JPS59112247A - Apparatus for generating hydrated standard gas - Google Patents

Apparatus for generating hydrated standard gas

Info

Publication number
JPS59112247A
JPS59112247A JP22321982A JP22321982A JPS59112247A JP S59112247 A JPS59112247 A JP S59112247A JP 22321982 A JP22321982 A JP 22321982A JP 22321982 A JP22321982 A JP 22321982A JP S59112247 A JPS59112247 A JP S59112247A
Authority
JP
Japan
Prior art keywords
gas
oxygen
hydrogen
section
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22321982A
Other languages
Japanese (ja)
Inventor
Masakatsu Fujino
藤野 允克
Shoji Inanaga
稲永 昭二
Yozo Morita
洋造 森田
Kenji Hirai
研治 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Nippon Steel Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Sumitomo Metal Industries Ltd
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Sumitomo Metal Industries Ltd, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP22321982A priority Critical patent/JPS59112247A/en
Publication of JPS59112247A publication Critical patent/JPS59112247A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0006Calibrating gas analysers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To obtain a hydrated standard gas of known water concn. in a relatively simple procedure and with high precision by using an apparatus of relatively simple structure by generating water by allowing to react hydrogen and oxygen produced from a water electrolytic cell. CONSTITUTION:Gaseous nitrogen from a gaseous nitrogen bomb 1 is passed to a drying part 3 through a stop valve 2 and is set to <=0.1ppm water concn. Next, the gaseous nitrogen is controlled to a prescribed pressure by a pressure control valve 4 and a pressure gauge 5, the flow rate is controlled by a flow rate control valve 6 and a flow meter 7 and sent to a gaseous hydrogen oxygen reaction pipe 8 and passed therethrough. ON the other hand, gaseous hydrogen from the negative pole and gaseous oxygen from the positive pole of the electrolytic cell 12 and set to <=0.1ppm water concn. through drying parts 13, 14, are joined and sent to a pipe connecting the pipe 8 and a flow meter 11. The obtained mixed gas is sent to the pipe 8, heated to about 350 deg.C by a heating furnace 10 having a temp. controller 9, allowed to react to form water, and the hydrated standard gas diluted by the gaseous nitrogen is obtained.

Description

【発明の詳細な説明】 この発明は、濃度既知の水素ガスと酸素ガスとを一定の
流量比で混合した後反応させて水分に変換することによ
シ所望の水分を含有する水分標準ガスを発生させる装置
に関し、水の電気分解槽から発生する水素の供給路、こ
の水素発生源と同一もしくは別の水の電気分解槽から発
生する酸素または他の酸素発生源からの酸素の供給路、
および所望によシネ活性ガス供給路全、水素・酸素ガス
反応部に至る導管に合流させた構成の水分標準ガス発生
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is capable of producing a moisture standard gas containing desired moisture by mixing hydrogen gas and oxygen gas of known concentration at a fixed flow rate ratio and then reacting to convert the mixture into moisture. Regarding the generation device, a supply line for hydrogen generated from a water electrolyzer, a supply line for oxygen generated from a water electrolyzer that is the same as or different from this hydrogen generation source, or from another oxygen generation source;
The present invention also relates to a moisture standard gas generator having a configuration in which all of the cine active gas supply channels are merged into a conduit leading to a hydrogen/oxygen gas reaction section, if desired.

気体試料中の水分測定用の水分計については、その較正
が困難であるということが最大の問題点となっている。
The biggest problem with moisture meters for measuring moisture in gas samples is that they are difficult to calibrate.

従来、上記の較正を行う方法としては、米国NBS法に
準拠した較正装置によって行う方法がある。しかしこの
方法は、1)装置が大ががシで操作が複雑なためユーザ
ーが較正できない(装置のメーカーが引取って行う)、
2)恒温水槽からの水蒸気発生量を基準としているため
、特に高露点側における信頼性が低いなどの問題点があ
る。
Conventionally, as a method of performing the above-mentioned calibration, there is a method of performing the calibration using a calibration device compliant with the US NBS law. However, this method has two drawbacks: 1) The device is bulky and complicated to operate, so the user cannot calibrate it (the device manufacturer takes over and performs the calibration);
2) Since it is based on the amount of water vapor generated from a constant temperature water tank, there are problems such as low reliability, especially on the high dew point side.

この外に水分の膜透過性を利用したバーミエイションチ
ューブ方式の較正装置(例えば、米国、デュポン社製モ
イステヤー・ジェネレーター)もあるが、これはあくま
でも2次基準であるので、装置口#−ヲときどき一次基
準器で較正しなければならないという問題点がある。
In addition to this, there is also a vermeation tube type calibration device that utilizes the membrane permeability of water (for example, the Moisture Generator manufactured by DuPont in the United States), but this is only a secondary standard, so The problem is that sometimes it is necessary to calibrate with a primary reference.

上記のように水分計の較正が容易に行えないのは、水分
濃度既知の水分標準ガスが容易に得られないのが原因で
ある。他のガス分析計、例えば炭酸ガス計や亜硫酸ガス
計では標準ガスが容易に入手できるためこのような問題
点がない。
The reason why a moisture meter cannot be easily calibrated as described above is because a moisture standard gas with a known moisture concentration is not easily available. Other gas analyzers, such as carbon dioxide gas meters and sulfur dioxide gas meters, do not have this problem because standard gases are easily available.

このような状況においてこの発明はなされたものであっ
て、不活性ガス供給部、所望によシネ活性ガス乾燥部、
不活性ガス流量制御部、および水素・酸素ガス反応部を
この順に導管で連結してなす:さらに水の電気分解槽の
水素発生部と所望によシ水素乾燥部とをこの順に導管で
連結してなる水素ガス供給路および該電気分解槽の酸素
発生部と所望によ)酸素乾燥部とをこの順に導管で連結
してなる酸素ガス供給路を、前記不活性ガス流量制御部
と水素・酸素ガス反応部との間の導管に合流させてなる
水分標準ガス発生装置を提供するものである。
The present invention has been made under such circumstances, and includes an inert gas supply section, optionally a cine active gas drying section,
The inert gas flow rate control section and the hydrogen/oxygen gas reaction section are connected in this order by a conduit; furthermore, the hydrogen generation section of the water electrolyzer and the optional hydrogen drying section are connected in this order by a conduit. An oxygen gas supply path formed by connecting the hydrogen gas supply path formed by the inert gas flow rate control section and the oxygen generating section of the electrolyzer and the oxygen drying section (if desired) in this order with a conduit is connected to the hydrogen/oxygen gas flow control section and The present invention provides a moisture standard gas generator which is connected to a conduit connected to a gas reaction section.

この発明の装置は、不活性ガス供給部、所望によシネ活
性ガス乾燥部、不活性ガス流量制御部、および水素・酸
素ガス反応部をこの順に導管で連結し、さらに水の電気
分解槽からの水素の供給路と、同じ水の電気分解槽から
の酸素の供給路を、上記の不活性ガスの流量制御部と水
素・酸素ガス反応部との間の導管に合流させた構成を特
徴とするものである。
The apparatus of this invention connects an inert gas supply section, optionally a cine active gas drying section, an inert gas flow rate control section, and a hydrogen/oxygen gas reaction section in this order with a conduit, and further connects a water electrolyzer to a water electrolysis tank. It is characterized by a configuration in which a hydrogen supply path from the same water electrolyzer and an oxygen supply path from the same water electrolyzer are merged into the conduit between the inert gas flow rate control section and the hydrogen/oxygen gas reaction section. It is something to do.

この発明の装置に用いられる不活性ガス供給部としては
、約99容量96以上(以下のガス濃度はいずれも容量
96)の高純度の窒素ガス、ヘリウム、アルゴンなどの
ボンベが用いられ、目的物の水分標準ガスの水分濃度と
その要求される精度によって選択される。なお、この選
択については後記の各ガスボンベについても同様である
。また不活性ガスの乾燥部は所望によシ用いられ、設置
するか否かは、目的物の水分標準ガスの水分濃度とその
要求される精度によって適宜決定される。なおこのこと
は後記の各ガス源についても同様である。
As the inert gas supply section used in the apparatus of this invention, a cylinder of high purity nitrogen gas, helium, argon, etc. with a capacity of about 99 or more (the following gas concentrations are all 96 in capacity) is used. The moisture content of the standard gas is selected depending on the moisture concentration of the standard gas and its required accuracy. Note that this selection also applies to each gas cylinder described later. Further, an inert gas drying section may be used as desired, and whether or not to install it is appropriately determined depending on the moisture concentration of the target moisture standard gas and the required accuracy. Note that this also applies to each gas source described later.

乾燥部としては金属、ガラスなどで作製された筒形状容
器に例えばモレキュラーシーブ3A(リンデ社製)など
の乾燥剤を充填したものが用いられる。また不活性ガス
流量制御部は通常用いられているものでよいが、例えば
調圧弁、圧力計、流量制御弁および流量計をこの順に導
管で連結したものが挙げられる。この外に毛細管式流量
比混合法や質量流量制御方式などの高精度の流量制御装
置を用いてもよい。
As the drying section, a cylindrical container made of metal, glass, etc., filled with a desiccant such as Molecular Sieve 3A (manufactured by Linde) is used. The inert gas flow rate control section may be of a commonly used type, such as one in which a pressure regulating valve, a pressure gauge, a flow rate control valve, and a flow meter are connected in this order through a conduit. In addition to this, a highly accurate flow rate control device such as a capillary flow ratio mixing method or a mass flow rate control method may be used.

この発明の装置の水の電気分解槽としては、密閉形態の
もので、電解液としては20%の水酸化ナトリウムまた
は水酸化カリウム水溶液などを用い、正極にニッケル、
負極に白金もしくは鉄などを用いたものなどが利用され
る。また水の電気分解槽からの水素ガスと酸素ガスの各
供給路に、所望によシ設けられる乾燥部は前記不活性ガ
スの乾燥部と同様のものが用いられる。
The water electrolysis tank of the apparatus of this invention is of a closed type, and the electrolyte is a 20% aqueous solution of sodium hydroxide or potassium hydroxide, and the positive electrode is nickel.
Those using platinum or iron for the negative electrode are used. Further, the drying section which is optionally provided in each supply path of hydrogen gas and oxygen gas from the water electrolysis tank is similar to the above-mentioned inert gas drying section.

またこの発明の装置の水素・酸素ガス反応部としては、
例えば白金や酸化銅などの酸化触媒を充填した、石英ガ
ラス、セラミック、耐熱金属製などの反応管と、この反
応管を加熱する温度調節器付き加熱炉などで構成された
ものが挙けられ、通常反応は300〜400℃で行われ
る。
In addition, the hydrogen/oxygen gas reaction section of the device of this invention includes:
For example, a reaction tube made of quartz glass, ceramic, heat-resistant metal, etc., filled with an oxidation catalyst such as platinum or copper oxide, and a heating furnace equipped with a temperature controller to heat the reaction tube can be mentioned. The reaction is usually carried out at 300-400°C.

次にこの発明の装置を図面で説明する。第1図はこの発
明の装置の一実施例の構成説明図である。
Next, the apparatus of this invention will be explained with reference to the drawings. FIG. 1 is an explanatory diagram of the configuration of an embodiment of the apparatus of the present invention.

この装置によって、不活性ガスで希釈された水分標準ガ
スが得られる。
With this device a moisture standard gas diluted with an inert gas is obtained.

窒素ガスボンベ(1)から発生させた窒素ガスはス) 
ツフハtv7’ (2)を経て乾燥部(3)(モレキュ
ラーシーブ3Aを充填したガラス製乾燥カラム)を通過
させて水分濃度i0.lppm以下とする。次いで調圧
弁(りと圧力計(5)で一定圧に制御し、流量制御弁(
6)と流量計(7)とで流量を所望の流量に制御して、
石英ガラス管に白金触媒を充填した水素・酸素ガス反応
管(8)に送って通過させる。一方水の電気分解槽(1
2)の負極から発生し;/c水素i 、z、 ト・同シ
水の電気分解槽(12)の正極から発生した酸素ガスは
それぞれの乾燥部(13)(ユ4)(上記窒素ガス用の
ものと同様)を経てo、lppm以下の水分濃度として
、水素・酸素ガス反応管(8)と流量計(11)とを連
結する導管に合流して送られる。このようにして得られ
た水素ガスと酸素ガスと窒素ガスの混合ガスは、白金触
媒を充填した石英ガラス管の反応管(8)に送られ、温
度調節器(9)付きの加熱炉(1o)で約350℃に加
熱される。その結果水素ガスと酸素ガスとが反応して水
とな)、窒素ガスで希釈された水分標準ガスが得られる
The nitrogen gas generated from the nitrogen gas cylinder (1) is
It is passed through the drying section (3) (glass drying column filled with molecular sieve 3A) through the Tsufuha tv7' (2), and the water concentration is reduced to i0. 1 ppm or less. Next, the pressure is controlled to a constant pressure using the pressure regulating valve (Rito pressure gauge (5)), and the flow rate control valve (
6) and a flow meter (7) to control the flow rate to the desired flow rate,
The gas is sent to and passed through a hydrogen/oxygen gas reaction tube (8) in which a quartz glass tube is filled with a platinum catalyst. On the other hand, water electrolysis tank (1
Oxygen gas generated from the negative electrode of the hydrogen i, z, g and water electrolyzer (12) is transferred to the respective drying sections (13) (Y4) (the nitrogen gas The hydrogen/oxygen gas is sent to the conduit connecting the hydrogen/oxygen gas reaction tube (8) and the flow meter (11) with a water concentration of less than 0.1 ppm. The thus obtained mixed gas of hydrogen gas, oxygen gas, and nitrogen gas is sent to a reaction tube (8) made of a quartz glass tube filled with a platinum catalyst, and is sent to a heating furnace (1o) equipped with a temperature controller (9). ) is heated to approximately 350°C. As a result, hydrogen gas and oxygen gas react to form water), and a moisture standard gas diluted with nitrogen gas is obtained.

水を電気分解すると水素と酸素とに分解され、この時の
電流効率がほぼ100%であり、また得られる水素と酸
素の純度も極めて高dもので水素が99.5〜99.7
%、酸素は99.0〜99.5%である。またファラデ
ーの電気分解の法則にょi) 、96.485クーロン
:26.801 Ahの電気量で1グラム当量の物質が
発生する。従って電解電流を制御することによシ任意の
量の水素と酸素を発生させることが可能であシ、また電
解電流全計測すれば、水素と酸素の発生量を容易に知る
ことができる。電解発生させて得た水素と酸素のモル比
は酸化反応で水を生成するのに必要なモル比に等しいの
でさらに酸素を加えなくてもよいが、少量でも水素が残
ると不都合な場合は希釈ガス中に酸素を少量加えておけ
ばよい。
When water is electrolyzed, it is decomposed into hydrogen and oxygen, and the current efficiency at this time is almost 100%, and the purity of the hydrogen and oxygen obtained is also extremely high, with hydrogen being 99.5 to 99.7%.
%, oxygen is 99.0-99.5%. Furthermore, according to Faraday's law of electrolysis, 1 gram equivalent of a substance is generated with an amount of electricity of 96.485 coulombs: 26.801 Ah. Therefore, by controlling the electrolysis current, it is possible to generate arbitrary amounts of hydrogen and oxygen, and by measuring the entire electrolysis current, the amount of hydrogen and oxygen generated can be easily determined. The molar ratio of hydrogen and oxygen obtained by electrolytic generation is equal to the molar ratio required to produce water in an oxidation reaction, so there is no need to add additional oxygen, but if even a small amount of hydrogen remains, it is inconvenient to dilute. Just add a small amount of oxygen to the gas.

この実施例の装置によれば、電解電流100 mA、希
釈ガス(窒素ガス)流量500 ml /rrAnの条
件で1.400 ppmの水分標準ガスが得られる。ま
たこの装置によれば、水素と酸素は水の電解槽で得られ
るので、水素と酸素についてはボンベなどの他の供給源
は不要であシ、また容易な操作で任意の濃度の水分標準
ガスが得られる。
According to the apparatus of this example, a moisture standard gas of 1.400 ppm can be obtained under the conditions of an electrolytic current of 100 mA and a dilution gas (nitrogen gas) flow rate of 500 ml/rrAn. In addition, according to this device, hydrogen and oxygen are obtained in a water electrolyzer, so there is no need for other supply sources such as cylinders for hydrogen and oxygen. is obtained.

さらに、この発明は別の観点から、水の電気分解槽の水
素発生部、所望により水素乾燥部、およびストップバル
ブをこの順に導管で連結してなる水素ガス供給路:なら
びに別の水の電気分解槽の酸素発生部、および所望にょ
シ酸素精製部と酸素乾燥部、およびストップバルブをこ
の順に導管で連結してなる酸素ガス供給路か、!たは精
製空気供給器、酸素ガスもしくは酸素ガスと不活性ガス
との混合ガスの供給部、所望によりガス乾燥部、および
流量制御部とをこの順に導管で連結してなる酸素ガス供
給路かを、水素・酸素ガス反応部に至る導管に合流させ
てなる水分標準ガス発生装置を提供するものである。
Furthermore, from another point of view, the present invention provides a hydrogen gas supply line formed by connecting a hydrogen generating part of a water electrolyzer, optionally a hydrogen drying part, and a stop valve in this order with a conduit: and another water electrolyzer. An oxygen gas supply line that connects the oxygen generation section of the tank, the desired oxygen purification section, the oxygen drying section, and the stop valve in this order with a conduit! Alternatively, an oxygen gas supply path is formed by connecting a purified air supply device, a supply section for oxygen gas or a mixed gas of oxygen gas and an inert gas, a gas drying section if desired, and a flow rate control section in this order through a conduit. The present invention provides a moisture standard gas generating device in which the gas is merged into a conduit leading to a hydrogen/oxygen gas reaction section.

この発明の装置は、水の電気分解槽からの水素の供給路
と、別の水の電気分解槽からの酸素の供給路か、または
酸素ガスのみもしくは酸素ガスと不活性ガスとの混合ガ
スの供給路がを水素・酸素ガス反応部に至る導管に合流
させた構成を特徴とするものである。
The device of this invention has a hydrogen supply path from a water electrolyzer and an oxygen supply path from another water electrolyzer, or only oxygen gas or a mixed gas of oxygen gas and inert gas. It is characterized by a configuration in which the supply path merges with a conduit leading to the hydrogen/oxygen gas reaction section.

この発明の装置の水の電気分解槽としては前記のものと
同様のものが用いられる。水の電気分解槽からの水素ガ
ス供給路と酸素ガス供給路とに所望により設けられる乾
燥部には前記の乾燥部と同様のものが用いられる。また
この酸素ガス供給路に所望により設けられる酸粱愉一部
は、酸素ガス中の微量の水素全除去する必要がある場合
に用いられるもので、例えば加熱器付きの酸化銅充填カ
ラムが挙げられる。
As the water electrolyzer for the apparatus of this invention, the same one as described above is used. A drying section similar to the above-mentioned drying section is used as the drying section which is optionally provided in the hydrogen gas supply path and the oxygen gas supply path from the water electrolysis tank. In addition, the acidic part installed in this oxygen gas supply path as required is used when it is necessary to completely remove trace amounts of hydrogen from the oxygen gas, such as a column packed with copper oxide equipped with a heater. .

またこの発明の装置の酸素ガス供給路の精製空気供給器
としては、空気をコンプレッサーで加圧し精製する通常
用いられるものが挙げられる。酸素ガス供給部としては
約99%以上の高純度の酸素ボンベが挙げられる。酸素
ガスと不活性ガスとの混合ガスの供給部としては、例え
ば不活性ガスが窒素ガス、ヘリウム、アルゴンなので不
活性ガス中の酸素ガス濃度が10 ppm−30%のボ
ンベが用いられる。乾燥部を要する場合は前記水素ガス
供給路のものと同様のものが用いられる。この酸素ガス
供給路の流量制御部は前記のものと同様のものが用いら
れる。
Further, as the purified air supply device for the oxygen gas supply path of the apparatus of the present invention, a commonly used device for purifying air by pressurizing it with a compressor can be mentioned. As the oxygen gas supply section, an oxygen cylinder having a high purity of about 99% or more can be used. As the supply unit for the mixed gas of oxygen gas and inert gas, for example, since the inert gas is nitrogen gas, helium, or argon, a cylinder in which the concentration of oxygen gas in the inert gas is 10 ppm to 30% is used. If a drying section is required, one similar to the one for the hydrogen gas supply path described above is used. The flow rate control section for this oxygen gas supply path is similar to the one described above.

さらにこの発明の装置の水素・酸素ガス反応部には前記
したものと同様のものを用いることができる。
Further, the hydrogen/oxygen gas reaction section of the apparatus of the present invention may be similar to those described above.

次いで上記のこの発明の装置を図面で説明する。Next, the above-mentioned apparatus of the present invention will be explained with reference to the drawings.

第2図はこの発明の装置の一実施例の構成説明図である
。この装置によって酸素で希釈された水分標準ガスが得
られる。
FIG. 2 is an explanatory diagram of the configuration of one embodiment of the apparatus of the present invention. This device provides a moisture standard gas diluted with oxygen.

水の電気分解槽(21)の負極から発生した水素ガスは
乾燥部(22) (前記実施例と同様)を通過させて水
分濃度’io、lppm以下とする。また別の水の電気
分解槽(23)の正極から発生した酸素ガと同様〕を通
過させて水素を除くとともに水分濃度’t O−1pp
m以下とする。そして各電解槽は酸素が水素に対して過
剰に発生するように電解電流が調整される。次いで各ガ
スはそれぞれのストップ弁(26)(27) ’に経て
合流される。このようにして得られた水素と過剰の酸素
との混合ガスは白金触媒を充填した石英ガラス管の反応
管(28)に送られ、温度調節器(29)付き加熱器で
約350℃に加熱される。その結果、水素と酸素が反応
して水となり、過剰の酸素で希釈された水分標準ガスが
得られる。
Hydrogen gas generated from the negative electrode of the water electrolyzer (21) is passed through a drying section (22) (similar to the above embodiment) to reduce the water concentration to below 'io, lppm. In addition, hydrogen is removed by passing the oxygen gas generated from the positive electrode of another water electrolyzer (23), and the water concentration is reduced to 'tO-1pp.
m or less. In each electrolytic cell, the electrolytic current is adjusted so that oxygen is generated in excess of hydrogen. Each gas is then combined via a respective stop valve (26) (27)'. The thus obtained mixed gas of hydrogen and excess oxygen is sent to a quartz glass reaction tube (28) filled with a platinum catalyst and heated to approximately 350°C with a heater equipped with a temperature controller (29). be done. As a result, hydrogen and oxygen react to form water, yielding a moisture standard gas diluted with excess oxygen.

この装置によれば、水素ガスと酸素ガスはいずれも水の
電気分解槽から発生させたものが用いられるので、ボン
ベなどの他のガス供給源が不要である。また電解電流を
制御するだけで、容易に任意の濃度の水分標準ガスを得
ることができる。
According to this device, since hydrogen gas and oxygen gas are both generated from a water electrolyzer, there is no need for other gas supply sources such as cylinders. Moreover, a moisture standard gas of any concentration can be easily obtained by simply controlling the electrolytic current.

この実施例の装置によれば、水素発生電解電流100 
mA、酸素発生電解電流10Aの条件下で、1.98%
の水分標準ガスf 35 m//min発生させること
ができる。
According to the apparatus of this embodiment, the hydrogen generation electrolytic current is 100
mA, under the condition of oxygen generation electrolytic current 10A, 1.98%
of water standard gas f 35 m//min can be generated.

第3図はこの発明の装置のもうひとつの一実施例の構成
説明図である。この装置において、酸素供給源として酸
素ガスを用いたときは酸素ガスで希釈された水分標準ガ
スが得られ、酸素供給源として酸素ガスと不活性ガスの
混合ガスを用いたときはこの混合ガスもしくは不活性ガ
スで希釈された水分標準ガスが得られる。
FIG. 3 is an explanatory diagram of the configuration of another embodiment of the apparatus of the present invention. In this device, when oxygen gas is used as the oxygen supply source, a moisture standard gas diluted with oxygen gas is obtained, and when a mixed gas of oxygen gas and inert gas is used as the oxygen supply source, this mixed gas or A moisture standard gas diluted with inert gas is obtained.

水の電気分解槽(41)の負極から発生した水素ガスは
その乾燥部(42) (前記実施例のものと同様)を通
過させて水分濃度i0.lppm以下としてストン7”
弁(43) ’に通過させる。一方、酸素ガスボンベ(
4りから発生させた上記水素に対して過剰量の酸素ガス
をストップパルプ(4りを経て乾燥部C46) (前記
と同様)を通過させて水分濃度を0・l ppm以下に
する。次いでこの酸素ガスを調圧弁(47)と圧力計(
48)で一定圧に制御し、流量制御弁(49)と流量計
(5りとで流量が所望の流量に制御される。このように
して得た水素ガスと酸素ガスは合流され、その混合ガス
は水素・酸素ガス反応管(51) (前記反応管と同様
)に送られ温度調節器(52)付き加熱炉(53)で約
350 ’Cに加熱される。その結果水素と酸素が反応
して水となり、過剰の酸素で希釈された水分標準ガスが
得られる。
Hydrogen gas generated from the negative electrode of the water electrolyzer (41) is passed through a drying section (42) (similar to that of the previous embodiment) to reduce the water concentration i0. Stone 7” as lppm or less
Pass through valve (43)'. On the other hand, an oxygen gas cylinder (
An excess amount of oxygen gas relative to the above hydrogen generated from the fourth stage is passed through a stop pulp (through the fourth stage, drying section C46) (same as above) to reduce the water concentration to 0.1 ppm or less. Next, this oxygen gas is passed through a pressure regulating valve (47) and a pressure gauge (
48) to maintain a constant pressure, and the flow rate control valve (49) and flow meter (5) to control the flow rate to a desired flow rate.The hydrogen gas and oxygen gas obtained in this way are combined and mixed. The gas is sent to a hydrogen/oxygen gas reaction tube (51) (same as the reaction tube described above) and heated to approximately 350'C in a heating furnace (53) with a temperature controller (52).As a result, hydrogen and oxygen react. water and a moisture standard gas diluted with excess oxygen is obtained.

上記酸素ガスボンベ(44)の代シに、酸素ガスと窒素
ガス、ヘリウム、アルゴンなどの不活性ガスとの混合ガ
スのボンベを用いれば、該混合ガスもしくは不活性ガス
で希釈された水分標準ガスが得られる。
If a mixed gas cylinder of oxygen gas and an inert gas such as nitrogen gas, helium, or argon is used instead of the oxygen gas cylinder (44), the moisture standard gas diluted with the mixed gas or the inert gas can be used. can get.

この装置によれば水素源は水の電気分解槽なのでボンベ
などの他の水素供給源は不要であシ、容易な操作で任意
の水分濃度の水分標準ガスが得られる。
According to this device, since the hydrogen source is a water electrolyzer, no other hydrogen supply source such as a cylinder is required, and a moisture standard gas with any moisture concentration can be obtained with easy operation.

以上詳述したこの発明の装置については、各ガスを混合
する場合の流量は体積流量よシも質量流量で制御する方
が好ましいが、実用上体積流量で制御しても差支えがな
い。体積流量で行う場合には、温度や圧力が変化すると
質量流量が変化することが考えられるが、水素源と酸素
源、不活性ガス(希釈ガス〕源のいずれのガスも同様の
変化をうけるため、相対的な流量比にはほとんど変化が
なく、混合比は一定となる。
Regarding the apparatus of the present invention described in detail above, it is preferable to control the flow rate when mixing each gas by mass flow rate rather than volumetric flow rate, but there is no problem in practical use if the flow rate is controlled by volumetric flow rate. When using a volumetric flow rate, the mass flow rate may change as the temperature or pressure changes, but the hydrogen source, oxygen source, and inert gas (diluent gas) source all undergo similar changes. , there is almost no change in the relative flow rate ratio, and the mixing ratio remains constant.

またこの発明の装置では、水素1七μと酸素ン2モルか
ら水分が1モル発生する反応が行われるので、酸素は水
素量のね倍以上が用いられる。このようにすることによ
って金利の酸素が水分標準ガス中に含まれていても差支
えない。逆に水素を過剰にして反応させて水素を残した
場合にも水分濃度既知のガスは得られる。水分標準ガス
の用途によっては水素が存在すると好ましくない場合が
あるので水素と酸素の当量反応か、酸素の過剰状態での
反応が望ましい。
Furthermore, in the apparatus of the present invention, a reaction is carried out in which 1 mole of water is generated from 17 μm of hydrogen and 2 moles of oxygen, so the amount of oxygen used is more than twice the amount of hydrogen. By doing so, there is no problem even if the oxygen of interest is contained in the moisture standard gas. Conversely, a gas with a known water concentration can also be obtained when hydrogen is reacted with excess hydrogen and hydrogen remains. Since the presence of hydrogen may be undesirable depending on the use of the moisture standard gas, it is desirable to perform an equivalent reaction of hydrogen and oxygen or a reaction in an excess state of oxygen.

さらにこの発明の装置は数ppmの低濃度から高濃度ま
で任意の水分標準ガスの製造が可能であるが、4%以上
のものを作製する場合には水素の爆発下限界が4.69
dであるため、例えば発火点以上の温度にならないよう
な安全回路を設置するとか、水素濃度が一定値を超えた
場合には回路を遮断するなどの安全装置が設置される。
Furthermore, the apparatus of the present invention is capable of producing any moisture standard gas from a low concentration of several ppm to a high concentration; however, when producing a moisture standard gas of 4% or more, the lower explosive limit of hydrogen is 4.69.
d, safety devices are installed, such as installing a safety circuit to prevent the temperature from rising above the ignition point, or cutting off the circuit if the hydrogen concentration exceeds a certain value.

以上詳述したが、この発明の水分標準ガス発生装置は次
のような利点を有する。
As described above in detail, the moisture standard gas generator of the present invention has the following advantages.

(1)比較的簡単な構造の装置であシ、簡単な操作で高
精度で水分濃度既知の水分標準ガスが得られる。
(1) The device has a relatively simple structure, and a moisture standard gas with a known moisture concentration can be obtained with high accuracy through simple operations.

(2)一定流量比で混合した水素ガスと酸素ガスとを反
応させて水を発生させるので理論どおシに100%反応
し、計算どおシの水分濃度の水分標準ガスが得られ、−
次基準とすることができる。
(2) Since water is generated by reacting hydrogen gas and oxygen gas mixed at a constant flow rate ratio, the reaction is 100% as expected in theory, and a moisture standard gas with a calculated moisture concentration can be obtained.
The following criteria can be used.

(3)低濃度から高濃度まで広範囲の水分濃度の水分標
準ガスが得られる。
(3) Moisture standard gas with a wide range of moisture concentrations from low to high concentrations can be obtained.

(4)水素ガス供給源としてはボンベが不要であり、酸
素ガス供給源としては、目的物の水分標準ガスが不活性
ガスで希釈されたものの場合を除けばボンベは不要であ
る。
(4) A cylinder is not required as a hydrogen gas supply source, and a cylinder is not required as an oxygen gas supply source, except in the case where the target moisture standard gas is diluted with an inert gas.

なお、この水分標準ガス発生装置の用途としては、上記
のような水分計の較正用ガス調整装置として用いる以外
に、a)鉄鋼の酸化還元機構の解明試験の水分発生器、
b)焼鈍炉への水分供給源、C)食品の乾燥防止用など
のような水分管理を要する各種試験や工業用途の水分供
給源に用いられる。
In addition to being used as a gas adjustment device for calibrating a moisture meter as mentioned above, this moisture standard gas generator can also be used as: a) a moisture generator for tests to clarify the oxidation-reduction mechanism of steel;
b) It is used as a moisture supply source for an annealing furnace, and C) It is used as a moisture supply source for various tests and industrial applications that require moisture management, such as for preventing food from drying out.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図はこの発明の水分標準ガス発生装置の実施例
の構成説明図である。 (1)・・・不活性ガスボンベ、(2)、 (26)、
 (27)。 (43)、 (45)・・・ストップ弁、(6)、 (
49)・・・流量制御弁、<3)、 (13)、 (1
4)、 (22)、 (25)、 (42)、 (46
)・・・ガス乾燥部、(24)・・・酸素精製部、(4
)、 (47)・・・調圧弁、(5)、 (4B)・・
・圧力計、(7)、 (11)。 (31)、 (50)、 (54)・・・流量計、(1
2)、 (21)、 (23)。 (41)・・・水の電気分解槽、(15)、 (32)
、 (33)、 (55)・・・水の電気分解槽の電源
、(8)、 (2B)、 (51)山水素・酸素ガス反
応管、(10)、 (30)、 (53)・・・加熱炉
、<9)、 (29)、 (52)・・・加熱炉の温度
調節器。 一
1 to 3 are explanatory diagrams of the construction of an embodiment of the moisture standard gas generator of the present invention. (1)...Inert gas cylinder, (2), (26),
(27). (43), (45)...stop valve, (6), (
49)...Flow control valve, <3), (13), (1
4), (22), (25), (42), (46
)...Gas drying section, (24)...Oxygen purification section, (4
), (47)...pressure regulating valve, (5), (4B)...
・Pressure gauge, (7), (11). (31), (50), (54)...flow meter, (1
2), (21), (23). (41)...Water electrolysis tank, (15), (32)
, (33), (55)...Power supply for water electrolyzer, (8), (2B), (51) Mountain hydrogen/oxygen gas reaction tube, (10), (30), (53) ... Heating furnace, <9), (29), (52) ... Temperature regulator of heating furnace. one

Claims (1)

【特許請求の範囲】 1゜不活性ガス供給部、所望によシネ活性ガス乾燥部、
不活性ガス流量制御部、および水素・酸素ガス反応部を
この順に導管で連結してなシ;さらに水の電気分解槽の
水素発生部と所望によシ水素乾燥部とをこの順に導管で
連結してなる水素ガス供給路および該電気分解槽の酸素
発生部と所望によシ酸素乾燥部とをこの順に導管で連結
してなる酸素ガス供給路を、前記不活性ガス流量制御部
と水素・酸素ガス反応部との間の導管に合流させてなる
水分標準ガス発生装置。 2、水の電気分解槽の水素発生部、所望によシ水素乾燥
部、およびストップバルブをこの順に導管で連結してな
る水素ガス供給路;ならびに別の水の電気分解槽の酸素
発生部、および所望にょシ酸素精製部と酸素乾燥部、お
よびストップパルプをこの順に導管で連結してなる酸素
ガス供給路か、または精製空気供給器、酸素ガスもしく
は酸素ガスと不活性ガスとの混合ガスの供給部、所望に
よりガス乾燥部、および流量制御部とをこの順に導管で
連結してなる酸素ガス供給路かを、水素・酸素ガス反応
部に至る導管に合流させてなる水分標準ガス発生装置。
[Claims] 1゜Inert gas supply section, optional cine active gas drying section,
Do not connect the inert gas flow rate control section and the hydrogen/oxygen gas reaction section with a conduit in this order; furthermore, connect the hydrogen generation section of the water electrolyzer and the hydrogen drying section if desired with a conduit in this order. A hydrogen gas supply path formed by connecting the oxygen generating section of the electrolyzer and an optional oxygen drying section in this order with a conduit is connected to the inert gas flow rate control section and the hydrogen gas supply path. A moisture standard gas generator that is connected to the conduit between the oxygen gas reaction section and the oxygen gas reaction section. 2. A hydrogen gas supply line formed by connecting a hydrogen generating part of a water electrolyzer, an optional hydrogen drying part, and a stop valve in this order with a conduit; and an oxygen generating part of another water electrolyzer; and an oxygen gas supply line connecting the oxygen purification section, oxygen drying section, and stop pulp in this order with a conduit, or a purified air supply device, or an oxygen gas supply line for oxygen gas or a mixed gas of oxygen gas and an inert gas. A moisture standard gas generator in which an oxygen gas supply path is formed by connecting a supply section, optionally a gas drying section, and a flow rate control section in this order via a conduit, and merges into a conduit leading to a hydrogen/oxygen gas reaction section.
JP22321982A 1982-12-20 1982-12-20 Apparatus for generating hydrated standard gas Pending JPS59112247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22321982A JPS59112247A (en) 1982-12-20 1982-12-20 Apparatus for generating hydrated standard gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22321982A JPS59112247A (en) 1982-12-20 1982-12-20 Apparatus for generating hydrated standard gas

Publications (1)

Publication Number Publication Date
JPS59112247A true JPS59112247A (en) 1984-06-28

Family

ID=16794652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22321982A Pending JPS59112247A (en) 1982-12-20 1982-12-20 Apparatus for generating hydrated standard gas

Country Status (1)

Country Link
JP (1) JPS59112247A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223643A (en) * 1986-03-25 1987-10-01 Osaka Soda Co Ltd Preparation of standard gas
CN106591872A (en) * 2017-01-25 2017-04-26 中国人民解放军第二军医大学 Hydrogen-oxygen mixed gas preparation device and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163428A (en) * 1979-06-07 1980-12-19 Nippon Heriumu Kk Production of constant humidity gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163428A (en) * 1979-06-07 1980-12-19 Nippon Heriumu Kk Production of constant humidity gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223643A (en) * 1986-03-25 1987-10-01 Osaka Soda Co Ltd Preparation of standard gas
CN106591872A (en) * 2017-01-25 2017-04-26 中国人民解放军第二军医大学 Hydrogen-oxygen mixed gas preparation device and method

Similar Documents

Publication Publication Date Title
US5017499A (en) Method for analyzing fluorine containing gases
JP3331636B2 (en) Water generation method
CA2513385A1 (en) Method and system for creating a mercury halide standard for use in testing a mercury analyzer system
Smallwood The rate of recombination of atomic hydrogen
JPS59112247A (en) Apparatus for generating hydrated standard gas
JPH0662322B2 (en) Method for producing atmosphere required for production of glass-metal joint and apparatus therefor
Peters et al. Vapor–and Liquid–Phase Reactions between Nitrogen Dioxide and Water
Stern Electrode Potentials in Fused Systems. II. A Study of the AgCl-KCl System.
JPS6030069B2 (en) How to convert chemical energy into electrical energy
US3630956A (en) Method of producing gases with controlled concentrations of water vapor
Langmuir THE DISSOCIATION OF WATER VAPOR AND CARBON DIOXIDE AT HIGH TEMPERATURES.
JPS59135342A (en) Moisture reference gas generator
JPS59112248A (en) Hydrated standard gas generator
Tremaine et al. Ionization equilibria of acids and bases under hydrothermal conditions
JPS61197404A (en) Apparatus for generation of gas having specific water content
Buckler et al. II. Ignition phenomena in mixtures of carbon monoxide and oxygen sensitized by hydrogen
Ferguson THE EQUILIBRIUM BETWEEN CARBON MONOXIDE, CARBON DIOXIDE, SULFUR DIOXIDE AND FREE SULFUR.
Jenkins et al. The System Ozone‐Oxygen
JP3952087B2 (en) Moisture generation method and moisture generation apparatus
JPS6332340A (en) Water standard gas generating device
Hersch Controlled addition of experimental pollutants to air
JPS5849431A (en) Production of water standard gas
JPH107403A (en) Generation of moisture
JP2002008692A (en) Fuel supply system
RU2661074C1 (en) Gas analytical equipment calibration mixtures manufacturing method using the solid state electrolysis cell