JP3279608B2 - Steam purification method - Google Patents

Steam purification method

Info

Publication number
JP3279608B2
JP3279608B2 JP31000691A JP31000691A JP3279608B2 JP 3279608 B2 JP3279608 B2 JP 3279608B2 JP 31000691 A JP31000691 A JP 31000691A JP 31000691 A JP31000691 A JP 31000691A JP 3279608 B2 JP3279608 B2 JP 3279608B2
Authority
JP
Japan
Prior art keywords
steam
nickel
purification
ppm
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31000691A
Other languages
Japanese (ja)
Other versions
JPH05123576A (en
Inventor
孝 島田
恵一 岩田
雅子 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP31000691A priority Critical patent/JP3279608B2/en
Publication of JPH05123576A publication Critical patent/JPH05123576A/en
Application granted granted Critical
Publication of JP3279608B2 publication Critical patent/JP3279608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gas Separation By Absorption (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水蒸気の精製方法に関
し、さらに詳細には水蒸気中に不純物として含まれる酸
素を極低濃度まで除去しうる水蒸気の精製方法に関す
る。水蒸気はシリコンやアルミニウムの酸化膜形成など
半導体の製造時に使用されているが、成膜技術の進歩と
ともに不純物の極めて少ないものが要求されつつある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying steam, and more particularly to a method for purifying steam capable of removing oxygen contained as impurities in steam to an extremely low concentration. Water vapor is used in the manufacture of semiconductors, such as formation of oxide films of silicon and aluminum. However, with the progress of film forming technology, those having extremely few impurities are being demanded.

【0002】[0002]

【従来の技術】通常、半導体製造時に使用される水蒸気
の供給法としては蒸留水や脱イオン水などの精製水を一
端の開いたボトルに入れ、これを恒温槽に浸して適当な
温度に制御することによって発生させた水蒸気をマスフ
ローコントローラーで制御してリアクターに供給する方
法、精製水をバブラーに入れてH2 、N2 、Heなどに
よりバブリングしてリアクターに供給する方法などが用
いられる。このように発生させた水蒸気中には、原料精
製水をボトルやバブラーに仕込む場合に混入する酸素な
どが存在している。これらの水蒸気中には通常10pp
m前後の酸素が含まれており、水蒸気の使用に先立って
おこなわれる減圧パージや原料液体中での不活性ガスな
どによるパージだけではこれらの酸素を0.1ppm以
下のような低濃度まで除去することは困難である。
2. Description of the Related Art Usually, as a method for supplying steam used in semiconductor manufacturing, purified water such as distilled water or deionized water is put into a bottle having an open end, and the bottle is immersed in a thermostat to control the temperature to an appropriate temperature. Then, a method of supplying steam to the reactor by controlling the generated steam by a mass flow controller, a method of supplying purified water to a bubbler and bubbling with H 2 , N 2 , He or the like to supply the reactor to the reactor are used. In the steam thus generated, oxygen and the like mixed in when the raw material purified water is charged into a bottle or a bubbler are present. These water vapors usually contain 10 pp
m of oxygen is contained, and these oxygens are removed to a low concentration of 0.1 ppm or less by only a reduced pressure purge performed before the use of water vapor or a purge using an inert gas in the raw material liquid. It is difficult.

【0003】[0003]

【発明が解決しようとする課題】最近、化合物半導体製
造時に水蒸気と同時に使用されるシランなどのガスは高
純度に精製することが可能となり、例えば不純物として
含有される酸素を0.01ppm以下まで除去すること
が可能となっている。このため水蒸気についても酸素含
有量が0.01ppm以下とすることが強く望まれてい
る。また、これら水蒸気はボトルの接続時や配管の切替
時など半導体装置への供給過程において空気など不純物
の混入による汚染もあるため、装置の直前で不純物を最
終的に除去することが望ましい。しかしながら、水蒸気
中に含有される酸素を効率よく除去して高純度の水蒸気
を半導体製造プロセスなどに供給する方法についての公
知技術はほとんど見あたらない。
Recently, a gas such as silane used together with water vapor in the production of a compound semiconductor can be purified to a high purity. For example, oxygen contained as an impurity is removed to 0.01 ppm or less. It is possible to do. For this reason, it is strongly desired that the oxygen content of the water vapor be 0.01 ppm or less. In addition, since these water vapors may be contaminated by impurities such as air during the supply process to the semiconductor device such as when connecting a bottle or switching pipes, it is desirable to finally remove the impurities immediately before the device. However, there is almost no known technique for efficiently removing oxygen contained in steam and supplying high-purity steam to a semiconductor manufacturing process or the like.

【0004】[0004]

【課題を解決するための手段】本発明者らは、水蒸気中
に含有される酸素を極低濃度まで効率よく除去するべく
鋭意研究を重ねた結果、水蒸気を金属ニッケルまたは還
元処理したニッケル化合物を主成分とする精製剤と接触
させることにより、酸素濃度を0.1ppm以下、さら
には0.01ppm以下まで除去しうることを見いだ
し、本発明を完成した。すなわち本発明は、粗水蒸気
を、金属ニッケルまたは還元処理したニッケル化合物
主成分とする精製剤と接触させて、該粗水蒸気に含有さ
れる酸素を除去することを特徴とする水蒸気の精製方法
である。本発明は水蒸気単独、水素(水素ガスベース)
および窒素、アルゴンなどの不活性ガス(不活性ガスベ
ース)で希釈された水蒸気(以下総称して粗水蒸気と記
す)中に含有される酸素の除去に適用される。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to efficiently remove oxygen contained in steam to an extremely low concentration, and as a result, have found that steam is converted to metallic nickel or
The present inventors have found that the oxygen concentration can be reduced to 0.1 ppm or less and further to 0.01 ppm or less by contacting with a refining agent mainly containing a nickel compound which has been subjected to a primary treatment , and the present invention has been completed. That is, the present invention provides a method for purifying steam comprising contacting a crude steam with a purifying agent mainly containing metallic nickel or a reduced nickel compound to remove oxygen contained in the crude steam. is there. The present invention uses water vapor alone, hydrogen (based on hydrogen gas)
It is also applied to the removal of oxygen contained in steam (hereinafter referred to as crude steam) diluted with an inert gas (inert gas base) such as nitrogen or argon.

【0005】本発明において用いられる精製剤は、金属
ニッケルまたはニッケルの酸化物など還元され易いニッ
ケル化合物を還元処理したものを主成分とするものであ
る。また、ニッケル以外の金属成分として少量のクロ
ム、鉄、コバルト、銅などの重金属が含まれているもの
であってもよい。これらのニッケルは単独で用いられて
もよく、また、担体などに担持させた形体で用いてもよ
いが、ニッケルの表面とガスとの接触効率を高める目的
などから、担体などに担持させた形態で使用することが
好ましい。ニッケルを担体に担持させる方法としては、
例えば、ニッケル塩の水溶液中に珪藻土、アルミナ、シ
リカアルミナ、アルミノシリケートおよびカルシウムシ
リケートなどの担体粉末を分散させ、さらにアルカリを
添加して担体の粉末上にニッケル成分を沈澱させ、次い
で濾過し必要に応じて水洗して得たケーキを120〜1
50℃で乾燥後、300℃以上で焼成し、この焼成物を
粉砕する、あるいはNiCO、Ni(OH)、Ni
(NOなどの無機塩、NiC、Ni(CH
COO)などの有機塩を焼成し、粉砕した後、これ
に耐熱性セメントを混合し、焼成するなどが挙げられ
る。これらは、通常は、押出成型、打錠成型などで成型
体とされ、そのまま、あるいは必要に応じて適当な大き
さに破砕して使用される。成型方法としては乾式法ある
いは湿式法を用いることができ、その際、少量の水、滑
剤などを使用してもよい。また、ニッケル系触媒として
例えば水蒸気変成触媒、C11−2−03(NiO−セ
メント)、C11−2−06(NiO−耐火物)、C1
1−2(Ni−カルシウムアルミネート)、C11−9
(Ni−アルミナ);水素化触媒、C46−7(Ni−
珪藻土)、C46−8(Ni−シリカ)、C36(Ni
−Co−Cr−アルミナ);ガス化触媒、XC99(N
iO);水素化変成触媒、C20−7(Ni−Mo−ア
ルミナ)〔以上、東洋CCI(株)製〕および水素化触
媒、N−111(Ni−珪藻土);ガス化変成触媒、N
−174(NiO);ガス化触媒、N−185(Ni
O)〔以上、日揮(株)製〕など種々なものがあるので
それらから選択したものを使用してもよい。要は、還元
ニッケル、酸化ニッケルなどが微細に分散されて、その
表面積が大きくガスとの接触効率の高い形態のものであ
ればよい。
[0005] The refining agent used in the present invention is a refining agent mainly composed of a nickel compound which is easily reduced, such as nickel metal or a nickel oxide, subjected to a reduction treatment . Further, a metal component other than nickel may contain a small amount of heavy metals such as chromium, iron, cobalt, and copper. These nickels may be used alone, or may be used in a form supported on a carrier or the like, but may be used on a carrier or the like for the purpose of increasing the contact efficiency between the nickel surface and gas. It is preferable to use them. As a method of supporting nickel on a carrier,
For example, a carrier powder such as diatomaceous earth, alumina, silica alumina, aluminosilicate and calcium silicate is dispersed in an aqueous solution of a nickel salt, and an alkali is added to precipitate a nickel component on the carrier powder, followed by filtration and filtration. 120 to 1 cake obtained by washing with water
After drying at 50 ° C., it is fired at 300 ° C. or more, and the fired product is pulverized, or NiCO 3 , Ni (OH) 2 , Ni
Inorganic salts such as (NO 3 ) 2 , NiC 2 O 4 , Ni (CH
3 COO) calcining the organic salts such as 2, after grinding, which was mixed with refractory cement, and the like fired. These are usually formed into a molded product by extrusion molding, tablet molding, or the like, and are used as they are, or crushed to an appropriate size as needed. As a molding method, a dry method or a wet method can be used, and in that case, a small amount of water, a lubricant, or the like may be used. Further, as the nickel-based catalyst, for example, a steam conversion catalyst, C11-2-03 (NiO-cement), C11-2-06 (NiO-refractory), C1
1-2 (Ni-calcium aluminate), C11-9
(Ni-alumina); hydrogenation catalyst, C46-7 (Ni-
Diatomaceous earth), C46-8 (Ni-silica), C36 (Ni
-Co-Cr-alumina); gasification catalyst, XC99 (N
iO); hydrotransformation catalyst, C20-7 (Ni-Mo-alumina) [all, manufactured by Toyo CCI Co., Ltd.] and hydrogenation catalyst, N-111 (Ni-diatomaceous earth); gasification transformation catalyst, N
-174 (NiO); gasification catalyst, N-185 (Ni
O) There are various types such as [the above, manufactured by JGC Corporation], and those selected from them may be used. In short, it is sufficient if reduced nickel, nickel oxide, and the like are finely dispersed and have a large surface area and high contact efficiency with gas.

【0006】精製剤の比表面積としては通常は、BET
法で10〜300m/gの範囲のもの、好ましくは3
0〜250m/gの範囲のものである。また、ニッケ
ルの含有量は金属ニッケル換算で通常は、5〜95wt
%、好ましくは20〜95wt%である。ニッケルの含
有量が5wt%よりも少なくなると脱酸素能力が低くな
り、また95wt%よりも高くなると水素による還元の
際にシンタリングが生じて活性が低下する恐れがある。
精製剤を活性化するためには通常は水素還元を行う。水
素還元に際しては、例えば350℃以下程度で水素−窒
素の混合ガスを空筒線速度(LV)5cm/sec程度
で通すことによっておこなうことができるが、発熱反応
であるため温度が急上昇しないよう注意が必要である。
[0006] The specific surface area of the purifying agent is usually BET.
In the range of 10 to 300 m 2 / g, preferably 3
It is in the range of 0 to 250 m 2 / g. The content of nickel is usually 5 to 95 wt% in terms of metallic nickel.
%, Preferably 20 to 95 wt%. If the content of nickel is less than 5 wt%, the deoxidizing ability is reduced. If the content is more than 95 wt%, sintering may occur during reduction with hydrogen, and the activity may be reduced.
In order to activate the purifying agent , hydrogen reduction is usually performed. Hydrogen can be reduced, for example, by passing a mixed gas of hydrogen and nitrogen at a cylinder linear velocity (LV) of about 5 cm / sec at about 350 ° C. or less. is necessary.

【0007】水蒸気の精製は、通常は、還元処理したニ
ッケル化合物を主成分とする精製剤が充填された精製筒
に粗水蒸気を通すことによっておこなわれ、粗水蒸気が
精製剤と接触することによって、粗水蒸気中に不純物と
して含有される酸素が除去される。本発明に適用される
粗水蒸気中の酸素濃度は通常は100ppm以下であ
る。酸素濃度がこれよりも高くなると発熱量が増加する
ため条件によっては除熱手段が必要となる。精製筒に充
填される精製剤の充填長は、実用上通常は50〜150
0mmとされる。充填長が50mmよりも短くなると酸
素除去率が低下する恐れがあり、また、1500mmよ
りも長くなると圧力損失が大きくなり過ぎる恐れが生ず
る。精製時の粗水蒸気の空筒線速度(LV)は供給され
る水蒸気中の酸素濃度および操作条件などによって異な
り一概に特定できないが、通常は100cm/sec以
下、好ましくは30cm/sec以下である。水蒸気と
精製剤の接触温度は通常は200℃以下、好ましくは1
00℃以下であり、水蒸気の分圧が低い場合には常温で
よく、特に加熱を必要としないが、分圧が高く結露を生
ずる虞のある場合などには精製筒を適当な温度に加熱し
ながら接触させることが好ましい。接触時の気体の圧力
には特に制限はなく常圧、減圧、加圧のいずれでも処理
が可能であるが、通常は20kg/cmabs以下、
好ましくは0.1〜10kg/cmabsである。
[0007] Purification of steam is usually carried out by passing crude steam through a purifying cylinder filled with a purifying agent mainly composed of a reduced nickel compound.
By contact with the purifying agent , oxygen contained as impurities in the crude steam is removed. The oxygen concentration in the crude steam applied to the present invention is usually 100 ppm or less. If the oxygen concentration is higher than this, the calorific value increases, so a heat removal means is required depending on the conditions. The filling length of the purifying agent filled in the purifying cylinder is usually 50 to 150 in practice.
0 mm. If the filling length is shorter than 50 mm, the oxygen removal rate may decrease. If the filling length is longer than 1500 mm, the pressure loss may become too large. The linear velocity (LV) of the crude steam at the time of refining differs depending on the oxygen concentration in the supplied steam and the operating conditions and cannot be specified unconditionally, but is usually 100 cm / sec or less, preferably 30 cm / sec or less. With steam
The contact temperature of the purifying agent is usually 200 ° C. or lower, preferably 1 ° C.
When the partial pressure of water vapor is low, the temperature may be room temperature when the partial pressure of water vapor is low.Heating is not particularly required, but when the partial pressure is high and there is a risk of dew condensation, the refining cylinder is heated to an appropriate temperature. It is preferable that the contact be made. The pressure of the gas at the time of contact is not particularly limited, and the treatment can be performed at any of normal pressure, reduced pressure, and increased pressure, but is usually 20 kg / cm 2 abs or less.
Preferably it is 0.1 to 10 kg / cm 2 abs.

【0008】[0008]

【実施例】【Example】

実施例1 (ニッケルの還元処理)市販のニッケル触媒〔日揮
(株)製、N−111〕を用いた。このものの組成はN
i+NiOの形であり、Niとして45〜47wt%、
Cr2〜3wt%、Cu2〜3wt%、珪藻土27〜2
9wt%および黒鉛4〜5wt%、比表面積が150m
2 /gであり、直径5mm、高さ4.5mmの成型体で
ある。このニッケル触媒を8〜10meshに破砕した
もの63mlを内径16.4mm、長さ400mmのス
テンレス製の精製筒に充填長300mm(充填密度:
1.0g/ml)に充填した。これに水素を常圧で温度
150℃、流量595ml/min(LV=3.6cm
/sec)で3時間還元処理をおこなった後、常温に冷
却した。 (水蒸気の精製)引き続いて、水蒸気の精製をおこなっ
た。約50mlの蒸留水の入った内径50mm、高さ1
75mmのステンレス製バブラーを40℃に設定した恒
温槽に浸して水蒸気圧をコントロールし、窒素で水蒸気
をバブリングすることによって窒素ベースで約7.3v
ol%水蒸気を含むガスを発生させた。次に、結露が生
じないよう配管を60℃に加熱しながら上記のガスで3
0分間配管内のパージをおこなった後、この水蒸気を含
むガス中の酸素濃度を黄燐発光式酸素分析計(測定下限
濃度0.01ppm)を用いて測定したところ0.14
ppmであった。このガスを40℃に加熱した精製筒に
0.633L/min(LV=5cm/sec)で流し
て出口ガス中の酸素濃度を測定した結果、0.01pp
m以下であった。精製を始めてから100分後において
も出口ガスの酸素濃度は0.01ppm以下であった。
Example 1 (Reduction treatment of nickel) A commercially available nickel catalyst [N-111, manufactured by JGC Corporation] was used. Its composition is N
In the form of i + NiO, 45 to 47 wt% as Ni,
Cr 2-3 wt%, Cu 2-3 wt%, diatomaceous earth 27-2
9 wt% and graphite 4-5 wt%, specific surface area 150 m
2 / g, a molded body having a diameter of 5 mm and a height of 4.5 mm. 63 ml of this nickel catalyst crushed to 8 to 10 mesh was packed in a stainless steel purification cylinder having an inner diameter of 16.4 mm and a length of 400 mm, and a filling length of 300 mm (filling density:
1.0 g / ml). Hydrogen was added thereto at normal pressure at a temperature of 150 ° C. and a flow rate of 595 ml / min (LV = 3.6 cm).
/ Sec) for 3 hours, and then cooled to room temperature. (Purification of steam) Subsequently, purification of steam was performed. About 50 ml of distilled water inside diameter 50mm, height 1
A 75 mm stainless steel bubbler is immersed in a thermostat set at 40 ° C. to control the steam pressure, and bubbling the steam with nitrogen to about 7.3 v on a nitrogen base.
A gas containing ol% steam was generated. Next, while heating the pipe to 60 ° C. so as to prevent condensation, the above gas was used for 3 hours.
After purging the pipe for 0 minutes, the oxygen concentration in the gas containing water vapor was measured using a yellow phosphorus emission type oxygen analyzer (measurement lower limit concentration: 0.01 ppm).
ppm. As a result of flowing this gas through a purification cylinder heated to 40 ° C. at 0.633 L / min (LV = 5 cm / sec) and measuring the oxygen concentration in the outlet gas, 0.01 pp
m or less. Even after 100 minutes from the start of the purification, the oxygen concentration of the outlet gas was 0.01 ppm or less.

【0009】実施例2 (水蒸気の精製)実施例1で用いたと同じ精製筒を用い
て水蒸気の精製をおこなった。約50mlの蒸留水の入
った内径50mm、高さ175mmのステンレス製バブ
ラーを40℃に設定した恒温槽に浸して水蒸気圧をコン
トロールし、水素で水蒸気をバブリングすることによっ
て水素ベースで約7.3vol%水蒸気を含むガスを発
生させた。実施例1と同様に加熱しながら上記のガスで
配管内を30分間パージした後、この水蒸気を含むガス
中の酸素濃度を黄燐発光式酸素分析計を用いて測定した
ところ、約0.11ppmであった。このガスを40℃
に加熱した精製筒に0.633L/min(LV=5c
m/sec)で流して出口ガス中の酸素濃度を測定した
結果、0.01ppm以下であった。精製を始めてから
100分後においても出口ガスの酸素濃度は0.01p
pm以下であった。
Example 2 (Purification of steam) Steam was purified using the same purification cylinder as used in Example 1. A stainless steel bubbler having an inner diameter of 50 mm and a height of 175 mm containing about 50 ml of distilled water is immersed in a thermostat set at 40 ° C. to control the steam pressure, and bubbling the steam with hydrogen to about 7.3 vol on a hydrogen basis. A gas containing% steam was generated. After purging the inside of the pipe with the above gas for 30 minutes while heating in the same manner as in Example 1, the oxygen concentration in the gas containing the water vapor was measured using a yellow phosphorus emission type oxygen analyzer. there were. 40 ℃
0.633 L / min (LV = 5c)
m / sec), and the oxygen concentration in the outlet gas was measured. The result was 0.01 ppm or less. Even after 100 minutes from the start of the purification, the oxygen concentration of the outlet gas is 0.01 p.
pm or less.

【0010】実施例3 (水蒸気の精製)実施例1で用いたと同じ精製筒を用い
て水蒸気の精製をおこなった。約50mlの蒸留水の入
った内径50mm、高さ175mmのステンレス製バブ
ラーを60℃に設定した恒温槽に浸して水蒸気圧をコン
トロールし、マスフローコントローラーにより水蒸気流
量を0.1L/minに制御した。その際、マスフロー
コントローラーの下流に真空ポンプを設置することによ
り流量制御のための差圧を得た。実施例1と同様に配管
を加熱しながら30分間パージ後、この水蒸気流に酸素
濃度が0.01ppm以下であることを確認した窒素を
0.4L/minで添加しながら、この水蒸気を含むガ
ス流中の酸素濃度を黄燐発光式酸素分析計を用いて測定
したところ、約0.06ppmであった。前記の窒素希
釈前の水蒸気0.1L/minを60℃に加熱した精製
筒に通し出口ガスに酸素濃度0.01ppm以下の窒素
0.4L/minを加えたガス中の酸素濃度を測定した
結果、0.01ppm以下であった。精製を始めてから
100分後においても出口ガスの酸素濃度は0.01p
pm以下であった。
Example 3 (Purification of steam) Steam was purified using the same purification cylinder as used in Example 1. A stainless steel bubbler having an inner diameter of 50 mm and a height of 175 mm containing about 50 ml of distilled water was immersed in a thermostat set at 60 ° C. to control the steam pressure, and the mass flow controller controlled the steam flow rate to 0.1 L / min. At that time, a differential pressure for flow rate control was obtained by installing a vacuum pump downstream of the mass flow controller. After purging for 30 minutes while heating the pipe in the same manner as in Example 1, a gas containing this water vapor was added to this water vapor stream while adding nitrogen, which was confirmed to have an oxygen concentration of 0.01 ppm or less, at 0.4 L / min. The oxygen concentration in the flow was measured using a yellow phosphorus emission type oxygen analyzer and was found to be about 0.06 ppm. 0.1 L / min of the steam before nitrogen dilution was passed through a purification cylinder heated to 60 ° C., and the oxygen concentration in the gas obtained by adding 0.4 L / min of nitrogen having an oxygen concentration of 0.01 ppm or less to the outlet gas was measured. , And 0.01 ppm or less. Even after 100 minutes from the start of the purification, the oxygen concentration of the outlet gas is 0.01 p.
pm or less.

【0011】実施例4 (ニッケル触媒の調製)3Lの水にAl(NO3 3
2 O 454gを溶解し、氷浴で5〜10℃に冷却し
た。激しくかき混ぜながら、これにNaOH200gを
1Lの水に溶解して5〜10℃に冷却した溶液を2時間
かけて滴下し、アルミン酸ナトリウムとした。次に、N
i(NO3 2 ・6H2 O101gを600mlの水に
溶解し、これに45mlの濃硝酸を加えて5〜10℃に
冷却したものを、アルミン酸ナトリウム溶液に激しくか
き混ぜながら1時間かけて加えた。生じた沈澱を濾過
し、得られた沈澱を2Lの水中で15分間かき混ぜて洗
う操作を6回繰り返して中性とした。得られた沈澱物を
細分して空気浴中で105℃で16時間乾燥してから粉
砕し、これをふるい分けて12〜24meshのものを
集めた。このものは29.5wt%の酸化ニッケル(N
iO)を含有していた。 (ニッケルの還元処理)このものを実施例1で使用した
と同じ精製筒に63ml充填し(充填密度:0.77g
/ml)、これに水素を常圧で温度350℃、流量16
5cc/min(LV=1cm/sec)で16時間流
して還元処理をおこなった後、常温に冷却した。 (水蒸気の精製)引き続いて、水蒸気の精製をおこなっ
た。実施例1で使用した約0.14ppmの酸素を含む
7.3vol%水蒸気(窒素ベース)を40℃に加熱し
た精製筒に0.633L/min(LV=5cm/se
c)で流して出口ガス中の酸素濃度を測定した結果、
0.01ppm以下であった。精製を始めてから100
分後においても出口ガスの酸素濃度は0.01ppm以
下であった。
[0011] Example 4 Al (NO 3) in water (nickel Preparation of Catalyst) 3L 3 9
454 g of H 2 O were dissolved and cooled to 5-10 ° C. in an ice bath. While stirring vigorously, a solution of 200 g of NaOH dissolved in 1 L of water and cooled to 5 to 10 ° C. was added dropwise over 2 hours to obtain sodium aluminate. Next, N
101 g of i (NO 3 ) 2 .6H 2 O was dissolved in 600 ml of water, 45 ml of concentrated nitric acid was added thereto, and the mixture was cooled to 5 to 10 ° C. and added to the sodium aluminate solution over 1 hour with vigorous stirring. Was. The resulting precipitate was filtered, and the obtained precipitate was stirred six times in 2 L of water for 15 minutes and washed to make the precipitate neutral. The obtained precipitate was subdivided, dried in an air bath at 105 ° C. for 16 hours, and then pulverized, and sieved to collect 12 to 24 mesh. This is 29.5 wt% nickel oxide (N
iO). (Reduction treatment of nickel) 63 ml of this was packed in the same purification cylinder as used in Example 1 (packing density: 0.77 g)
/ Ml) and hydrogen at normal pressure at a temperature of 350 ° C and a flow rate of 16
After performing a reduction treatment by flowing at 5 cc / min (LV = 1 cm / sec) for 16 hours, the mixture was cooled to room temperature. (Purification of steam) Subsequently, purification of steam was performed. 0.633 L / min (LV = 5 cm / sec) was added to a purification cylinder heated at 40 ° C. with 7.3 vol% steam (nitrogen base) containing about 0.14 ppm of oxygen used in Example 1.
As a result of measuring the oxygen concentration in the outlet gas flowing in c),
It was 0.01 ppm or less. 100 since the start of purification
Even after minutes, the oxygen concentration of the outlet gas was 0.01 ppm or less.

【0012】比較例 活性炭(椰子殻炭)を8〜24meshに破砕したもの
48gを実施例1に置けると同じ精製筒に300mm
(充填密度0.57g/ml)充填し、ヘリウム気流中
270〜290℃で時間加熱処理した後、室温に冷却し
た。この精製筒に実施例1で用いたと同じ約0.14p
pmの酸素を含む7.3vol%水蒸気(窒素ベース)
を40℃に加熱した精製筒に0.633L/min(L
V=5cm/sec)で流して出口ガス中の酸素濃度を
測定した結果、0.14ppmであり、この状態で2時
間流し続けたが酸素濃度の変化は見られなかった。
Comparative Example 48 g of activated carbon (coconut shell charcoal) crushed to 8 to 24 mesh was placed in the same purification cylinder as in Example 1 at 300 mm.
(Filling density: 0.57 g / ml), the mixture was heated in a helium stream at 270 to 290 ° C. for an hour, and then cooled to room temperature. About 0.14p same as that used in Example 1
7.3 vol% water vapor containing pm oxygen (nitrogen base)
0.633 L / min (L
(V = 5 cm / sec), and the oxygen concentration in the outlet gas was measured. The result was 0.14 ppm. In this state, the gas continued to flow for 2 hours, but no change in the oxygen concentration was observed.

【0013】[0013]

【発明の効果】本発明によって、従来除去が困難であっ
た水蒸気中の酸素を、0.1ppm以下、さらには0.
01ppm以下のような極低濃度まで除去することがで
き、超高純度の水蒸気を得ることが可能となった。
According to the present invention, oxygen in water vapor, which has been difficult to remove in the past, is reduced to 0.1 ppm or less, and more preferably to 0.1 ppm or less.
It can be removed to an extremely low concentration of not more than 01 ppm, and it has become possible to obtain ultra-high-purity steam.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−188407(JP,A) 特開 平2−188408(JP,A) 特開 平2−188409(JP,A) 特開 平2−204304(JP,A) 特開 平2−204305(JP,A) 特開 平2−204306(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/14 B01J 21/00 - 38/74 C01B 5/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-188407 (JP, A) JP-A-2-188408 (JP, A) JP-A-2-188409 (JP, A) JP-A-2-188 204304 (JP, A) JP-A-2-204305 (JP, A) JP-A-2-204306 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 53/14 B01J 21 / 00-38/74 C01B 5/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粗水蒸気を、金属ニッケルまたは還元処
理したニッケル化合物を主成分とする精製剤と接触させ
て、該粗水蒸気に含有される酸素を除去することを特徴
とする水蒸気の精製方法。
1. The method according to claim 1, wherein the crude steam is treated with metallic nickel or a reducing process.
A steam purification method comprising: contacting a purified nickel compound as a main component with a purification agent to remove oxygen contained in the crude steam.
【請求項2】 精製剤が、金属換算で5〜95wt%の
ニッケルを含有し、かつ比表面積がBET法で10〜3
00m/gである請求項1に記載の水蒸気の精製方
法。
2. The refining agent contains nickel of 5 to 95% by weight in terms of metal and has a specific surface area of 10 to 3 by a BET method.
The method for purifying steam according to claim 1, wherein the water purification rate is 00 m 2 / g.
【請求項3】 水蒸気と精製剤との接触温度が200℃
以下である請求項1に記載の水蒸気の精製方法。
3. The contact temperature between steam and a purifying agent is 200 ° C.
The method for purifying steam according to claim 1, which is as follows.
JP31000691A 1991-10-29 1991-10-29 Steam purification method Expired - Fee Related JP3279608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31000691A JP3279608B2 (en) 1991-10-29 1991-10-29 Steam purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31000691A JP3279608B2 (en) 1991-10-29 1991-10-29 Steam purification method

Publications (2)

Publication Number Publication Date
JPH05123576A JPH05123576A (en) 1993-05-21
JP3279608B2 true JP3279608B2 (en) 2002-04-30

Family

ID=18000016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31000691A Expired - Fee Related JP3279608B2 (en) 1991-10-29 1991-10-29 Steam purification method

Country Status (1)

Country Link
JP (1) JP3279608B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997048640A1 (en) * 1996-06-20 1997-12-24 Ultraclean Technology Research Institute Moisture generation method and moisture generator

Also Published As

Publication number Publication date
JPH05123576A (en) 1993-05-21

Similar Documents

Publication Publication Date Title
JP3121137B2 (en) Purification method of unsaturated hydrocarbon
US4976942A (en) Method for purifying gaseous hydrides
JP2732262B2 (en) How to purify arsine
JP3410121B2 (en) Ammonia purification method
JP3359928B2 (en) Ammonia purification method
JP3279608B2 (en) Steam purification method
JP3522785B2 (en) Purification method of carbon dioxide
JP3260786B2 (en) Steam purification method
JP3292251B2 (en) Steam purification method
JP3154340B2 (en) Method for purifying germanium hydride
JP3150788B2 (en) Purification method of halogenated hydrocarbon
JP3217854B2 (en) Organic metal purification method
JP2700396B2 (en) Purification method of diborane
JP2640521B2 (en) Hydrogen sulfide purification method
JP2651611B2 (en) Hydride gas purification method
JP2627324B2 (en) Silane purification method
JP2640517B2 (en) Purification method of hydrogen selenide
JP2700399B2 (en) Hydride gas purification method
JP2592312B2 (en) Phosphine purification method
JP2700412B2 (en) Hydride gas purification method
JP2700398B2 (en) Hydride gas purification method
JP3154339B2 (en) Method for purifying germanium hydride
JP2700401B2 (en) Hydride gas purification method
JP2732277B2 (en) Hydride gas purification method
JP2700400B2 (en) Hydride gas purification method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees