WO1997048640A1 - Moisture generation method and moisture generator - Google Patents

Moisture generation method and moisture generator Download PDF

Info

Publication number
WO1997048640A1
WO1997048640A1 PCT/JP1997/002131 JP9702131W WO9748640A1 WO 1997048640 A1 WO1997048640 A1 WO 1997048640A1 JP 9702131 W JP9702131 W JP 9702131W WO 9748640 A1 WO9748640 A1 WO 9748640A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
hydrogen
mixed gas
water
gas
Prior art date
Application number
PCT/JP1997/002131
Other languages
French (fr)
Japanese (ja)
Inventor
Tadahiro Ohmi
Takahisa Nitta
Original Assignee
Ultraclean Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ultraclean Technology Research Institute filed Critical Ultraclean Technology Research Institute
Priority to JP50267598A priority Critical patent/JP3952087B2/en
Publication of WO1997048640A1 publication Critical patent/WO1997048640A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B5/00Water

Definitions

  • the present invention relates to a moisture generation method and a moisture generation device. More specifically, the present invention relates to a water generation method and a water generation apparatus, which have a high reaction rate for generating water from hydrogen and oxygen and have a small deterioration in the reaction rate.
  • Water is introduced into a resin tube through which water molecules permeate, and is diffused at a given temperature using the fact that the speed at which water molecules permeate the resin film toward the outside is constant.
  • water is mixed with the inert gas flowing outside the diffusion tube to generate water.
  • the control of the water concentration is determined by the temperature of the diffusion tube and the flow rate of the inert gas.
  • Figure 5 shows a schematic diagram of the device.
  • the sealed container (water and outside air) containing water is kept at a constant temperature, and the inert gas is passed through the gas phase or water of the container, and the vapor pressure of water at the desired temperature.
  • This is a method for obtaining an inert gas containing water corresponding to the above.
  • the control of moisture concentration is determined by the temperature (steam pressure) inside the closed vessel.
  • Figure 6 shows a schematic diagram of the device.
  • FIG. 7 shows a schematic diagram of the device.
  • the above technology (1) requires equipment that can handle high-temperature processes of 700 ° C or higher.
  • a technique disclosed in Japanese Patent Application Laid-Open No. Hei 6-115903 that is, a first mixed gas is prepared by mixing hydrogen, oxygen and an inert gas
  • the first mixed gas is introduced into a reaction tube made of a material having a catalytic action capable of radicalizing hydrogen and oxygen by mixing the first mixed gas and heating the inside of the reaction furnace tube.
  • a water generation method characterized by comprising a water generation step of reacting hydrogen and oxygen contained in the mixed gas to generate water.
  • Figure 9 shows a schematic diagram of the device.
  • An object of the present invention is to provide a water generating method and a water generating apparatus which have a high reaction rate and can efficiently generate a high concentration of water. Disclosure of the invention
  • the method for producing moisture according to the present invention is a method for producing moisture by reacting hydrogen and oxygen, wherein a mixed gas producing step a1 of producing a first mixed gas by mixing hydrogen and oxygen without dilution with an inert gas.
  • a material having a catalytic action for reacting the hydrogen and the oxygen is incorporated therein, or the first mixed gas is introduced into a reaction tube made of the material, and the hydrogen and the oxygen are mixed in the reaction tube.
  • a water generating step b1 for generating water by reacting In the present invention, hydrogen and oxygen are mixed without being diluted with an inert gas to form a first mixed gas. In the water generation step b b, water is generated from the first mixed gas. Moisture can be generated at a higher reaction rate than in the case of containing water.
  • a reaction can be achieved at a reaction rate of about 100%.
  • the second mixed gas generated in the moisture generation step b1 is mixed with oxygen so that excess hydrogen is contained therein and the ratio of oxygen to hydrogen contained in the second mixed gas becomes 0.5 or more.
  • the third mixed gas is introduced into a second reaction tube containing a material having a catalytic action for reacting hydrogen and oxygen, or into a second reaction tube made of the material.
  • the gas generated in the second reaction tube can be introduced into an apparatus for forming an oxide film such as a semiconductor.
  • the impurity concentration of the hydrogen and the oxygen is preferably 10 Pppb or less, and more preferably 10 Ppt or less.
  • the impurities are at least one of nitrogen, carbon dioxide, and organic gas. These impurities When introduced directly into a use point (for example, an apparatus for forming an oxide film of a semiconductor), not only causes contamination of semiconductors and the like, but also causes a reduction in the reaction rate between oxygen and hydrogen.
  • both the first reaction tube and the second reaction tube it is preferable to heat both the first reaction tube and the second reaction tube to 300 ° C. or more, more preferably to 400 ° C. or more. It is more preferred to heat to 500 ° C. or higher.
  • the first reaction tube contains more than 4% of hydrogen, if it exceeds 550 ° C, there is a possibility of explosion of hydrogen, so the temperature is preferably 550 ° C or less.
  • heating up to about 600 ° C. is possible because of a low hydrogen content.
  • a first mixing section for mixing the hydrogen and the oxygen to form a first mixed gas, and a material having a catalytic action for causing the hydrogen and the oxygen constituting the first mixed gas to react with each other;
  • a reaction tube containing or made of the material;
  • a second mixing section for mixing oxygen with the second mixed gas from the reaction tube downstream of the reaction tube to produce a third mixed gas
  • FIG. 1 is a schematic diagram showing an example of the water generation method according to the present invention.
  • FIG. 2 is a schematic diagram showing another example of the water generation method according to the present invention.
  • FIG. 3 is a graph showing the result of examining the relationship between the argon gas dilution rate and the reaction rate according to Example 1.
  • FIG. 4 shows the result of examining the relationship between the ratio of hydrogen to oxygen and the reaction rate according to Example 2. It is a graph.
  • FIG. 5 is a schematic diagram showing an example of a conventional water generation method.
  • FIG. 6 is a schematic diagram showing another example of the conventional water generation method.
  • FIG. 7 is a schematic diagram showing another example of the conventional moisture generation method.
  • FIG. 8 is a schematic diagram showing another example of the conventional moisture generation method.
  • FIG. 9 is a schematic view showing another example of the conventional moisture generation method.
  • FIG. 10 is a sectional view showing an example of the reaction tube.
  • Mass flow controller for controlling the amount of hydrogen introduced, 102, 105 Mass flow controller for controlling the amount of oxygen introduced, 1103, 107 Mixing piping,
  • the flow rate of oxygen gas is controlled by a mass flow controller (MFC), and the flow rate of hydrogen gas is controlled by a mass flow controller.
  • MFC mass flow controller
  • FIG. 1 is a schematic diagram ⁇ showing an example of a water generation method including a mixed gas preparation step a1 and a water generation step b1.
  • 101 is a mass flow controller (MFC) that controls the amount of introduced hydrogen
  • 102 is a mass flow controller that controls the amount of introduced oxygen
  • 103 is a mixing pipe
  • 103 is a mixing pipe.
  • 4 is a reactor
  • 1] 0 is an optical dew point meter (moisture concentration meter)
  • 111 is a galvanic cell type oxygen meter.
  • the mixed gas producing step a] is a step performed in 101, 1 () 2 and 103. Appropriate amounts of hydrogen and oxygen are supplied to the mixing pipe 103 through the masochist-controller 101 and 102 to produce a first mixed gas having a predetermined mixing ratio.
  • the moisture generation step b1 is performed in the reactor 104.
  • the temperature of the reactor 1 () 4 can be controlled by a heating system (not shown), and the first mixed gas introduced into the reactor 1 () 4 can be brought to an appropriate temperature by this heating. .
  • gas comes in contact with gas or pipe made of SUS316L, or pipe or vessel made of SUS316L, in which the gas contact part is electropolished or electrolytically polished.
  • a metal having a catalytic action on a part thereof, or a pipe, a finoletor, a container, or the like coated with the metal is suitably used.
  • the metal having a catalytic action include Hastelloy, nickel, ⁇ gold, gold, silver and the like, and alloys thereof.
  • the coating may be a single-layer film, which is simple and may be a multi-layer film. Nickel, which is relatively inexpensive and chemically stable, is often used. In order to lower the temperature of the nickel reaction, platinum may be further coated on nickel in some cases.
  • the gas contacting part of a pipe or vessel made of SUS316L is passivated, and the second mixing is performed. It is also possible to radicalize the hydrogen and oxygen that make up the gas to promote the reaction to generate moisture.
  • the internal shape of the reactor 104 is preferably such that the generated water is smoothly discharged in response to the introduction of the first mixed gas, and the gas retaining portion is reduced in order to obtain an extremely fast response speed.
  • the reaction tube 50 is constituted by an elliptical container 51.
  • SUS316L may be used as a material of the container.
  • a gas inlet 53 and a gas outlet 54 are formed.
  • a filter 57 having a roughness of about 0.3 / m or more is provided inside the container 51.
  • At least the catalyst eg, Pt, Pd, Ni, etc. is formed on the inner surface of the container 51 on the gas outlet 54 side by, for example, a deposition method or a plating method.
  • At least a jammer plate 56 is provided on the gas outlet 54 side (in the example shown in FIG. 10, a jammer 55 is also provided on the gas inlet 53 side).
  • the gas introduced into the container 51 from the gas inlet passes through the filter 57 and becomes a laminar flow.
  • the gas that has passed through the filter flows along the inner wall surface of the container 51 due to the presence of the jammer plate 56. Since the catalyst is formed on the inner wall surface of the container 51, the reaction occurs efficiently.
  • a heating means is provided.
  • FIG. 2 shows a third process in which oxygen is mixed with the second mixed gas generated through the moisture generating process b1 as a post-process of the mixed gas producing process a1 and the moisture generating process b) shown in FIG.
  • FIG. 4 is a schematic diagram showing an example of a moisture generation method including a mixed gas producing step a2 for producing a mixed gas and a moisture generating step b2 for introducing a third mixed gas.
  • 101 is a mass flow controller (MFC) for controlling the amount of introduced hydrogen
  • 102 and 105 are mass flow controllers for controlling the amount of introduced oxygen
  • 1 () 3 and 107 are mixing pipes
  • 104 and 107 are reactors
  • 110 is an optical dew point meter (water concentration meter)
  • 111 is a galvanic cell type oxygen meter.
  • 101 to 104 are the same components as in FIG.
  • Reference numeral 115 denotes a sensor for detecting the concentration of the second mixed gas discharged from the reaction tube 104
  • reference numeral 113 denotes a concentration meter
  • Reference numeral 114 denotes a control system for controlling the MFC based on the signal from the densitometer 113 to control the amount of oxygen mixed.
  • the mixed gas producing step a2 is a step performed in 105 and 106.
  • the mixing pipe 107 includes the second mixed gas generated in the moisture generation step b] and the second mixed gas. It is used to mix oxygen with a larger amount of hydrogen. The oxygen supplied at this time is controlled by the mass flow controller 105.
  • the second mixed gas generated in the water generation step b1 is water in which the main component is generated, and the remainder is not Consisting of hydrogen in the reaction.
  • the second mixed gas and oxygen having a ratio of oxygen to hydrogen contained in the second mixed gas of 0.5 or more are mixed. Then, a third mixed gas is produced.
  • the ratio of hydrogen to oxygen was fixed at 2, and the dilution ratio of argon gas was changed.
  • the impurity concentrations of hydrogen and oxygen were set to 10 ppb or less.
  • the flow rate of oxygen gas was controlled by the mass flow controller (MFC) 901
  • the flow rate of water 3 ⁇ 41 gas was controlled by the mass flow controller 902
  • the flow rate of argon gas was controlled by the mass flow controller 903.
  • MFC mass flow controller
  • argon gas was controlled by the mass flow controller 903.
  • a mixing pipe 9 () 4 for mixing three types of gases, and introduced into a reaction furnace 905. Hydrogen and oxygen were reacted in a reaction furnace 905 to generate a mixed gas (first mixed gas) composed of hydrogen and argon containing arbitrary moisture.
  • a 1-inch diameter, 2-m long Ni tube (Ni-distributed) is used as the reactor 905
  • the catalyst was used to lower the temperature of the reaction.
  • the Ni tube Ni pipe
  • an inner surface subjected to electrolytic polishing was used as the Ni tube (Ni pipe).
  • the flow rates of hydrogen gas and oxygen gas were fixed to SO c cZmin and 25 cc Zmin, respectively, using mass flow controllers 90 1 and 902, and only the flow rate of argon gas was used for mass flow controller 903.
  • the gas mixture was changed in the range of 0 2025 c cZmin by using a gas, and a mixed gas composed of three kinds of gases was introduced into the reactor.
  • the concentration of water contained in the gas mixture consisting of hydrogen and argon flowing out of the reactor was measured using an optical dew meter (moisture concentration meter) 906.
  • the hydrogen, oxygen, and argon gas used were i and the deviation was also an impurity.
  • a high-purity gas having a concentration of 1 Ppb or less was used.
  • the temperature of the reactor 905 was maintained at 300 ° C. over the entire length.
  • FIG. 3 is a graph showing the result of determining the reaction rate from the measured water concentration.
  • the horizontal axis represents the dilution rate of argon gas
  • the vertical axis represents the reaction rate.
  • reaction rate means the ratio of (the amount of water actually generated) to (the amount of water that can be generated from the amounts of hydrogen and oxygen introduced).
  • reaction rate was highest when water was generated using only hydrogen and oxygen without mixing argon gas as an inert gas. That is, it was found that the water generation method as shown in FIG. 1 was preferable for generating water at a high reaction rate.
  • This example differs from Example 1 in that the reaction rate was examined by changing the ratio of hydrogen to oxygen in the first mixed gas using the moisture generation method shown in FIG.
  • the temperature of the reactor 104 was changed to 300 ° C. ⁇ 400 ° C. and 500 ° C. for the experiment.
  • the other points were the same as in Example 1.
  • FIG. 4 is a graph showing the result of calculating the reaction rate from the measured water concentration.
  • the horizontal axis indicates the ratio of hydrogen to oxygen, and the vertical axis indicates the reaction rate.
  • The mark is 300 ° (:
  • oxygen having a ratio of oxygen to hydrogen contained in the second mixed gas of 0.5 or more is mixed, and the third mixed gas is removed.
  • Moisture generation process b2 The moisture concentration, oxygen concentration, and hydrogen concentration in the gas flowing out of the reactor that constitutes the reactor are measured using an optical dew meter (moisture concentration meter) 110, a galvanic cell oxygen meter 1 Measurements were made using 11 and gas chromatography 11. As a result, it was found that the force generated through the moisture generation step b2 was a mixed gas composed of moisture and oxygen. In addition, by appropriately adjusting the amount of oxygen mixed with the third mixed scum, it is possible to make the gas that has passed through the water generation step b2 only water. For example, the ratio of hydrogen to oxygen is set to approximately 2, and heating may be performed to 400 ° C. or more. At this time, the amount of oxygen introduced may be controlled by the control system 114.
  • a water generation method that has a high reaction rate and can efficiently generate high-concentration water can be obtained.
  • the mixed gas preparation step and the water generation step can be reduced. More specifically, the length of the mixing pipe in the mixed gas producing step can be shortened. In addition, the internal volume of the reaction furnace that performs the moisture generation step can be reduced. That is, by using the moisture generation method according to the present invention, a small-sized and high-performance moisture generation mechanism can be obtained.
  • the amount of water contained in the inert gas can be reduced to about 10 ppm from a trace amount of ppm or ppt order. Control over a wide range up to near 0 ° is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

A moisture generation method and a moisture generator can efficiently generate high concentration moisture having high reactivity. A method of generating a moisture by reacting hydrogen and oxygen, comprises a mixed gas preparation step a1 of mixing hydrogen and oxygen to prepare a first mixed gas without diluting them with an inert gas, and a moisture generation step b1 of introducing the first mixed gas into a reaction tube incorporating a material having a catalytic function of reacting hydrogen with oxygen or made of such a material, and reacting hydrogen and oxygen inside the reaction tube to generate moisture. The moisture generator comprises a hydrogen source, means for controlling the hydrogen flow rate, an oxygen source, means for controlling the oxygen flow rate, a first mixing portion for mixing hydrogen and oxygen to prepare a first mixed gas, a reaction tube incorporating a material having a catalytic function of reacting hydrogen and oxygen constituting the first mixed gas or made of such a material, and means for introducing the first mixed gas into the reaction tube from the first mixing portion.

Description

明細書 水分発生方法および水分発生装置  Description Water generation method and water generation device
5技術分野 5 technical fields
本発明は、 水分発生方法および水分発生装置に係る。 より詳細には、 水素と酸素から水 分を発生する反応率が高く、 かつ、 該反応率の劣化が少ない、 水分発生方法および水分発 生装置に関する。  The present invention relates to a moisture generation method and a moisture generation device. More specifically, the present invention relates to a water generation method and a water generation apparatus, which have a high reaction rate for generating water from hydrogen and oxygen and have a small deterioration in the reaction rate.
10背景技術 10 background technology
( 1 ) ディ フュージョ ンチューブ (拡散) 式水分発生方法  (1) Diffusion tube (diffusion) type water generation method
水分子が透過する樹脂管の内部に水を導入しておき、 任意の温度において水分子がその 樹脂膜を外部に向かって透過してく る速度が一定であることを利用し、 拡散してく る水分 をディ フュージョ ンチューブの外側に流れているイナ一トガスに混入させ、 水分を発生さ せる方法である。 水分濃度のコン トロールは、 ディフユ一ジョンチューブの温度とイナ一 卜ガスの流量によって決定される。 図 5に装置の概略図を示す。  Water is introduced into a resin tube through which water molecules permeate, and is diffused at a given temperature using the fact that the speed at which water molecules permeate the resin film toward the outside is constant. In this method, water is mixed with the inert gas flowing outside the diffusion tube to generate water. The control of the water concentration is determined by the temperature of the diffusion tube and the flow rate of the inert gas. Figure 5 shows a schematic diagram of the device.
( 2 ) 水の蒸気圧を利用した水分発生方法  (2) Water generation method using vapor pressure of water
水の入った密閉容器 (外気と遮断) を任意の温度に恒温しておき、 その容器の気相部あ るいは水中にイナ一 卜ガスを通ガスさせ、 任意の温度での水の蒸気圧に相当する水分の含 0んだイナ— トガスを得る方法である。 水分濃度のコン トロールは密閉容器内の温度 (蒸気 圧) によって決定される。 図 6に装置の概略図を示す。  The sealed container (water and outside air) containing water is kept at a constant temperature, and the inert gas is passed through the gas phase or water of the container, and the vapor pressure of water at the desired temperature. This is a method for obtaining an inert gas containing water corresponding to the above. The control of moisture concentration is determined by the temperature (steam pressure) inside the closed vessel. Figure 6 shows a schematic diagram of the device.
( 3 ) ボンベに充填された標準ガスを希釈する水分発生方法  (3) Water generation method for diluting the standard gas filled in the cylinder
ボンベに充填された水分の標準ガスをイナ一 卜ガスで任意の希釈率で希釈し、 任意の濃 度の水分を発生する方法。 図 7に装置の概略図を示す。  A method in which a standard gas of water filled in a cylinder is diluted with an inert gas at an arbitrary dilution rate to generate an arbitrary concentration of water. Figure 7 shows a schematic diagram of the device.
25 ( 4 ) 石英炉の中で 7 0 0 °C以上の温度で水素と酸素ガスを燃焼させ水分を発生させる 方法。 図 8に装置の概略図を示す。 25 (4) A method in which hydrogen and oxygen gas are burned at a temperature of 700 ° C or more in a quartz furnace to generate moisture. Figure 8 shows a schematic diagram of the device.
しかし、 上記従来技術には、 次のような問題点がある。  However, the above prior art has the following problems.
( a > 上記 ( 1 ) の技術は超高純度な水分の混合ガスが得られない。 ディフュージョ ン チューブから、 炭化水素系の不純物の混合が起こるため。 (a> In the technology of (1) above, it is not possible to obtain a gas mixture of ultra-high purity water because hydrocarbon-based impurities are mixed from the diffusion tube.
0 ( b ) 上記 ( 1 > の技術は p p b、 p p t レベルの低濃度の水分濃度がコン 卜ロールで きない。 ディ フユ一ジョンチューブからの放出水分が p p bレベルで常に発生するため。 ( c ) 上記 ( i ) の技術は水分濃度の応答性が悪い。 0 (b) The above technology (1>) controls low water concentration of ppb and ppt level I can't. Water released from the diffusion tube is always generated at ppb level. (c) The technique (i) has poor response to moisture concentration.
( cl ) 上記 ( 1 ) の技術は水分濃度の信頼性が低 L、。 ディ フユ一ジョンチューブの経時 変化が生じるため。  (cl) The technology of (1) above has low moisture concentration reliability. Because the diffusion tube changes over time.
( e ) 上記 (〗 ) 及び ( 2 ) の技術は保守、 取扱いが難しい。 正確な温度コン 卜ロール が必要なため。  (e) Maintenance and handling of the above techniques (〗) and (2) are difficult. Because accurate temperature control is required.
( f ) 上記 ( 2 ) の技術は装置の立ち上げに長時間を要する。  (f) The technique of (2) requires a long time to start up the device.
( «· ) 上記 ( 2 ) の技術は水分濃度の信頼性が低い。  («·) The technology of the above (2) has low reliability of moisture concentration.
( h ) 上記 ( 2 ) の技術は校正に長時間を要する。  (h) The technique (2) requires a long time for calibration.
( i > 上記 (' 3 ) の技術は水分濃度の信頼性が低い。 正確な水分濃度の標準ガスが無い ため。 (i> The technology of ('3) above has low reliability of moisture concentration because there is no standard gas with accurate moisture concentration.)
1 ) 上記 ( 3 ) の技術は高濃度および多量の水分の発生が難しい。  1) It is difficult for the technology of (3) to generate high concentration and large amount of water.
( k > 上記 ( 4 ) の技術は水素と酸素を直接燃焼させるため 2 0 0 0 °C近い高温とな り、 吹き出し口の材料が力一ボンや S i Cに限定され作りにくいだけでなく、 ダス 卜が発 生する。  (k> The technology of (4) above directly burns hydrogen and oxygen, so the temperature is close to 2000 ° C. The material of the outlet is limited to power and SiC, and it is difficult to make. A dust occurs.
( 1 ) 上記 ( の技術は 7 0 0 °C以上の高温プロセスに対応できる設備が不可欠であ る。  (1) The above technology (1) requires equipment that can handle high-temperature processes of 700 ° C or higher.
このような問題を解決する方法として、 特開平 6— 1 1 5 9 0 3号公報に開示された技 術、 すなわち、 水素、 酸素およびイナ一卜ガスを混合し第 1の混合ガスを作製する混合力 ス作製工程と、 水素および酸素をラジカル化し得る触媒作用を有する材料で構成された反 応管内に該第 1の混合ガスを導入するとともに該反応炉管内を加熱することにより該第 1 の混合ガスに含まれる水素と酸素を反応させ水を発生させる水分発生工程とからなること を特徴とする水分発生方法が挙げられる。 図 9に装置の概略図を示す。  As a method for solving such a problem, a technique disclosed in Japanese Patent Application Laid-Open No. Hei 6-115903, that is, a first mixed gas is prepared by mixing hydrogen, oxygen and an inert gas The first mixed gas is introduced into a reaction tube made of a material having a catalytic action capable of radicalizing hydrogen and oxygen by mixing the first mixed gas and heating the inside of the reaction furnace tube. A water generation method characterized by comprising a water generation step of reacting hydrogen and oxygen contained in the mixed gas to generate water. Figure 9 shows a schematic diagram of the device.
この技術によれば、 P P t、 p p bの低濃度から%オーダーの高濃度まで広い範囲で、 多量の正確な濃度で、 かつ、 超高清浄度の水分の混合ガスが得られ、 さらに、 応答性か早 く、 保守も簡単な水分発生方法が提供できることが報告されている。  According to this technology, it is possible to obtain a large amount of accurate concentration and ultra-high clean water mixed gas in a wide range from low concentration of PP t and ppb to high concentration of% order. It has been reported early on that a water generation method that is easy to maintain can be provided.
しかしなから、 該公報の技術では、 水素および酸素以外にイナー トガスを混合している ため、 水分を発生するために導入した水素および酸素の利用効率、 すなわち、 (導入した 水素および酸素の量から生成可能な水分の量) に対する (実際に生成した水分の量) の比 率 (以後、 反応率と呼称する) が低いため、 例えば%オーダーでも高い範囲の水分を得る ことが困難であった。 さらに、 1 0 0 %近い高濃度領域の水分を実現をすることはできな つた However, in the technique of the publication, since inert gas is mixed in addition to hydrogen and oxygen, the utilization efficiency of hydrogen and oxygen introduced to generate moisture, that is, (from the amount of introduced hydrogen and oxygen, Because the ratio of (actually generated water) to (the amount of water that can be generated) is low (hereinafter referred to as the reaction rate), a high range of water can be obtained, for example, even in% order. It was difficult. In addition, it was not possible to achieve water in a high concentration region close to 100%
また、 水分の発生量を増すためには、 大量の混合ガスを導入しなければならない。 した がって、 水分発生工程を構成する容器として、 内容積の大きな容器を用いる必要かあつ た。 その結果、 製造プロセスの制御が難しく、 その安定性にも問題があった。  In addition, a large amount of mixed gas must be introduced to increase the amount of generated moisture. Therefore, it was necessary to use a container with a large internal volume as a container for the water generation process. As a result, it was difficult to control the manufacturing process, and there were problems with its stability.
本発明は、 反応率が高く、 高濃度の水分を効率よく生成できる水分発生方法および水分 発生装置を提供することを目的とする。 発明の開示  An object of the present invention is to provide a water generating method and a water generating apparatus which have a high reaction rate and can efficiently generate a high concentration of water. Disclosure of the invention
本発明の水分発生方法は、 水素と酸素を反応させ水分を発生させる方法において、 不活性ガスで希釈することなく水素および酸素を混合し第 1の混合ガスを作製する混合 ガス作製工程 a 1 と、  The method for producing moisture according to the present invention is a method for producing moisture by reacting hydrogen and oxygen, wherein a mixed gas producing step a1 of producing a first mixed gas by mixing hydrogen and oxygen without dilution with an inert gas. ,
該水素と該酸素とを反応せしめる触媒作用を有する材料を内蔵するかまたは該材料構成 された反応管內に該第 1の混合ガスを導入するとともに、 該反応管内において該水素と該 酸素とを反応させ水分を発生させる水分発生工程 b 1 とからなることを特徴とする。 本発明では、 不活性ガスで希釈せずに水素および酸素を混合し第 1の混合ガスとし、 水 分発生工程 b 〗では該第 1の混合ガスから水分を発生させるため、 従来の不活性ガスを含 む場合に比べて、 高い反応率で水分を発生することができる。  A material having a catalytic action for reacting the hydrogen and the oxygen is incorporated therein, or the first mixed gas is introduced into a reaction tube made of the material, and the hydrogen and the oxygen are mixed in the reaction tube. And a water generating step b1 for generating water by reacting. In the present invention, hydrogen and oxygen are mixed without being diluted with an inert gas to form a first mixed gas. In the water generation step b b, water is generated from the first mixed gas. Moisture can be generated at a higher reaction rate than in the case of containing water.
また、 前記第 1の混合ガスとして酸素に対する水素の比率を 2 (モル比率〉 以上とした ガスを用いることによりほぼ 1 0 0 %の反応率で反応を達成させることができる。  Further, by using a gas having a hydrogen to oxygen ratio of 2 (molar ratio) or more as the first mixed gas, a reaction can be achieved at a reaction rate of about 100%.
さらに、 水分発生工程 b 1により発生した第 2の混合ガスには過剰水素が含まれる力、 第 2の混合ガスに含まれる水素に対する酸素の比率が 0 . 5以上になるように酸素を混合 し (第 3の混合ガス作製工程 a 2 ) 、 この第 3の混合ガスを、 水素と酸素とを反応させる 触媒作用を有する材料を内蔵するか該材料で構成された第 2の反応管内に導入して第 2の 反応管内において水素と酸素とを反応させ水分を発生させることにより水素を含有しな い、 水分のみあるいは酸素を含有する水分を発生させることかできる。 従って、 第 2の反 応管において発生したガスを半導体等の酸化膜の形成装置に導入することができる。 また、 前記水素および前記酸素の不純物濃度は 1 0 P P b以下とすることが好ましく、 1 0 p p t以下とすることがより好ましい。  Further, the second mixed gas generated in the moisture generation step b1 is mixed with oxygen so that excess hydrogen is contained therein and the ratio of oxygen to hydrogen contained in the second mixed gas becomes 0.5 or more. (Third mixed gas producing step a2) The third mixed gas is introduced into a second reaction tube containing a material having a catalytic action for reacting hydrogen and oxygen, or into a second reaction tube made of the material. By reacting hydrogen and oxygen in the second reaction tube to generate water, it is possible to generate only water containing no hydrogen or water containing oxygen. Therefore, the gas generated in the second reaction tube can be introduced into an apparatus for forming an oxide film such as a semiconductor. Further, the impurity concentration of the hydrogen and the oxygen is preferably 10 Pppb or less, and more preferably 10 Ppt or less.
ここで、 不純物は、 窒素、 二酸化炭素、 有機ガスの 1種以上である。 これらの不純物 は、 そのままユースポイン ト (たとえば半導体の酸化膜形成装置) に導入されると半導体 等の汚染原因となるのみならず、 酸素と水素との反応率の低下を招く。 Here, the impurities are at least one of nitrogen, carbon dioxide, and organic gas. These impurities When introduced directly into a use point (for example, an apparatus for forming an oxide film of a semiconductor), not only causes contamination of semiconductors and the like, but also causes a reduction in the reaction rate between oxygen and hydrogen.
第 1の反応管、 第 2の反応管とも 3 0 0 °C以上に加熱することが好ましく、 4 0 0 °C以 上に加熱することがより好ましい。 5 0 0 °C以上に加熱することがさらに好ましい。 た 5だ、 第 1の反応管の場合は、 水素を 4 %以上含有しているため 5 5 0 °Cを超えると水素の 爆発のおそれがあるため 5 5 0 °C以下が好ましい。 第 2の反応管の場合は、 水素の含有量 が少ないため 6 0 0 °C程度までの加熱も可能である。  It is preferable to heat both the first reaction tube and the second reaction tube to 300 ° C. or more, more preferably to 400 ° C. or more. It is more preferred to heat to 500 ° C. or higher. However, since the first reaction tube contains more than 4% of hydrogen, if it exceeds 550 ° C, there is a possibility of explosion of hydrogen, so the temperature is preferably 550 ° C or less. In the case of the second reaction tube, heating up to about 600 ° C. is possible because of a low hydrogen content.
本発明の水分発生装置は、  The moisture generating device of the present invention,
水素源と、  A hydrogen source,
10 水素流量を制御するための手段と、  10 means for controlling the hydrogen flow rate;
酸素源と、  An oxygen source,
酸素流量を制御するための手段と、  Means for controlling the oxygen flow rate;
該水素と該酸素とを混合して第 1の混合ガスを作製するための第 1の混合部と、 該第 1の混合ガスを構成する該水素と該酸素とを反応せしめる触媒作用を有する材料を 内蔵するかまたは該材料構成された反応管と、  A first mixing section for mixing the hydrogen and the oxygen to form a first mixed gas, and a material having a catalytic action for causing the hydrogen and the oxygen constituting the first mixed gas to react with each other; A reaction tube containing or made of the material;
該第 1の混合部から該反応管に該第 1の混合ガスを導入するための手段と、  Means for introducing the first mixed gas from the first mixing section into the reaction tube;
を有することを特徴とする。  It is characterized by having.
特に、 反応管の下流において反応管からの第 2の混合ガスに酸素を混合し第 3の混合ガ スを作製するための第 2の混合部と、 In particular, a second mixing section for mixing oxygen with the second mixed gas from the reaction tube downstream of the reaction tube to produce a third mixed gas;
0 該第 3の混合ガスを構成する成分のうちの水素と酸素とを反応せしめる触媒作用を有す る材料を内蔵するかまたは該材料構成された第 2の反応管と、  A second reaction tube containing a material having a catalytic action for reacting hydrogen and oxygen among the components constituting the third mixed gas or comprising the material;
該第 2の混合部から該第 2の反応管に該第 3の混合ガスを導入するための手段と、 を設けることが好ま しい。 5図面の簡単な説明  And means for introducing the third mixed gas from the second mixing section into the second reaction tube. 5 Brief description of the drawings
図 1は、 本発明に係る水分発生方法の一例を示す概略図である。  FIG. 1 is a schematic diagram showing an example of the water generation method according to the present invention.
図 2は、 本発明に係る水分発生方法の他の一例を示す概略図である。  FIG. 2 is a schematic diagram showing another example of the water generation method according to the present invention.
図 3は、 実施例 1に係るアルゴンガスの希釈率と反応率との関係を調べた結果を示すグ ラフである。  FIG. 3 is a graph showing the result of examining the relationship between the argon gas dilution rate and the reaction rate according to Example 1.
30 図 4は、 実施例 2に係る酸素に対する水素の比率と反応率との関係を調べた結果を示す グラフである。 30 FIG. 4 shows the result of examining the relationship between the ratio of hydrogen to oxygen and the reaction rate according to Example 2. It is a graph.
図 5は、 従来の水分発生方法の一例を示す概略図である。  FIG. 5 is a schematic diagram showing an example of a conventional water generation method.
図 6は、 従来の水分発生方法の他の一例を示す概略図である。  FIG. 6 is a schematic diagram showing another example of the conventional water generation method.
図 7は、 従来の水分発生方法の他の一例を示す概略図である。  FIG. 7 is a schematic diagram showing another example of the conventional moisture generation method.
図 8は、 従来の水分発生方法の他の一例を示す概略図である。  FIG. 8 is a schematic diagram showing another example of the conventional moisture generation method.
図 9は、 従来の水分発生方法の他の一例を示す概略図である。  FIG. 9 is a schematic view showing another example of the conventional moisture generation method.
図 1 0は、 反応管の一例を示す断面図である。  FIG. 10 is a sectional view showing an example of the reaction tube.
(符号の説明)  (Explanation of code)
5 0 反応管、  50 reaction tubes,
5 1 容器、  5 1 container,
5 2 触媒、  5 2 catalyst,
5 3 ガス導入口、  5 3 Gas inlet,
54 ガス排出口、  54 gas outlets,
5 5 ジャマ板、  5 5 Jama board,
5 6 ジャマ板、  5 6 Jama board,
5 7 フィ ルター、  5 7 filter,
1 0 1 水素の導入量を制御するマスフローコントローラー (MF C) 、 1 0 2、 1 0 5 酸素の導入量を制御するマスフ口一コン ト口一ラー、 1 0 3 , 1 0 7 混合配管、  101 Mass flow controller (MFC) for controlling the amount of hydrogen introduced, 102, 105 Mass flow controller for controlling the amount of oxygen introduced, 1103, 107 Mixing piping,
1 04 反応炉、  1 04 reactor,
1 1 0 光学露点計 (水分濃度計) 、  1 1 0 Optical dew point meter (moisture concentration meter)
1 1 1 ガルパニ電池式酸素計、  1 1 1 Galpani battery type oxygen meter,
1 1 2 ガスクロマ トグラフィー、  1 1 2 Gas chromatography,
1 】 3 濃度系、  1] 3 concentration system,
1 1 4 制御系、  1 1 4 Control system,
1 5 センサ、  1 5 sensor,
9 0 1 酸素ガスの流量をマスフローコントローラー (MF C) 、 9 0 2 水素ガスの流量をマスフローコン ト口一ラー、  901 The flow rate of oxygen gas is controlled by a mass flow controller (MFC), and the flow rate of hydrogen gas is controlled by a mass flow controller.
9 0 3 アルゴンガスの流量をマスフローコン トローラー、  90 3 Argon gas flow rate was controlled by a mass flow controller.
9 0 J 混合配管、 9 0 5 反応炉、 9 0 J Mixing pipe, 9 0 5 reactor,
9 1 0 光学露天計 (水分濃度計) 、  9 10 Optical dew meter (moisture concentration meter)
9 1 1 ガルバ二電池式酸素計、  9 1 1 Galvanic battery type oxygen meter,
9 1 2 ガスクロマ トグラフィー。  9 1 2 Gas chromatography.
5  Five
実施態様例  Example of embodiment
以下、 図 1及び図 2を参照して本発明の実施態様例を説明する。  Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
図 1は、 混合ガス作製工程 a 1 と水分発生工程 b 1 とからなる水分発生方法の一例を示 す概略^である。  FIG. 1 is a schematic diagram ^ showing an example of a water generation method including a mixed gas preparation step a1 and a water generation step b1.
10 図 1 において、 1 0 1 は水素の導入量を制御するマスフ ローコ ン ト ローラ ー ( M F C ) , 1 0 2は酸素の導入量を制御するマスフローコン トローラー、 1 0 3は混合 配管、 1 0 4は反応炉、 1 】 0は光学露点計 (水分濃度計) 、 1 1 1 はガルバ二電池式酸 素計である。  10 In Fig. 1, 101 is a mass flow controller (MFC) that controls the amount of introduced hydrogen, 102 is a mass flow controller that controls the amount of introduced oxygen, 103 is a mixing pipe, and 103 is a mixing pipe. 4 is a reactor, 1] 0 is an optical dew point meter (moisture concentration meter), and 111 is a galvanic cell type oxygen meter.
混合ガス作製工程 a 】 は、 1 0 1、 1 () 2及び 1 0 3において行われる工程である。 マ スフ口一コン 卜ローラ一 1 ◦ 1及び 1 0 2を介して適当量の水素と酸素を混合配管 1 0 3 に供給し、 所定の混合比を有する第 1の混合ガスを作製する。  The mixed gas producing step a] is a step performed in 101, 1 () 2 and 103. Appropriate amounts of hydrogen and oxygen are supplied to the mixing pipe 103 through the masochist-controller 101 and 102 to produce a first mixed gas having a predetermined mixing ratio.
水分発生工程 b 1は、 反応炉 1 0 4において行われる。 反応炉 1 () 4は、 不図示の加熱 系により温度制御が可能であり、 この加熱によつて反応炉 1 () 4内に導入した第 1の混合 ガスを適当な温度にすることができる。 The moisture generation step b1 is performed in the reactor 104. The temperature of the reactor 1 () 4 can be controlled by a heating system (not shown), and the first mixed gas introduced into the reactor 1 () 4 can be brought to an appropriate temperature by this heating. .
0 反応炉 1 0 4 としては、 例えば、 ガスが接する部分に電解研磨あるいは電解複合研磨を 施した S U S 3 1 6 Lからなる配管や容器、 S U S 3 1 6 Lからなる配管や容器において ガスが接する部分に触媒作用のある金属又はその金属をコーティ ングした配管、 フィノレ ター、 容器などか好適に用いられる。 触媒作用のある金属としては、 ハステロイ、 ニッケ ル、 ^金、 金、 銀等、 又はこれらの合金が挙げられる。 コーティ ングは、 単層膜が簡便で 25ある力^ 多層膜としても構わない。 比較的安価でかつ化学的にも安定なニッケルが多用さ れるカ ^ 反応の低温化を図るためにはニッケルの上に白金をさらにコ一ティ ングして用い る場合もある。  0 As the reactor 104, for example, gas comes in contact with gas or pipe made of SUS316L, or pipe or vessel made of SUS316L, in which the gas contact part is electropolished or electrolytically polished. A metal having a catalytic action on a part thereof, or a pipe, a finoletor, a container, or the like coated with the metal is suitably used. Examples of the metal having a catalytic action include Hastelloy, nickel, ^ gold, gold, silver and the like, and alloys thereof. The coating may be a single-layer film, which is simple and may be a multi-layer film. Nickel, which is relatively inexpensive and chemically stable, is often used. In order to lower the temperature of the nickel reaction, platinum may be further coated on nickel in some cases.
また、 特願平 6— 1 1 5 9 0 3号公報に記載されているように、 S U S 3 1 6 Lからな る配管や容器において、 ガスが接する部分を不動態化して、 第】の混合ガスを構成する水 30素や酸素をラジカル化し、 水分を発生させる反応を促進させても構わない。 反応炉 1 0 4の内部形状は、 第 1の混合ガスの導入に対する発生した水分の排出をス ムーズに行い、 極めて速い応答速度をえるために、 ガス滞留部を小さくすることが好まし い。 In addition, as described in Japanese Patent Application No. 6-115590, the gas contacting part of a pipe or vessel made of SUS316L is passivated, and the second mixing is performed. It is also possible to radicalize the hydrogen and oxygen that make up the gas to promote the reaction to generate moisture. The internal shape of the reactor 104 is preferably such that the generated water is smoothly discharged in response to the introduction of the first mixed gas, and the gas retaining portion is reduced in order to obtain an extremely fast response speed.
たとえば図 1 0に示す反応管を用いることが好ましい。 すなわち、 反応管 5 0は楕円形 の容器 5 1により構成する。 容器の材質としては S U S 3 1 6 Lを用いればよい。 この容 器のにはガス導入口 5 3とガス排出口 5 4が形成されている。 そして、 容器 5 1の内部に は略 0 . 3 / m以上の粗さを有するフィルタ一 5 7が設けられている。 そして、 少なく と もガス排出口 5 4側の容器 5 1の内面には触媒 (たとえば P t, P d , N i など) がたと えば堆積法あるいはめっき法により形成されている。  For example, it is preferable to use a reaction tube shown in FIG. That is, the reaction tube 50 is constituted by an elliptical container 51. SUS316L may be used as a material of the container. In this container, a gas inlet 53 and a gas outlet 54 are formed. A filter 57 having a roughness of about 0.3 / m or more is provided inside the container 51. At least the catalyst (eg, Pt, Pd, Ni, etc.) is formed on the inner surface of the container 51 on the gas outlet 54 side by, for example, a deposition method or a plating method.
また、 少なく ともガス排出口 5 4側にはジャマ板 5 6が設けられている (図 1 0に示す 例ではガス導入口 5 3側にもジャマ扳 5 5が設けられている。  At least a jammer plate 56 is provided on the gas outlet 54 side (in the example shown in FIG. 10, a jammer 55 is also provided on the gas inlet 53 side).
ガス導入口から容器 5 1内部に導入されたガスは、 フィルタ一 5 7を通過して層流とな る。  The gas introduced into the container 51 from the gas inlet passes through the filter 57 and becomes a laminar flow.
フィルターを通過したガスは、 ジャマ板 5 6があるため容器 5 1の内壁面に沿って流れ る。 容器 5 1の内壁面には触媒が形成されているため効率よく反応が生じる。  The gas that has passed through the filter flows along the inner wall surface of the container 51 due to the presence of the jammer plate 56. Since the catalyst is formed on the inner wall surface of the container 51, the reaction occurs efficiently.
なお、 図 1 0には図示していないが加熱手段が設けられている。  Although not shown in FIG. 10, a heating means is provided.
図 2は、 図〗 に示した混合ガス作製工程 a 1 と水分発生工程 b 〗の後工程として、 水分 発生工程 b 1を経て発生した第 2の混合ガスに、 酸素を混合して第 3の混合ガスを作る混 合ガス作製工程 a 2と、 第 3の混合ガスを導入する水分発生工程 b 2とを設けた水分発生 方法の一例を示す概略図である。  FIG. 2 shows a third process in which oxygen is mixed with the second mixed gas generated through the moisture generating process b1 as a post-process of the mixed gas producing process a1 and the moisture generating process b) shown in FIG. FIG. 4 is a schematic diagram showing an example of a moisture generation method including a mixed gas producing step a2 for producing a mixed gas and a moisture generating step b2 for introducing a third mixed gas.
図 2 において、 1 0 1 は水素の導入量を制御するマスフ 口一コ ン 卜 口 一ラー ( M F C ) , 1 0 2および 1 0 5は酸素の導入量を制御するマスフローコン トロ一ラ一、 1 () 3および 1 0 7は混合配管、 1 0 4および 1 0 7は反応炉、 1 1 0は光学露点計 (水 分濃度計) 、 1 1 1 はガルバ二電池式酸素計である。 1 0 1 〜 1 0 4は図 1 と同じ構成物 である。  In FIG. 2, 101 is a mass flow controller (MFC) for controlling the amount of introduced hydrogen, 102 and 105 are mass flow controllers for controlling the amount of introduced oxygen, 1 () 3 and 107 are mixing pipes, 104 and 107 are reactors, 110 is an optical dew point meter (water concentration meter), and 111 is a galvanic cell type oxygen meter. 101 to 104 are the same components as in FIG.
1 1 5は反応管 1 0 4から排出される第 2の混合ガスの濃度を探知するセンサであり、 1 1 3は濃度計である。 1 1 4は濃度計 1 1 3からの信号に基づき、 M F Cを制御し、 酸 素の混合量を制御するための制御系である。  Reference numeral 115 denotes a sensor for detecting the concentration of the second mixed gas discharged from the reaction tube 104, and reference numeral 113 denotes a concentration meter. Reference numeral 114 denotes a control system for controlling the MFC based on the signal from the densitometer 113 to control the amount of oxygen mixed.
混合ガス作製工程 a 2は、 1 0 5及び 1 0 6において行われる工程である。 混合配管 1 0 7は、 水分発生工程 b 】 により発生した第 2の混合ガスと、 第 2の混合ガスに含まれ る水素量より多量の酸素とを混合するために用いられる。 このとき供給される酸素は、 マ スフローコン トローラー 1 0 5で制御する。 The mixed gas producing step a2 is a step performed in 105 and 106. The mixing pipe 107 includes the second mixed gas generated in the moisture generation step b] and the second mixed gas. It is used to mix oxygen with a larger amount of hydrogen. The oxygen supplied at this time is controlled by the mass flow controller 105.
第 1の混合ガスとして酸素に対する水素の比率を 2以上としたガスを用いた場合、 水分 発生工程 b 1 により発生した第 2の混合ガスは、 主成分が発生した水分であり、 残分は未 反応の水素から構成される。 この未反応の水素を水分に変えるため、 混合ガス作製工程 a 2では、 第 2の混合ガスと第 2の混合ガスに含まれる水素に対する酸素の比率が 0 . 5 以上になる酸素とを混合し、 第 3の混合ガスを作製する。  When a gas having a ratio of hydrogen to oxygen of 2 or more is used as the first mixed gas, the second mixed gas generated in the water generation step b1 is water in which the main component is generated, and the remainder is not Consisting of hydrogen in the reaction. In order to convert the unreacted hydrogen into moisture, in the mixed gas producing step a2, the second mixed gas and oxygen having a ratio of oxygen to hydrogen contained in the second mixed gas of 0.5 or more are mixed. Then, a third mixed gas is produced.
次に、 水分発生工程 b 2に第 3の混合ガスを導入することにより、 水分を発生させる。 その結果、 最終的に水分発生工程 b 2を経て作製されたガスは、 第 2の混合ガスに含まれ ていた未反応の水素を完全に水分へ変化させることができるため、 水分と酸素から構成さ れるガスが得られる。 発明を実施するための最良の形態  Next, water is generated by introducing the third mixed gas into the water generation step b2. As a result, the gas finally produced through the moisture generation step b2 can completely convert unreacted hydrogen contained in the second mixed gas into moisture, and is composed of moisture and oxygen. The resulting gas is obtained. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の水分発生方法を説明するが、 本発明はこれらの実施例に 限定されるものではない。  Hereinafter, the method for generating moisture of the present invention will be described with reference to the drawings, but the present invention is not limited to these examples.
(実施例 1 )  (Example 1)
本例では、 図 9に示した従来の水分発生方法を用い、 水素及び酸素をイナ一卜ガスで希 釈した場合の影響を調べた。 その際、 イナー トガスとしては A rを用い  In this example, the effect of diluting hydrogen and oxygen with an inert gas was investigated using the conventional moisture generation method shown in FIG. At that time, Ar was used as the inert gas.
、 酸素に対する水素の比率を 2に固定し、 アルゴンガスの希釈率を変化させた。 The ratio of hydrogen to oxygen was fixed at 2, and the dilution ratio of argon gas was changed.
なお、 水素および酸素の不純物濃度 (窒素、 二酸化炭素、 有機ガス、 金属の濃度) は 1 0 p p b以下とした。  The impurity concentrations of hydrogen and oxygen (the concentrations of nitrogen, carbon dioxide, organic gas, and metal) were set to 10 ppb or less.
また、 比較例として、 従来実施されていた条件 (希釈率が 2 8、 酸素に対する水素の比 率か 1 0 0 ) の場合も調べた。  In addition, as a comparative example, a case where the conditions were conventionally performed (dilution ratio: 28, ratio of hydrogen to oxygen: 100) was also examined.
以下では、 水分発生方法の手順に従って説明する。  Hereinafter, the description will be made according to the procedure of the moisture generation method.
図 9に示すように、 酸素ガスの流量をマスフローコン トローラ一 (M F C ) 9 0 1、 水 ¾1ガスの流量をマスフローコン トローラ一 9 0 2、 アルゴンガスの流量をマスフ口一コン トローラー 9 0 3でそれぞれ制御し、 3種類のガスを混合する混合配管 9 () 4に通し、 反 応炉 9 0 5に導入した。 反応炉 9 0 5において水素と酸素を反応させ、 任意の水分を含ん だ水素とアルゴンからなる混合ガス (第 1の混合ガス) を発生させた。  As shown in Fig. 9, the flow rate of oxygen gas was controlled by the mass flow controller (MFC) 901, the flow rate of water ¾1 gas was controlled by the mass flow controller 902, and the flow rate of argon gas was controlled by the mass flow controller 903. , And passed through a mixing pipe 9 () 4 for mixing three types of gases, and introduced into a reaction furnace 905. Hydrogen and oxygen were reacted in a reaction furnace 905 to generate a mixed gas (first mixed gas) composed of hydrogen and argon containing arbitrary moisture.
反応炉 9 0 5としては、 径 1 ィンチ、 長さ 2 mの N i チューブ (N i配赘) を使用 し、 その触媒作用を利用して反応の低温化を実現した。 なお、 N iチューブ (N i配管) としては、 内表面に電解研磨処理を施したものを用いた。 A 1-inch diameter, 2-m long Ni tube (Ni-distributed) is used as the reactor 905 However, the catalyst was used to lower the temperature of the reaction. As the Ni tube (Ni pipe), an inner surface subjected to electrolytic polishing was used.
水素ガスと酸素ガスの流量をマスフローコン 卜口一ラー 90 1と 902を用いて、 それ ぞれ S O c cZm i nと 25 c c Zm i nに固定しておき、 アルゴンガスの流量のみマス フローコン トローラ一 903を用いて 0 2025 c cZm i nの範囲で変化させ、 3種 類ガスからなる混合ガスを反応炉に導入した。  The flow rates of hydrogen gas and oxygen gas were fixed to SO c cZmin and 25 cc Zmin, respectively, using mass flow controllers 90 1 and 902, and only the flow rate of argon gas was used for mass flow controller 903. The gas mixture was changed in the range of 0 2025 c cZmin by using a gas, and a mixed gas composed of three kinds of gases was introduced into the reactor.
反応炉から流出してくる水素とアルゴンからなる混合ガス中に含まれる水分濃度を、 光 学露天計 (水分濃度計) 906で計測した 使用した水素、 酸素およびアルゴンガスは、 i、ずれも不純物濃度が 1 P p b以下の高純度ガスを使用した。 反応炉 905の温度は全長 にわたり 300 °Cに保持した。  The concentration of water contained in the gas mixture consisting of hydrogen and argon flowing out of the reactor was measured using an optical dew meter (moisture concentration meter) 906. The hydrogen, oxygen, and argon gas used were i and the deviation was also an impurity. A high-purity gas having a concentration of 1 Ppb or less was used. The temperature of the reactor 905 was maintained at 300 ° C. over the entire length.
図 3は、 計測した水分濃度から反応率を求めた結果を示すグラフである。 図 3において 横軸はアルゴンガスの希釈率、 縦軸は反応率を示している。 アルゴンガスの希釈率が 1 0 の場合は、 水素流量が 50 c c/m i n、 酸素流量が 25 c cZm i n、 アルゴン流量が 675 c c /m i nの場合である。 すなわち、 アルゴンガスの希釈率は、 ( 50 + 25 625 ) / ( 50 + 25 ) = 1 0という式で求められる値である。 したがって、 アルゴン ガスの希釈率か 1の場合は、 アルゴンを流さず、 水素と酸素のみ導入した場合を示す。 ま た、 アルゴンガスの希釈率が 28の場合のみ、 酸素に対する水素の比率が 1 00の場合 (従来条件: 図 3の▲印) を調べた。 また、 反応率とは、 (導入した水素および酸素の量 から生成可能な水分の量) に対する (実際に生成した水分の量) の比率を意味する。 図 3から以下の点が明らかとなった。  FIG. 3 is a graph showing the result of determining the reaction rate from the measured water concentration. In FIG. 3, the horizontal axis represents the dilution rate of argon gas, and the vertical axis represents the reaction rate. The case where the dilution ratio of the argon gas is 10 is the case where the hydrogen flow rate is 50 cc / min, the oxygen flow rate is 25 ccZmin, and the argon flow rate is 675 cc / min. That is, the dilution ratio of the argon gas is a value obtained by the formula (50 + 25 625) / (50 + 25) = 10. Therefore, when the dilution ratio of the argon gas is 1, the case where only hydrogen and oxygen are introduced without flowing argon is shown. In addition, only when the dilution ratio of the argon gas was 28, the case where the ratio of hydrogen to oxygen was 100 (conventional condition: ▲ in FIG. 3) was examined. The reaction rate means the ratio of (the amount of water actually generated) to (the amount of water that can be generated from the amounts of hydrogen and oxygen introduced). Figure 3 reveals the following points.
( 1 ) 従来のアルゴンガスの希釈率 28において、 酸素に対する水素の比率を 1 00 (従 来値) から 2に変更した場合、 反応率が低下する。  (1) When the ratio of hydrogen to oxygen is changed from 100 (conventional value) to 2 at the conventional argon gas dilution ratio of 28, the reaction rate decreases.
( 2 ) 酸素に対する水素の比率を 2に固定した場合は、 アルゴンガスの希釈率を低くする ことで ( 28—1 > 反 率が増加する。  (2) When the ratio of hydrogen to oxygen is fixed at 2, lowering the dilution ratio of the argon gas increases the (28-1> reaction).
したがって、 イナ一 卜ガスであるアルゴンガスを混合せず、 水素と酸素のみ用いて水分 を発生した場合に、 反応率が最も高くなることが分かった。 すなわち、 図 1に示すような 水分発生方法が、 高い反応率で水分を発生するために好ましいことが分かった。  Therefore, it was found that the reaction rate was highest when water was generated using only hydrogen and oxygen without mixing argon gas as an inert gas. That is, it was found that the water generation method as shown in FIG. 1 was preferable for generating water at a high reaction rate.
(実施例 2 )  (Example 2)
本例では、 図 1に示した水分発生方法を用い、 第 1の混合ガスにおける酸素に対する水 素の比率を変化させ、 反応率を調べた点が実施例 1と異なる。 また、 反応炉 1 04の温度 を、 3 0 0 °C\ 4 0 0 °C及び 5 0 0 °Cに変えて実験を行った。 他の点は、 実施例 1 と同様 とした。 This example differs from Example 1 in that the reaction rate was examined by changing the ratio of hydrogen to oxygen in the first mixed gas using the moisture generation method shown in FIG. The temperature of the reactor 104 Was changed to 300 ° C. \ 400 ° C. and 500 ° C. for the experiment. The other points were the same as in Example 1.
図 4は、 計測した水分濃度から反応率を求めた結果を示すグラフである。 図 4において 横軸は酸素に対する水素の比率、 縦軸は反応率を示している。 ·印は 3 0 0 ° (:、 園印は FIG. 4 is a graph showing the result of calculating the reaction rate from the measured water concentration. In FIG. 4, the horizontal axis indicates the ratio of hydrogen to oxygen, and the vertical axis indicates the reaction rate. · The mark is 300 ° (:
5 4 0 0 °C . ▲印は 5 0 0 °Cの結果である。 540 ° C. The symbol ▲ indicates the result at 500 ° C.
図 4から以下の点が明らかとなつた。  The following points became clear from FIG.
( 1 ) 反応炉 1 0 4の温度が 3 0 0 °C (秦印) の結果から、 酸素に対する水素の比率を 2以上とした場合、 5 0 %以上の高い反応率が得られることが分かった。 特に、 酸素に対 する水素の比率が 3の場合には、 反応率をほぼ 1 0 0 %とすることができる。 (1) From the result of the temperature of the reactor 104 at 300 ° C (hata mark), it was found that when the ratio of hydrogen to oxygen was 2 or more, a high reaction rate of 50% or more was obtained. Was. In particular, when the ratio of hydrogen to oxygen is 3, the reaction rate can be made approximately 100%.
0 ( 2 ) 反応炉 1 0 4の温度が 4 0 0 °C (画印) および 5 0 0 °C (▲印) の結果から、 酸 素に対する水素の比率を 2以上とした場合、 1 0 0 %近い反応率が安定して実現できる。 これらの結果から、前記第 1の混合ガスとして酸素に対する水素の比率を 2以上とした カスを用いることで、 反応炉 1 () 4の温度がかなり低温の場合でも、 5 0 %〜 1 0 0 %と いう高 t、反応率で水分を発生できることが分かつた。0 (2) From the results of the temperature of the reactor 104 of 400 ° C (marked) and 500 ° C (▲), when the ratio of hydrogen to oxygen is 2 or more, 10 A reaction rate close to 0% can be stably realized. From these results, by using a scum having a hydrogen to oxygen ratio of 2 or more as the first mixed gas, even when the temperature of the reactor 1 () 4 is considerably low, 50% to 100% It was found that water could be generated with a high t of% and a reaction rate.
5 しかしながら、 上記反応後にえられたガス (第 2の混合ガス) には、 水分以外に未反応 の水素が残存していることが、 ガスクロマ トグラフィ一を用いた測定から分かった。 5 However, it was found from the measurement using gas chromatography that unreacted hydrogen other than moisture remained in the gas (second mixed gas) obtained after the above reaction.
第 2の混合ガスに含まれる未反応の水素を除去するためには、 第 2の混合ガスに含まれ る水素に対する酸素の比率が 0 . 5以上になる酸素を混合し第 3の混合ガスを作製する混 合ガス作製工程 a 2と、 水素と酸素とを反応させる触媒作用を有する材料で構成された反0応管内に該第 3の混合ガスを導入するとともに、 該反応管内にて水素と酸素とを反応させ 水分を発生させる水分発生工程 b 2とを設ければ良い。  In order to remove unreacted hydrogen contained in the second mixed gas, oxygen having a ratio of oxygen to hydrogen contained in the second mixed gas of 0.5 or more is mixed, and the third mixed gas is removed. A mixed gas producing step a2 to be produced; introducing the third mixed gas into a reaction tube made of a material having a catalytic action for reacting hydrogen and oxygen; It is sufficient to provide a water generating step b2 for generating water by reacting with oxygen.
水分発生工程 b 2を構成する反応'炉から流出してくるガス中に含まれる水分濃度、 酸素 濃度および水素濃度を、 光学露天計 (水分濃度計) 1 1 0、 ガル 二電池式酸素計 1 1 1 およびガスクロマ トグラフィー 1 1 2で計測した。 その結果、 水分発生工程 b 2を経た力'5スは、 水分と酸素からなる混合ガスであることが分かった。 また、 第 3の混合カスに混合 する酸素量を適宜調節することにより、 水分発生工程 b 2を経たガスを水分のみにするこ とも可能である。 たとえば酸素に対する水素の比率を略 2とし、 4 0 0 °C以上に加熱する ればよい。 この際制御系 1 1 4により酸素導入量を制御すればよい。  Moisture generation process b2 The moisture concentration, oxygen concentration, and hydrogen concentration in the gas flowing out of the reactor that constitutes the reactor are measured using an optical dew meter (moisture concentration meter) 110, a galvanic cell oxygen meter 1 Measurements were made using 11 and gas chromatography 11. As a result, it was found that the force generated through the moisture generation step b2 was a mixed gas composed of moisture and oxygen. In addition, by appropriately adjusting the amount of oxygen mixed with the third mixed scum, it is possible to make the gas that has passed through the water generation step b2 only water. For example, the ratio of hydrogen to oxygen is set to approximately 2, and heating may be performed to 400 ° C. or more. At this time, the amount of oxygen introduced may be controlled by the control system 114.
したかって、 第 1の混合ガスとして酸素に対する水素の比率を 2以上としたガスを用0い、 5 0 ?'o〜 1 0 0 %という高い反応率で水分を発生するためには、 図 2に示すような水 分発生方法が好ましいことが分かった。 産業上の利用可能性 Therefore, in order to use a gas in which the ratio of hydrogen to oxygen is 2 or more as the first mixed gas and generate water with a high reaction rate of 50 to Water as shown It has been found that a minute generation method is preferred. Industrial applicability
以上説明したように、 本発明によれば、 反応率が高く、 高濃度の水分を効率よく生成で きる水分発生方法が得られる。  As described above, according to the present invention, a water generation method that has a high reaction rate and can efficiently generate high-concentration water can be obtained.
その結果、 混合ガス作製工程および水分発生工程を小さくできる。 より具体的には、 混 合ガス作製工程をなす混合配管の長さを短縮できる。 また、 水分発生工程をなす反応炉の 内容積を小さくできる。 すなわち、 本発明に係る水分発生方法を用いることにより、 従来 より小型で高性能の水分発生機構が得られる。  As a result, the mixed gas preparation step and the water generation step can be reduced. More specifically, the length of the mixing pipe in the mixed gas producing step can be shortened. In addition, the internal volume of the reaction furnace that performs the moisture generation step can be reduced. That is, by using the moisture generation method according to the present invention, a small-sized and high-performance moisture generation mechanism can be obtained.
また、 本発明により得られた高濃度の水分を任意のイナ一 卜ガスで希釈することによ り、 イナ一 卜ガスに含有する水分量を、 極微量の p p m、 p p tオーダ一からほぼ 1 0 0 ¾近傍まで広範囲に制御可能となる。  Further, by diluting the high-concentration water obtained according to the present invention with an arbitrary inert gas, the amount of water contained in the inert gas can be reduced to about 10 ppm from a trace amount of ppm or ppt order. Control over a wide range up to near 0 ° is possible.

Claims

請求の範囲 The scope of the claims
1 . 水素と酸素を反応させ水分を発生させる方法において、 1. In the method of generating water by reacting hydrogen and oxygen,
不活性ガスで希釈することなく水素および酸素を混合し第 1の混合ガスを作製する混合ガ ス作製工程 a 1 と、 A mixed gas producing step a1 in which hydrogen and oxygen are mixed without dilution with an inert gas to produce a first mixed gas;
該水素と該酸素とを反応せしめる触媒作用を有する材料を内蔵するかまたは該材料構成さ れた反応管内に該第 1の混合ガスを導入するとともに、 該反応管内において該水素と該酸 素とを反応させ水分を発生させる水分発生工程 b 1 とからなることを特徴とする水分発生 方法。 A material having a catalytic action for reacting the hydrogen and the oxygen is incorporated therein, or the first mixed gas is introduced into a reaction tube made of the material, and the hydrogen and the oxygen are mixed in the reaction tube. And a water generating step b1 for generating water.
2 . 前記第 1の混合ガスとして酸素に対する水素の比率を 2 (モル比率) 以上としたガ スを用い、 前記水分発生工程 b 1により発生した第 2の混合ガスに、 該第 2の混合ガスに 含まれる水素に対する酸素の比率が 0 . 5以上になる酸素を混合することにより第 3の混 合ガスを作製する混合ガス作製工程 a 2と、 2. A gas in which the ratio of hydrogen to oxygen is 2 (molar ratio) or more is used as the first mixed gas, and the second mixed gas generated in the moisture generation step b1 is added to the second mixed gas. A mixed gas producing step a2 of producing a third mixed gas by mixing oxygen such that the ratio of oxygen to hydrogen contained in hydrogen becomes 0.5 or more;
水素と酸素とを反応させる触媒作用を有する材料を内蔵するか該材料で構成された第 2の 反応管内に該第 3の混合ガスを導入するとともに、 該第 2の反応管内にお(、て水素と酸素 とを反応させ水分を発生させる水分発生工程 b 2と、 The third mixed gas is introduced into a second reaction tube made of a material having a catalytic action for reacting hydrogen and oxygen, or is introduced into the second reaction tube made of the material. A water generation step b2 for reacting hydrogen with oxygen to generate water,
からなることを特徵とする請求項 1に記載の水分発生方法。 2. The method for producing moisture according to claim 1, wherein the method comprises:
3 . 前記水素および前記酸素の不純物濃度は 1 0 p p b以下であることを特徴とする請 求項 1 または 2記載の水分発生方法。  3. The method according to claim 1, wherein the impurity concentrations of the hydrogen and the oxygen are 10 ppb or less.
4 . 前記水素および前記酸素の不純物濃度は 1 ϋ p p t以下であることを特徴とする請 求項 3記載の水分発生方法。 4. The method according to claim 3, wherein the impurity concentration of the hydrogen and the oxygen is 1ϋppt or less.
5 . 前記不純物は、 窒素、 二酸化炭素、 有機ガスの 1種以上であることを特徴とする請 求項 3または 4記載の水分発生方法。  5. The method according to claim 3, wherein the impurities are at least one of nitrogen, carbon dioxide, and organic gas.
6 . 前記水分は、 半導体の酸化膜形成装置に導入するための水分であることを特徴とす る請求項 1ないし 5のいずれか 1項に記載の水分発生方法。  6. The method according to claim 1, wherein the water is water to be introduced into an apparatus for forming a semiconductor oxide film.
7 . 水素源と、  7. The hydrogen source,
水素流量を制御するための手段と、 Means for controlling the hydrogen flow rate;
酸素源と、 An oxygen source,
酸素流量を制御するための手段と、 Means for controlling the oxygen flow rate;
該水素と該酸素とを混合して第 1の混合ガスを作製するための第 1の混合部と、 該第 1の混合ガスを構成する該水素と該酸素とを反応せしめる触媒作用を有する材料を内 蔵するかまたは該材料構成された反応管と、 A first mixing section for mixing the hydrogen and the oxygen to produce a first mixed gas; A reaction tube containing a material having a catalytic action for reacting the hydrogen and the oxygen constituting the first mixed gas or comprising the material;
該第 1の混合部から該反応管に該第 1の混合ガスを導入するための手段と、 Means for introducing the first mixed gas from the first mixing section into the reaction tube;
を有することを特徴とする水分発生装置。 A moisture generator comprising:
8 . 前記反応管の下流において該反応管からの第 2の混合ガスに酸素を混合し第 3の混 合ガスを作製するための第 2の混合部と、 8. A second mixing section downstream of the reaction tube for mixing oxygen with the second mixed gas from the reaction tube to produce a third mixed gas;
該第 3の混合ガスを構成する成分のうちの水素と酸素とを反応せしめる触媒作用を有する 材料を内蔵するかまたは該材料構成された第 2の反応管と、 A second reaction tube containing a material having a catalytic action for reacting hydrogen and oxygen among the components constituting the third mixed gas or comprising the material;
該第 2の混合部から該第 2の反応管に該第 3の混合ガスを導入するための手段と、 を有することを特徴とする請求項 7記載の水分発生装置。 The water generator according to claim 7, further comprising: means for introducing the third mixed gas from the second mixing section to the second reaction tube.
9 . 前記第 2の混合ガスの成分濃度を検知するための検知手段と、  9. Detecting means for detecting the component concentration of the second mixed gas,
該検知手段からの信号に基づき第 2の混合ガスに混合する酸素の量を制御するための制御 系を有することを特徴とする請求項 8記載の水分発生装置。 9. The water generator according to claim 8, further comprising a control system for controlling an amount of oxygen mixed with the second mixed gas based on a signal from the detection means.
PCT/JP1997/002131 1996-06-20 1997-06-20 Moisture generation method and moisture generator WO1997048640A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50267598A JP3952087B2 (en) 1996-06-20 1997-06-20 Moisture generation method and moisture generation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/160322 1996-06-20
JP16032296 1996-06-20

Publications (1)

Publication Number Publication Date
WO1997048640A1 true WO1997048640A1 (en) 1997-12-24

Family

ID=15712462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002131 WO1997048640A1 (en) 1996-06-20 1997-06-20 Moisture generation method and moisture generator

Country Status (2)

Country Link
JP (1) JP3952087B2 (en)
WO (1) WO1997048640A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001010774A1 (en) * 1999-08-06 2001-02-15 Fujikin Incorporated Moisture generating/supplying device and moisture generating reactor
WO2001094254A1 (en) * 2000-06-05 2001-12-13 Fujikin Incorporated Reactor for moisture generation
US6524934B1 (en) 1999-10-28 2003-02-25 Lorimer D'arcy H. Method of manufacture for generation of high purity water vapor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197404A (en) * 1985-02-26 1986-09-01 Nippon Sanso Kk Apparatus for generation of gas having specific water content
JPH0592123A (en) * 1991-09-30 1993-04-16 Nippon Sanso Kk Removal of trace oxygen
JPH05123576A (en) * 1991-10-29 1993-05-21 Japan Pionics Co Ltd Steam refining method
JPH06115903A (en) * 1992-10-05 1994-04-26 Tadahiro Omi Water-generation method
JPH0878404A (en) * 1994-09-01 1996-03-22 Kokusai Electric Co Ltd External combustion equipment of semiconductor manufacturing equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197404A (en) * 1985-02-26 1986-09-01 Nippon Sanso Kk Apparatus for generation of gas having specific water content
JPH0592123A (en) * 1991-09-30 1993-04-16 Nippon Sanso Kk Removal of trace oxygen
JPH05123576A (en) * 1991-10-29 1993-05-21 Japan Pionics Co Ltd Steam refining method
JPH06115903A (en) * 1992-10-05 1994-04-26 Tadahiro Omi Water-generation method
JPH0878404A (en) * 1994-09-01 1996-03-22 Kokusai Electric Co Ltd External combustion equipment of semiconductor manufacturing equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001010774A1 (en) * 1999-08-06 2001-02-15 Fujikin Incorporated Moisture generating/supplying device and moisture generating reactor
US7258845B2 (en) 1999-08-06 2007-08-21 Fujikin Incorporated Apparatus and reactor for generating and feeding high purity moisture
CN100341775C (en) * 1999-08-06 2007-10-10 株式会社富士金 Moisture generating-supplying device and moisture generating reactor
US7368092B2 (en) 1999-08-06 2008-05-06 Fujikin Incorporated Apparatus and reactor for generating and feeding high purity moisture
US7553459B2 (en) 1999-08-06 2009-06-30 Fujikin Incorporated Apparatus and reactor for generating and feeding high purity moisture
US6524934B1 (en) 1999-10-28 2003-02-25 Lorimer D'arcy H. Method of manufacture for generation of high purity water vapor
WO2001094254A1 (en) * 2000-06-05 2001-12-13 Fujikin Incorporated Reactor for moisture generation

Also Published As

Publication number Publication date
JP3952087B2 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
WO1994011901A1 (en) Apparatus for forming low-temperature oxide films and method of forming low-temperature oxide films
JP3331636B2 (en) Water generation method
US5149659A (en) Method and apparatus for analyzing fluorine containing gases
US7793675B2 (en) In-line gas purity monitoring and control system
Itoh et al. Basic experimental study on palladium membrane reactors
US3919397A (en) Catalytic preparation of NO
Smallwood The rate of recombination of atomic hydrogen
JPH1177023A (en) Preparation of hydrogen-containing ultrapure water
US20190247791A1 (en) Method, system, and device for removing hydrogen peroxide or hydrazine from a process gas stream
JPH0662322B2 (en) Method for producing atmosphere required for production of glass-metal joint and apparatus therefor
WO1997048640A1 (en) Moisture generation method and moisture generator
JP7138652B2 (en) Systems, devices and methods for controlling the mass flow rate of catalytically reactive gases in mixed gas streams
JPH107403A (en) Generation of moisture
Landry et al. Catalytic oxidation of carbon monoxide on palladium. 1. Effect of pressure
Petersson et al. Kinetic studies of diffusion limited gas-surface reactions by spatially resolved gas sampling: reaction rates and sticking coefficients in the H2+ O2 reaction on Pt
JPS61197404A (en) Apparatus for generation of gas having specific water content
US20170066649A1 (en) Co shift conversion device and shift conversion method
JP3507989B2 (en) Method and apparatus for adjusting oxygen concentration in inert gas
Pancharatnam et al. The decomposition of nitric oxide on a heated platinum wire
Satterfield et al. Diffusion and Heterogeneous Reaction in Tubular Reactor. Decomposition of Hydrogen Peroxide Vapor
US6524934B1 (en) Method of manufacture for generation of high purity water vapor
WO2003059809A1 (en) Method of generating ozone, ozone generator, feed gas for ozone generation, and humidifier
JPS59112247A (en) Apparatus for generating hydrated standard gas
Minarro et al. Review of existing methods for generating dynamic reference standards of key airborne molecular contaminants.
JPH03273624A (en) Method and apparatus for etching copper or copper alloy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase