JP3292311B2 - Purification method of methanol - Google Patents

Purification method of methanol

Info

Publication number
JP3292311B2
JP3292311B2 JP15934292A JP15934292A JP3292311B2 JP 3292311 B2 JP3292311 B2 JP 3292311B2 JP 15934292 A JP15934292 A JP 15934292A JP 15934292 A JP15934292 A JP 15934292A JP 3292311 B2 JP3292311 B2 JP 3292311B2
Authority
JP
Japan
Prior art keywords
methanol
purification
catalyst
oxygen
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15934292A
Other languages
Japanese (ja)
Other versions
JPH061735A (en
Inventor
孝 島田
恵一 岩田
雅子 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP15934292A priority Critical patent/JP3292311B2/en
Publication of JPH061735A publication Critical patent/JPH061735A/en
Application granted granted Critical
Publication of JP3292311B2 publication Critical patent/JP3292311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はメタノールの精製方法に
関し、さらに詳細にはメタノール中に不純物として含ま
れる酸素を極低濃度まで除去しうるメタノールの精製方
法に関する。メタノールは、液晶デバイスや太陽電池に
おいて透明電極として用いられる酸化インジウム膜や酸
化スズ膜のドライエッチングなどに使用されており、液
晶デバイスなどの高性能化に伴い不純物の極めて少ない
ものが要求されている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying methanol, and more particularly to a method for purifying methanol capable of removing oxygen contained as an impurity in methanol to an extremely low concentration. Methanol is used for dry etching of indium oxide film and tin oxide film used as a transparent electrode in liquid crystal devices and solar cells, and as the performance of liquid crystal devices and the like increases, there is a demand for extremely low impurities. .

【0002】[0002]

【従来の技術】通常、半導体製造時に使用されるメタノ
ールの供給法としては、一端の開いたボトルに入れ、こ
れを恒温槽に浸して適当な温度に制御することによって
発生させたメタノール蒸気をマスフローコントローラー
で流量制御してリアクターに供給する方法、メタノール
をバブラーに入れてH2 、N2 、Heなどによりバブリ
ングしてリアクターに供給する方法などが用いられる。
このように発生させたメタノール蒸気中には、不純物と
して原料メタノールをボトルやバブラーに仕込む際など
に混入する酸素および原料中に溶存している水分などが
含有されており、このうち水分についてはモレキュラー
シーブなどの脱湿剤により除去することが可能であり、
通常はメタノールの吸着が少ないモレキュラーシーブ3
Aなどを使用して除去することができる。一方、これら
のメタノール中に含まれている酸素は、通常は10pp
m前後であり、メタノールの使用に先立っておこなわれ
る減圧パージや原料液体中での不活性ガスなどによるパ
ージだけではこれらの酸素を0.1ppm以下のような
低濃度まで除去することは困難である。
2. Description of the Related Art Generally, as a method of supplying methanol used in the production of semiconductors, methanol vapor generated by placing the bottle in an open end, immersing the bottle in a thermostat and controlling the temperature to an appropriate temperature is used. A method in which the flow rate is controlled by a controller and supplied to the reactor, a method in which methanol is put into a bubbler and bubbled with H 2 , N 2 , He or the like and supplied to the reactor are used.
The methanol vapor generated in this way contains, as impurities, oxygen that is mixed in when the raw material methanol is charged into a bottle or bubbler and water that is dissolved in the raw material, etc. It is possible to remove with a dehumidifier such as sieve,
Molecular sieve 3 with low methanol adsorption
It can be removed using A or the like. On the other hand, the oxygen contained in these methanols is usually 10 pp.
m, and it is difficult to remove these oxygens to a low concentration of 0.1 ppm or less by only purging under reduced pressure prior to the use of methanol or purging with an inert gas or the like in the raw material liquid. .

【0003】[0003]

【発明が解決しようとする課題】液晶デバイスなどの高
性能化に伴い、これに使用されるメタノールについても
酸素含有量が0.1ppm以下、さらには0.01pp
m以下のものが望まれている。また、これらメタノール
はボトルの接続時や配管の切り替え時など半導体製造装
置への供給過程において空気など不純物の混入による汚
染もあるため、最終的にはリアクターなどの装置の直前
で不純物の除去をすることが望ましい。本発明者らは、
先ず窒素や不活性ガス中の不純物酸素を除去する触媒と
して、一般的に使用されているニッケル触媒や銅触媒を
用いてメタノール中の酸素の除去を試みたが、脱酸素能
力は認められたもののメタノールが分解し、高濃度の水
素や一酸化炭素、二酸化炭素などの不純物が発生し、精
製ガス中に混入するという問題が生ずることが判明し
た。このように高純度メタノールに対する需要は年々増
加しているにもかかわらず、メタノール中の酸素を効率
よく除去する方法についての公知技術はほとんど見あた
らない。
As the performance of a liquid crystal device or the like becomes higher, the oxygen content of methanol used in the device becomes 0.1 ppm or less, and furthermore, 0.01 pp.
m or less is desired. In addition, these methanols may be contaminated by impurities such as air during the supply process to the semiconductor manufacturing apparatus such as when connecting bottles or switching pipes, so that the impurities are finally removed immediately before the apparatus such as a reactor. It is desirable. We have:
Firstly, as a catalyst for removing nitrogen and impurity oxygen in an inert gas, an attempt was made to remove oxygen in methanol using a commonly used nickel catalyst or copper catalyst. It has been found that methanol is decomposed, and high-concentration impurities such as hydrogen, carbon monoxide, and carbon dioxide are generated and mixed into a purified gas. As described above, although the demand for high-purity methanol is increasing year by year, there is almost no known technique for efficiently removing oxygen in methanol.

【0004】[0004]

【課題を解決するための手段】本発明者らは、メタノー
ル中に含有される酸素を極低濃度まで効率よく除去しう
るとともに、メタノールの分解などによってその他の不
純物を発生することのないメタノールの精製方法につい
て鋭意研究を重ねた結果、酸化マンガンを主成分とする
触媒を用いることにより、一酸化炭素や二酸化炭素のよ
うな不純物の発生がなく、かつ、メタノール含有ガス中
の酸素濃度を0.1ppm以下、さらには0.01pp
m以下まで除去しうることを見いだし、本発明を完成し
た。すなわち本発明は、粗メタノール蒸気を酸化マンガ
ンを主成分とする触媒と接触させて、該粗メタノール中
に不純物として含まれる酸素を除去することを特徴とす
るメタノールの精製方法である。本発明はメタノール蒸
気単独、水素(水素ガスベース)および窒素、アルゴン
などの不活性ガス(不活性ガスベース)で希釈されたメ
タノール蒸気(以下総称して粗メタノールと記す)中に
含有される酸素の除去に適用される。
Means for Solving the Problems The inventors of the present invention can efficiently remove oxygen contained in methanol to an extremely low concentration and produce methanol which does not generate other impurities due to decomposition of methanol. As a result of intensive studies on the purification method, it has been found that by using a catalyst containing manganese oxide as a main component, impurities such as carbon monoxide and carbon dioxide are not generated, and the oxygen concentration in the methanol-containing gas is reduced to 0.1%. 1 ppm or less, further 0.01 pp
The present invention was completed by finding that it can be removed to m or less. That is, the present invention is a method for purifying methanol, which comprises contacting a crude methanol vapor with a catalyst containing manganese oxide as a main component to remove oxygen contained as an impurity in the crude methanol. The present invention relates to oxygen contained in methanol vapor alone, hydrogen (hydrogen gas base) and methanol vapor (hereinafter collectively referred to as crude methanol) diluted with an inert gas (inert gas base) such as nitrogen or argon. Applied to the removal of

【0005】本発明において使用される酸化マンガンは
化学式MnOで表される2価のマンガン酸化物である。
MnOを得るには種々な方法があるが、例えば炭酸マン
ガン(II)、水酸化マンガン(II)、しゅう酸マン
ガン(II)、酢酸マンガン(II)などを空気を遮断
した状態で加熱するか、または、マンガンの高級酸化物
を水素あるいは一酸化炭素で還元する方法などが代表的
な製法である。MnOは成型したものをそのまま、ある
いはこれを適当な大きさに破砕して用いてもよいが、接
触効率を高める目的などから触媒担体などに担持させた
形態で用いることが好ましい。MnOを担体に担持させ
る方法としては、例えばマンガン(II)塩の水溶液中
に珪藻土、アルミナ、シリカアルミナ、アルミノシリケ
ートおよびカルシウムシリケートなどの担体粉末を分散
させ、さらにアルカリを添加して担体の粉末上にマンガ
ン(II)成分を沈着させ、次いで濾過し必要に応じて
水洗いして得たケーキを120〜150℃で乾燥後、窒
素中で300℃以上で焼成し、この焼成物を粉砕する
か、あるいはMnCO3 、Mn(OH)2 などの無機
塩、MnC24 、Mn(CH3 COO)2 などマンガ
ンの有機塩を窒素中で焼成し、粉砕した後、これに耐熱
性セメントを混合し、窒素中で再び焼成する方法などが
ある。
The manganese oxide used in the present invention is a divalent manganese oxide represented by the chemical formula MnO.
There are various methods for obtaining MnO. For example, manganese (II) carbonate, manganese (II) hydroxide, manganese (II) oxalate, manganese (II) acetate and the like are heated in a state where air is shut off, or Alternatively, a method of reducing a higher oxide of manganese with hydrogen or carbon monoxide is a typical production method. MnO may be used as it is, or may be used after being crushed to an appropriate size. However, it is preferable to use MnO supported on a catalyst carrier or the like for the purpose of enhancing contact efficiency. As a method for supporting MnO on a carrier, for example, a carrier powder such as diatomaceous earth, alumina, silica alumina, aluminosilicate and calcium silicate is dispersed in an aqueous solution of a manganese (II) salt, and an alkali is added to the carrier powder. The cake obtained by depositing a manganese (II) component in the mixture and then filtering and washing with water as necessary is dried at 120 to 150 ° C., and then calcined in nitrogen at 300 ° C. or more, and the calcined product is pulverized or Alternatively, inorganic salts such as MnCO 3 and Mn (OH) 2 and organic salts of manganese such as MnC 2 O 4 and Mn (CH 3 COO) 2 are fired in nitrogen, pulverized, and then mixed with heat-resistant cement. And firing again in nitrogen.

【0006】これらは通常は、押出し成型、打錠成型な
どで成型体とし、そのまま、または必要に応じて適当な
大きさに破砕して使用することができる。成型方法とし
ては乾式法あるいは湿式法を用いることができ、その
際、少量の水、滑剤などを使用してもよい。なお、Mn
Oとした後の処理作業はグローブボックス中で窒素ガ
ス、アルゴンなどの不活性ガス雰囲気中でおこなうなど
酸素に触れない状態で扱わなければならない。触媒中に
含まれるMnOの含有量は、通常は10wt%以上、好
ましくは20wt%以上である。MnOの含有量が10
wt%よりも少なくなると脱酸素能力が低下し、酸素を
充分に除去できなくなる虞れがある。
[0006] Usually, these are formed into a molded body by extrusion molding, tablet molding, or the like, and can be used as it is or, if necessary, crushed to an appropriate size. As a molding method, a dry method or a wet method can be used, and in that case, a small amount of water, a lubricant, or the like may be used. Note that Mn
The treatment after the treatment with O must be performed in a glove box in a state of not contacting oxygen, such as in an inert gas atmosphere such as nitrogen gas or argon. The content of MnO contained in the catalyst is usually at least 10 wt%, preferably at least 20 wt%. MnO content of 10
If the amount is less than wt%, the deoxygenation ability may decrease, and oxygen may not be sufficiently removed.

【0007】本発明において、活性化後の触媒を精製筒
に充填し、そのまま粗メタノールを流して精製をおこな
ってもよいが、メタノールの分解などによる副生物の生
成をより確実に防止するために、精製に先立って触媒に
メタノールによる前処理を施すことが好ましい。メタノ
ールによる前処理はメタノール単独または窒素、アルゴ
ンなどの不活性ガスとの混合ガスを通常は空筒線速度
(LV)1〜10cm/secで1〜2時間流通させる
ことによっておこなわれる。前処理は粗メタノールの精
製時における温度よりも高温でおこなわれ、通常は10
0℃以上であり、かつ、この前処理の効果をより高める
ためには粗メタノールの精製時における温度との差が大
きい方が一般的に好ましく、精製時の温度に対し20〜
150℃高い温度でおこなうことが好ましい。上記の前
処理は精製筒への充填前に施してもよく、また充填後に
施してもよいが、触媒をあらかじめ精製筒に充填してか
ら前処理を施せば、そのまま引き続いてメタノールの精
製をおこなうことができるので好都合である。
In the present invention, the activated catalyst may be filled in a purification column and purified by flowing crude methanol as it is. However, in order to more reliably prevent generation of by-products due to decomposition of methanol and the like. Preferably, the catalyst is pretreated with methanol prior to purification. The pretreatment with methanol is carried out by flowing methanol alone or a mixed gas with an inert gas such as nitrogen or argon at a cylinder linear velocity (LV) of 1 to 10 cm / sec for 1 to 2 hours. The pretreatment is performed at a temperature higher than the temperature at the time of the purification of the crude methanol, and is usually 10 minutes.
0 ° C. or higher, and in order to further enhance the effect of this pretreatment, it is generally preferred that the difference from the temperature at the time of purification of the crude methanol is large,
It is preferable to carry out at a temperature higher by 150 ° C. The above pretreatment may be performed before filling the purification cylinder, or may be performed after the filling. However, if the catalyst is preliminarily filled in the purification cylinder and then subjected to the pretreatment, the methanol is continuously purified. This is convenient.

【0008】メタノールの精製は、MnOを主成分とす
る上記のような触媒が充填された精製筒に粗メタノール
を通すことによっておこなわれ、粗メタノールがMnO
触媒と接触することにより、メタノールの分解を生ずる
ことなく不純物として含有される酸素が効率よく除去さ
れる。本発明が適用される粗メタノール中の酸素濃度
は、通常は100ppm以下である。酸素濃度がこれよ
りも高くなると発熱量が増加するため条件によっては除
熱手段が必要となる。
[0008] Purification of methanol is carried out by passing crude methanol through a purification cylinder filled with the above-mentioned catalyst containing MnO as a main component.
By contact with the catalyst, oxygen contained as an impurity is efficiently removed without causing decomposition of methanol. The oxygen concentration in the crude methanol to which the present invention is applied is usually 100 ppm or less. If the oxygen concentration is higher than this, the calorific value increases, so a heat removal means is required depending on the conditions.

【0009】精製筒に充填されるMnO触媒の充填長と
しては供給されるメタノールの量、酸素濃度および操作
条件などによって異なり一概に特定はできないが、実用
上通常は、50〜100mmとされる。充填長が50
mmよりも短くなると酸素除去率が低下する恐れがあ
り、また、1500mmよりも長くなると圧力損失が大
きくなり過ぎる恐れが生ずる。また、精製時の粗メタノ
ールの空筒線速度(LV)は、通常は100cm/se
c以下、好ましくは30cm/sec以下である。精製
時における粗メタノールとMnO触媒の接触温度は通常
は70℃以下であり、常温乃至50℃程度でおこなうこ
とが好ましい。精製時のガスの圧力には特に制限はなく
常圧、減圧、加圧のいずれでも処理が可能であるが、通
常は10Kg/cm2 abs以下、好ましくは0.1K
g〜5Kg/cm2 absである。
[0009] The amount of methanol is supplied as a filling length of MnO catalyst packed in the purification pipe, can not be indiscriminately particular vary depending on the oxygen concentration and operating conditions, in practice usually is a 1:50 to 5 300 mm You. Fill length is 50
If it is shorter than 1 mm, the oxygen removal rate may decrease, and if it is longer than 1500 mm, the pressure loss may become too large. In addition, the cylinder linear velocity (LV) of crude methanol at the time of purification is usually 100 cm / sec.
c or less, preferably 30 cm / sec or less. The contact temperature between the crude methanol and the MnO catalyst at the time of purification is usually 70 ° C. or lower, and it is preferable to carry out the reaction at room temperature to about 50 ° C. The pressure of the gas at the time of purification is not particularly limited, and the treatment can be performed at normal pressure, reduced pressure, or increased pressure, but is usually 10 kg / cm 2 abs or less, preferably 0.1 Kg / cm 2 abs or less.
g-5 kg / cm 2 abs.

【0010】本発明において、メタノール中に少量の水
分が含有されていても脱酸素能力には特に悪影響を及ぼ
すことはなく、さらに触媒担体などを用いている場合に
は、その種類によっては水分も同時に除去することがで
きる。また、MnO触媒による酸素除去工程に、必要に
応じてモレキュラーシーブなどの脱湿剤による水分除去
工程を適宜組み合わせることも可能であり、これによっ
て水分も確実に除去され、高純度の精製メタノールを得
ることができる。
In the present invention, even if a small amount of water is contained in methanol, there is no particular adverse effect on the deoxygenation capacity. Can be removed at the same time. In addition, it is also possible to appropriately combine a water removing step using a dehumidifier such as a molecular sieve as needed with the oxygen removing step using a MnO catalyst, whereby water is reliably removed, and high-purity purified methanol is obtained. be able to.

【0011】[0011]

【実施例】【Example】

実施例1 (精製筒の調製)市販の酸化マンガン触媒を使用した。
このものは、MnO2 やMn2 3 など一般式MnOx
(X>1)で表される高級酸化物の混合物の押出し品で
あり、黒色のものである。これを破砕し8〜12mes
hにふるったもの63mlを内径16.4mm、長さ4
00mmのステンレス製の精製筒に、充填長300mm
(充填密度:1.6g/ml)に充填した。これに窒素
を温度300℃、流量250ml/minで1時間流し
て予熱した後、一酸化炭素を常圧で流量127ml/m
in(LV=1cm/sec)で3時間流して還元処理
をおこなった後、窒素に切り替えて室温まで冷却した。
ちなみに、石英管中で同条件で上記の触媒の還元をおこ
なった結果、触媒の色は緑色に変化したことから、Mn
2 、Mn2 3 などがMnOに還元されていることを
確認した。上記のステンレス製の精製筒に窒素ベースの
5vol%メタノールを常圧で温度200℃、流量0.
633L/min(LV=5cm/sec)で2時間流
通させてメタノールによる前処理をおこなった後、窒素
を流しながら室温まで冷却した。
Example 1 (Preparation of purification cylinder) A commercially available manganese oxide catalyst was used.
This has a general formula MnOx such as MnO 2 or Mn 2 O 3.
It is an extruded product of a mixture of higher oxides represented by (X> 1), which is black. Crush this and 8 ~ 12mes
sieved 63 ml of inner diameter 16.4mm, length 4
Filling length of 300mm in stainless steel purification cylinder of 00mm
(Packing density: 1.6 g / ml). After preheating by flowing nitrogen at a temperature of 300 ° C. and a flow rate of 250 ml / min for 1 hour, carbon monoxide was supplied at normal pressure at a flow rate of 127 ml / m 2.
In (LV = 1 cm / sec), the reduction treatment was carried out by flowing for 3 hours, and then the mixture was switched to nitrogen and cooled to room temperature.
By the way, as a result of reducing the above catalyst in a quartz tube under the same conditions, the color of the catalyst changed to green,
It was confirmed that O 2 , Mn 2 O 3 and the like were reduced to MnO. Nitrogen-based 5 vol% methanol was added to the above stainless steel purifying cylinder at normal pressure at a temperature of 200 ° C. and a flow rate of 0.
After pretreatment with methanol by flowing at 633 L / min (LV = 5 cm / sec) for 2 hours, the mixture was cooled to room temperature while flowing nitrogen.

【0012】(メタノールの精製)引き続いて、メタノ
ール(窒素ベース)の精製をおこなった。約50mlの
メタノールの入った内径50mm、高さ175mmのス
テンレス製バブラーを15℃に設定した恒温槽に浸して
メタノール圧をコントロールし、酸素濃度が0.01p
pm以下であることを確認した精製窒素でメタノールを
バブリングすることによって窒素ベースで約10vol
%のメタノール蒸気を含むガスを発生させた。このメタ
ノール蒸気を含むガス中の酸素濃度を黄燐発光式酸素分
析計(測定下限濃度0.01ppm)を用いて測定した
ところ0.17ppmであった。このガスを精製筒に
0.633L/min(LV=5cm/sec)で流
し、精製筒出口ガス中の酸素を黄燐発光式酸素分析計
で、また、一酸化炭素、二酸化炭素および炭化水素につ
いてはFIDを検出器とするガスクロマトグラフ法(測
定下限濃度約0.01ppm)で分析し、さらに、水素
はTCDを検出器とするガスクロマトグラフ法(測定下
限濃度約20ppm)で分析したところ、いずれの不純
物も検出されず、測定下限濃度以下であった。精製を始
めてから100分後においても出口ガスの酸素濃度は
0.01ppm以下であり、また、その他の不純物の発
生も認められなかった。
(Purification of Methanol) Subsequently, purification of methanol (based on nitrogen) was carried out. A stainless steel bubbler having an inner diameter of 50 mm and a height of 175 mm containing about 50 ml of methanol was immersed in a thermostat set at 15 ° C. to control the methanol pressure, and the oxygen concentration was reduced to 0.01 p.
pm or less by bubbling methanol with purified nitrogen confirmed to be 10 vol.
% Methanol vapor was generated. The concentration of oxygen in the gas containing methanol vapor was measured using a yellow phosphorus emission type oxygen analyzer (measurement lower limit concentration: 0.01 ppm) and found to be 0.17 ppm. This gas was flowed through the purifier at 0.633 L / min (LV = 5 cm / sec), and the oxygen in the outlet gas of the purifier was analyzed by a yellow phosphorus emission type oxygen analyzer. For carbon monoxide, carbon dioxide and hydrocarbons, When analyzed by gas chromatography using FID as a detector (lower limit of measurement: about 0.01 ppm) and hydrogen was analyzed by gas chromatography using TCD as lower detector (lower limit of measurement: about 20 ppm), any impurities were detected. Was not detected, and the concentration was below the lower limit of measurement. Even after 100 minutes from the start of the purification, the oxygen concentration of the outlet gas was 0.01 ppm or less, and no generation of other impurities was observed.

【0013】実施例2 (メタノールの精製)実施例1で用いたと同じ触媒を用
い、同様の条件でメタノールによる前処理を施した精製
筒を用いて無希釈のメタノール蒸気の精製をおこなっ
た。約50mlの蒸留水の入った内径50mm、高さ1
75mmのステンレス製バブラーを40℃に設定した恒
温槽に浸して発生するメタノール蒸気の圧をコントロー
ルするとともにマスフローコントローラの下流側に設置
した真空ポンプによって差圧を生ぜしめ、マスフローコ
ントローラにより、メタノール蒸気の流量を0.1L/
minに制御した。先ず、無希釈の粗メタノールを30
分間流して精製筒内をパージした後、粗メタノールに酸
素濃度が0.01ppm以下であることを確認した精製
窒素を0.4L/minで添加して希釈しながら、その
混合ガス中の酸素濃度を黄燐発光式酸素分析計を用いて
測定したところ、約0.11ppmの酸素が検出され
た。次に、粗メタノール(0.1L/min)を40℃
に加熱した精製筒に通し、その出口メタノールに前記の
精製窒素を0.4L/minで混合して希釈したガスを
分析したところ、酸素は検出されず、二酸化炭素、炭化
水素などの不純物の発生も全く見られなかった。精製を
始めてから100分後においても精製ガス中に不純物は
検出されなかった。
Example 2 (Purification of methanol) Undiluted methanol vapor was purified using the same catalyst as used in Example 1 and using a purifying cylinder pretreated with methanol under the same conditions. About 50 ml of distilled water inside diameter 50mm, height 1
A 75 mm stainless steel bubbler is immersed in a constant temperature bath set at 40 ° C. to control the pressure of methanol vapor generated, and a differential pressure is generated by a vacuum pump installed downstream of the mass flow controller. Flow rate 0.1L /
min. First, 30 mL of undiluted crude methanol was added.
After purging the inside of the purifying cylinder by flowing the purified gas for 0.4 min, the purified nitrogen is added to the crude methanol at 0.4 L / min, which is confirmed to have an oxygen concentration of 0.01 ppm or less, and diluted with the oxygen concentration in the mixed gas. Was measured using a yellow phosphorus emission type oxygen analyzer, and about 0.11 ppm of oxygen was detected. Next, crude methanol (0.1 L / min) was added at 40 ° C.
When the gas was diluted by mixing the purified nitrogen with the methanol at the outlet at 0.4 L / min and analyzing the diluted gas, oxygen was not detected and the generation of impurities such as carbon dioxide and hydrocarbons occurred. Was not seen at all. No impurities were detected in the purified gas even after 100 minutes from the start of the purification.

【0014】比較例1 (精製筒の調製)市販のニッケル触媒(日揮(株)製、
N−111)を用いた。このものの組成はNi+NiO
の形であり、Niとして45〜47wt%,Cr2〜3
wt%、Cu2〜3wt%、珪藻土27〜29wt%お
よび黒鉛4〜5wt%であり、直径5mm、高さ4.5
mmの成型体である。このニッケル触媒を8〜10me
shに破砕したもの63mlを実施例で使用したと同様
に精製筒に充填した(充填密度1.0g/ml)。これ
に水素を常圧で温度150℃、流量456ml/min
(LV=3.6cm/sec)で3時間還元処理をおこ
なった後、常温に冷却した。 (メタノールの精製)引き続いてこの精製筒に実施例1
と同様に粗メタノールを流通し、出口ガスを分析したと
ころ、酸素濃度は0.01ppm以下であったが、0.
08ppmの一酸化炭素および60ppmの水素が検出
され、メタノールが分解することが分かった。
Comparative Example 1 (Preparation of a purification cylinder) A commercially available nickel catalyst (manufactured by JGC Corporation)
N-111) was used. Its composition is Ni + NiO
45-47 wt% as Ni, Cr 2-3
wt%, Cu 2-3 wt%, diatomaceous earth 27-29 wt% and graphite 4-5 wt%, diameter 5 mm, height 4.5
mm. 8 to 10 me of this nickel catalyst
63 ml of the shredded product was packed in a purification cylinder in the same manner as used in Examples (packing density: 1.0 g / ml). Hydrogen was added under normal pressure at a temperature of 150 ° C and a flow rate of 456 ml / min.
(LV = 3.6 cm / sec) for 3 hours, followed by cooling to room temperature. (Purification of methanol)
The crude methanol was circulated in the same manner as described above, and the outlet gas was analyzed. The oxygen concentration was 0.01 ppm or less.
08 ppm of carbon monoxide and 60 ppm of hydrogen were detected, indicating that methanol was decomposed.

【0015】[0015]

【発明の効果】本発明によって、メタノールの分解など
を生ずることなく、従来除去が困難であったメタノール
中の酸素を0.1ppm以下、さらには0.01ppm
以下のような極低濃度まで除去することができ、超高純
度のメタノール蒸気を得ることが可能となった。
According to the present invention, oxygen in methanol which has conventionally been difficult to remove can be reduced to 0.1 ppm or less, more preferably 0.01 ppm, without decomposing methanol.
It was possible to remove to the following extremely low concentrations, and it became possible to obtain ultrahigh-purity methanol vapor.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−100537(JP,A) 特開 昭48−39411(JP,A) 特許92839(JP,C1) 特許99067(JP,C1) (58)調査した分野(Int.Cl.7,DB名) C07C 31/04 C07C 29/88 C07B 63/00 CA(STN)──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-61-1005337 (JP, A) JP-A-48-39411 (JP, A) Patent 92839 (JP, C1) Patent 99067 (JP, C1) (58) ) Field surveyed (Int. Cl. 7 , DB name) C07C 31/04 C07C 29/88 C07B 63/00 CA (STN)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粗メタノール蒸気を酸化マンガンを主成分
とする触媒と接触させて、該粗メタノール中に不純物と
して含まれる酸素を除去することを特徴とするメタノー
ルの精製方法。
1. A method for purifying methanol, comprising contacting a crude methanol vapor with a catalyst containing manganese oxide as a main component to remove oxygen contained as an impurity in the crude methanol.
【請求項2】酸化マンガンを主成分とする触媒が、精製
時の温度よりも高温においてメタノールと接触させる前
処理が施されたものである請求項1に記載の精製方法。
2. The purification method according to claim 1, wherein the catalyst containing manganese oxide as a main component has been subjected to a pretreatment of contacting with methanol at a temperature higher than the temperature at the time of purification.
【請求項3】メタノールによる触媒の前処理温度と精製
時の温度との差が20〜150℃である請求項2に記載
の精製方法。
3. The purification method according to claim 2, wherein the difference between the pretreatment temperature of the catalyst with methanol and the temperature during purification is 20 to 150 ° C.
【請求項4】触媒中に含まれる酸化マンガン量が10w
t%以上である請求項1に記載の精製方法。
4. The amount of manganese oxide contained in the catalyst is 10 watts.
The purification method according to claim 1, which is at least t%.
JP15934292A 1992-06-18 1992-06-18 Purification method of methanol Expired - Fee Related JP3292311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15934292A JP3292311B2 (en) 1992-06-18 1992-06-18 Purification method of methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15934292A JP3292311B2 (en) 1992-06-18 1992-06-18 Purification method of methanol

Publications (2)

Publication Number Publication Date
JPH061735A JPH061735A (en) 1994-01-11
JP3292311B2 true JP3292311B2 (en) 2002-06-17

Family

ID=15691747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15934292A Expired - Fee Related JP3292311B2 (en) 1992-06-18 1992-06-18 Purification method of methanol

Country Status (1)

Country Link
JP (1) JP3292311B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100548972C (en) * 2007-09-28 2009-10-14 天津大学 A kind of method of separation of methanol acetonitrile azeotrope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100548972C (en) * 2007-09-28 2009-10-14 天津大学 A kind of method of separation of methanol acetonitrile azeotrope

Also Published As

Publication number Publication date
JPH061735A (en) 1994-01-11

Similar Documents

Publication Publication Date Title
US6838066B2 (en) Process for recovery, purification, and recycle of argon
KR100199883B1 (en) Method of recovering argon from silicone single crystal
CN108557766B (en) Refining method of hydrogen chloride
JP3121137B2 (en) Purification method of unsaturated hydrocarbon
JP3292311B2 (en) Purification method of methanol
CN100374184C (en) A process and apparatus for purifying hydrogen bromide
JPH0379288B2 (en)
JP3410121B2 (en) Ammonia purification method
JP2651611B2 (en) Hydride gas purification method
JP3292251B2 (en) Steam purification method
JP3359928B2 (en) Ammonia purification method
JP3260786B2 (en) Steam purification method
JP3522785B2 (en) Purification method of carbon dioxide
JP3260826B2 (en) Purification method of nitrous oxide
JP3154340B2 (en) Method for purifying germanium hydride
KR0151325B1 (en) Production of pure hydrogen iodide
JP3279608B2 (en) Steam purification method
JP3512285B2 (en) Method for producing purified hydrogen iodide
JP2002037623A (en) Method for purifying ammonia
JPH06116180A (en) Purification of halogenated hydrocarbon
JPS6265919A (en) Adsorbent for separating and recovering co, its production and method for separating and recovering co by using its adsorbent
JP3260779B2 (en) Purification method of aromatic hydrocarbon vapor
JP3154339B2 (en) Method for purifying germanium hydride
JPS61242908A (en) Adsorbent for separating and recovering co, production thereof and method for separating and recovering co of high purity using said adsorbent
JPS61254249A (en) Reactivation treatment of adsorbent

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120329

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees