不純
物か除去され、特性の良好な光半導体等を製造すること
か可能であることかわかる。
From the above results, it can be seen that impurities are removed by purification using alumina gel, and it is possible to produce optical semiconductors and the like with good characteristics.

つぎに、精製時における温度の影響について実験した結
果、下記の表の通りの性能を示した。
Next, as a result of an experiment on the influence of temperature during purification, the performance shown in the table below was shown.

表 ここでの実験は、前記実験と同様の精製装置と精製条件
にて精製温度のみ変化させて行ったものである。
The experiments in this table were conducted using the same purification equipment and purification conditions as in the previous experiment, but only by changing the purification temperature.

以上のことより、本発明の精製方法では10℃以上の温
度で精製可能であり、そして高い1度にすればより精製
効果か向上することが判明した。
From the above, it has been found that the purification method of the present invention allows purification at a temperature of 10°C or higher, and that the purification effect is further improved by increasing the temperature to 1°C.

しかし、150℃以上にて精製するとアルミナゲルが粉
化してこれを同伴する不都合か生じる。
However, if the alumina gel is purified at a temperature of 150° C. or higher, the alumina gel will be powdered, resulting in the inconvenience of being accompanied by the alumina gel.

寿命到達後のアルミナゲルは一般の吸着剤のようには再
生して再使用は出来なかった。
After reaching the end of its lifespan, alumina gel could not be regenerated and reused like ordinary adsorbents.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明のアルシンの精製方法は
、アルミナゲルを用いるものであるので、アルシン中に
含まれる不純物かほぼ完全に除去され、高純度のアルシ
ンを得ることができる。よって、この発明の精製方法で
精製されたアルシンによれば、特性の優れた半導体レー
ザーなどの化合物半導体等を得ることかできる。
As explained above, since the arsine purification method of the present invention uses alumina gel, impurities contained in arsine are almost completely removed, and highly pure arsine can be obtained. Therefore, using arsine purified by the purification method of the present invention, compound semiconductors such as semiconductor lasers with excellent characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の方法を実施するに好適な精製装置の
一例を示す部分断面図、第2図は第1図に示された精製
装置を用いてアル、シンを精製するためのシステムの例
を示す構成図、第3図ないし第4図は、いずれも実験例
の結果を示すグラフで°ある。 −4+ □?
FIG. 1 is a partial sectional view showing an example of a purification apparatus suitable for carrying out the method of the present invention, and FIG. 2 is a diagram of a system for purifying al-syn using the purification apparatus shown in FIG. The configuration diagram showing the example and FIGS. 3 and 4 are graphs showing the results of the experimental example. -4+ □?

Claims (3)

【特許請求の範囲】[Claims] (1)アルシンをアルミナゲルを用いて精製することを
特徴とするアルシンの精製方法。
(1) A method for purifying arsine, which comprises purifying arsine using alumina gel.
(2)精製時の温度を10℃以上とすることを特徴とす
る請求項(1)記載のアルシンの精製方法。
(2) The method for purifying arsine according to claim (1), characterized in that the temperature during purification is 10° C. or higher.
(3)アルミナゲルの活性化温度が110〜200℃で
ある請求項(1)記載のアルシンの精製方法。
(3) The method for purifying arsine according to claim (1), wherein the activation temperature of the alumina gel is 110 to 200°C.
JP02246533A 1990-09-17 1990-09-17 Purification method of arsine Expired - Fee Related JP3105529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02246533A JP3105529B2 (en) 1990-09-17 1990-09-17 Purification method of arsine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02246533A JP3105529B2 (en) 1990-09-17 1990-09-17 Purification method of arsine

Publications (2)

Publication Number Publication Date
JPH04124001A true JPH04124001A (en) 1992-04-24
JP3105529B2 JP3105529B2 (en) 2000-11-06

Family

ID=17149827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02246533A Expired - Fee Related JP3105529B2 (en) 1990-09-17 1990-09-17 Purification method of arsine

Country Status (1)

Country Link
JP (1) JP3105529B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000020330A1 (en) * 1998-10-02 2000-04-13 Aeronex, Inc. Method and apparatus for purification of hydride gas streams
US6350300B1 (en) 2001-01-26 2002-02-26 Aeronex, Inc. Gas purification apparatus
US6461411B1 (en) 2000-12-04 2002-10-08 Matheson Tri-Gas Method and materials for purifying hydride gases, inert gases, and non-reactive gases
US6468333B2 (en) 2001-01-22 2002-10-22 Aeronex, Inc. Gas purifier apparatus
US7250072B2 (en) 2003-11-19 2007-07-31 Air Products And Chemicals, Inc. Removal of sulfur-containing impurities from volatile metal hydrides
CN113072041A (en) * 2021-03-08 2021-07-06 湖北航天化学技术研究所 Preparation method of fine-grained alpha-aluminum trihydride

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000020330A1 (en) * 1998-10-02 2000-04-13 Aeronex, Inc. Method and apparatus for purification of hydride gas streams
US6241955B1 (en) 1998-10-02 2001-06-05 Aeronex, Inc. Method and apparatus for purification of hydride gas streams
US6461411B1 (en) 2000-12-04 2002-10-08 Matheson Tri-Gas Method and materials for purifying hydride gases, inert gases, and non-reactive gases
US7033418B2 (en) 2000-12-04 2006-04-25 Matheson Tri-Gas, Inc. Method and materials for purifying hydride gases, inert gases, and non-reactive gases
US6468333B2 (en) 2001-01-22 2002-10-22 Aeronex, Inc. Gas purifier apparatus
US6350300B1 (en) 2001-01-26 2002-02-26 Aeronex, Inc. Gas purification apparatus
US7250072B2 (en) 2003-11-19 2007-07-31 Air Products And Chemicals, Inc. Removal of sulfur-containing impurities from volatile metal hydrides
CN113072041A (en) * 2021-03-08 2021-07-06 湖北航天化学技术研究所 Preparation method of fine-grained alpha-aluminum trihydride
CN113072041B (en) * 2021-03-08 2022-03-04 湖北航天化学技术研究所 Preparation method of fine-grained alpha-aluminum trihydride

Also Published As

Publication number Publication date
JP3105529B2 (en) 2000-11-06

Similar Documents

Publication Publication Date Title
EP0840708B1 (en) Method for purifying hydrogen based gas mixtures using a lithium exchanged x zeolite
TW201107288A (en) Processes for purification of acetylene
JPS63303805A (en) Method and composition for removing lewis acid and oxidant impurities by purifying arsine, phosphine, ammonia and inert gas
JPS62136222A (en) Method for adsorbing and separating specific gas from gaseous mixture
JPH04124001A (en) Purification of arsine
US5626033A (en) Process for the recovery of perfluorinated compounds
EP0820960B1 (en) Removal of O2 and/or CO from inert gas using adsorption on porous metal oxide
JP2018184348A (en) Method for producing high-purity acetylene gas
JP2004339187A (en) Method for purification and film-forming of perfluoro-compound
US3518115A (en) Method of producing homogeneous oxide layers on semiconductor crystals
JPH04161219A (en) Treatment of oxygen-containing gas
JP2008136935A (en) Selective treatment method of trifluoromethane, treatment unit and sample treatment system using it
JPH0223216B2 (en)
JPH02144114A (en) Method for purifying gaseous hydride
JPS624168B2 (en)
JP3708980B2 (en) How to remove moisture from gas
JPH0422415A (en) Method for adsorbing and removing carbon dioxide
JP3292311B2 (en) Purification method of methanol
JPH0632601A (en) Purification of hydrogen bromide
JPS62212208A (en) Purification of raw material helium gas, argon gas and methane gas
JPH02182824A (en) Nitrogen-atmosphere heat-treating device
JPH0422419A (en) Method for adsorbing and removing ammonia
JPH02251220A (en) Obtainment of gas containing unadsorbed gas of high concentration
SU1710504A1 (en) Method of regeneration of granulated activated carbon
JPS639742B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees