JPS6332340A - Water standard gas generating device - Google Patents

Water standard gas generating device

Info

Publication number
JPS6332340A
JPS6332340A JP17632686A JP17632686A JPS6332340A JP S6332340 A JPS6332340 A JP S6332340A JP 17632686 A JP17632686 A JP 17632686A JP 17632686 A JP17632686 A JP 17632686A JP S6332340 A JPS6332340 A JP S6332340A
Authority
JP
Japan
Prior art keywords
gas
moisture
section
flow rate
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17632686A
Other languages
Japanese (ja)
Inventor
Yozo Morita
洋造 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP17632686A priority Critical patent/JPS6332340A/en
Publication of JPS6332340A publication Critical patent/JPS6332340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To monitor moisture concentration and to obtain more accurate, high-reliability gas by monitoring the concentration of carbon dioxide produced together with moisture. CONSTITUTION:Mixed gas supply passages (a) from mixed gas cylinders 1 and 2 pass through strip valves 3 and 3' and further pass drying parts 4 and 4', pressure governor valves 5 and 5', pressure gauges 6 and 6', flow rate control valves 7 and 7', and flow meters 8 and 8' to meet together 9. A moisture standard gas production flow passage (b) from the confluent part 9, on the other hand, passes through an oxidation reaction pipe 10 and a carbon dioxide detecting meter 11 and is connected to a flow meter 12 by a pipe line. Heaters 13 and 13' are added at the periphery of the reaction pipe 10 and an amplification part 14 and a vapor concentration converter indicator 15 are connected from the detection meter 11. Further, the drying parts 4 and 4' consists of glass-made columns, and consequently the moisture concentration in the mixed gas is set to <=0.1ppm. Then, control is performed to constant pressure by the pressure governor valves 5 and 5' and pressure gauges 6 and 6' and the flow rate of the mixed gas is controlled to a desired flow rate by the control valves 7 and 7' and flow meters 8 and 8'.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は水分標準ガス発生装置に関する。さらに詳し
くは気体試料中の水分測定用の水分計の目盛較正に用い
る水分標準ガス発生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field This invention relates to a moisture standard gas generator. More specifically, the present invention relates to a moisture standard gas generator used for calibrating the scale of a moisture meter for measuring moisture in a gas sample.

(ロ)従来の技術 気体試料中の水分測定用の水分計の目盛較正を行うため
には水分濃度が既知の水分標準ガスが必要であるが、従
来このような水分標準ガスを得る装置としては、水素ガ
ス供給部とその流量制御部とをこの順に導管で連結して
なる水素ガス供給路、酸素ガス供給部とその流量制御部
とをこの順に導管で連結してなる酸素供給路、および所
望により不活性ガス供給部とその流量制御部をこの順に
連結してなる不活性ガス供給路を、各ガス供給路の出口
端部で集めて合流させた合流流路、並びにこの合流流路
より延びて水素・酸素ガス反応部を導管の間に連結して
なる水分標準ガス発生流路とからなる水分標準ガス発生
器(特開昭59−112248)および、不活性ガスと
酸素ガスと水素ガスとの混合ガスボンベ、ガス圧力調整
部、および水素・酸素ガス反応部とをこの順に導管で連
結してなり、さらに該圧力調整部と該反応部との間の導
管もしくは該反応部出口側の導管に流量制御部を設けて
なる水分標準ガス発生機(特開昭59−135342)
等がこの発明の発明者によって提供されている。
(b) Conventional technology In order to calibrate the scale of a moisture meter for measuring moisture in gas samples, a moisture standard gas with a known moisture concentration is required. , a hydrogen gas supply path in which a hydrogen gas supply section and its flow rate control section are connected in this order by a conduit, an oxygen supply path in which an oxygen gas supply section and its flow rate control section are connected in this order in a conduit, and a desired one. An inert gas supply path formed by connecting an inert gas supply section and its flow rate control section in this order, a merging flow path where each gas supply path is collected and merged at the outlet end, and a merging flow path extending from this merging flow path. A moisture standard gas generator (JP-A-59-112248) consisting of a moisture standard gas generation flow path in which a hydrogen/oxygen gas reaction section is connected between conduits, and an inert gas, oxygen gas, and hydrogen gas. A mixed gas cylinder, a gas pressure adjustment section, and a hydrogen/oxygen gas reaction section are connected in this order by a conduit, and a conduit between the pressure adjustment section and the reaction section or a conduit on the outlet side of the reaction section is connected in this order. Moisture standard gas generator equipped with a flow rate control section (Japanese Patent Application Laid-Open No. 59-135342)
etc. are provided by the inventor of this invention.

(ハ)発明が解決しようとする問題点 上記水分標準ガス発生器は比較的簡単な構造の装置で高
純度な水分標準ガスが得られるが、しかしながらこれら
の発生器では水素ガスと酸素ガスが理論通り 100%
反応しているかどうかの監視が行い難く、得られる水分
標漁ガスの信頼性に若千の問題がある。
(c) Problems to be solved by the invention The moisture standard gas generators described above are devices with a relatively simple structure and can obtain high purity moisture standard gas. street 100%
It is difficult to monitor whether or not there is a reaction, and there are serious problems with the reliability of the moisture-labeled fishing gas obtained.

この発明はかかる状況に鑑み為されたものであり、こと
に水素ガスと酸素ガスとの反応を監視することにより、
より正確で信頼性の高い水分標準ガスを得る水分標準ガ
ス発生装置を提供しようとするものである。
This invention was made in view of this situation, and in particular, by monitoring the reaction between hydrogen gas and oxygen gas,
It is an object of the present invention to provide a moisture standard gas generator that obtains a moisture standard gas that is more accurate and reliable.

(ニ)問題点を解決するための手段 かくしてこの発明によれば、化学組成が既知の炭化水素
ガス、この炭化水素ガスを完全燃焼させるのに必要な量
以上の酸素ガスおよび所望により添加される不活性ガス
からなる混合ガスを供給する混合ガス供給流路と、この
供給流路から上記炭化水素ガスと酸素ガスを反応させる
酸化反応部を経て該酸化反応部で発生する二酸化炭素ガ
スを検出する二酸化炭素検出計に至る水分標準ガス発生
流路とからなる水分標準ガス発生装置が提供される。
(d) Means for Solving the Problems Thus, according to the present invention, a hydrocarbon gas of known chemical composition, oxygen gas in an amount more than necessary for complete combustion of the hydrocarbon gas, and optionally added oxygen gas are used. A mixed gas supply flow path that supplies a mixed gas made of an inert gas, and an oxidation reaction section where the hydrocarbon gas and oxygen gas are reacted from this supply flow path, and then carbon dioxide gas generated in the oxidation reaction section is detected. A moisture standard gas generation device is provided that includes a moisture standard gas generation flow path leading to a carbon dioxide detector.

この発明の装置は、従来の水素ガスの替わりに化学組成
が既知の炭化水素ガスを用い、酸素ガスとの燃焼反応に
より水分とともに生ずる二酸化炭素ガスの濃度を監視し
うる二酸化炭素検出計を具備したことを特徴とする。
The device of the present invention uses a hydrocarbon gas with a known chemical composition instead of conventional hydrogen gas, and is equipped with a carbon dioxide detector that can monitor the concentration of carbon dioxide gas generated together with moisture through a combustion reaction with oxygen gas. It is characterized by

この発明の装置の混合ガス供給流路としては、混合を意
図するガスをそれぞれ側流路で供給してその出口端部で
合流させるよう構成されていてもよく、予め意図する混
合割合でボンベ内に調製された混合ガスを該ボンベに管
路接続されたl流路で供給しうるよう構成されたもので
あってらよい。
The mixed gas supply channel of the device of the present invention may be configured so that the gases to be mixed are supplied through the side channels and merged at the outlet end, and the gases to be mixed are supplied into the cylinder at an intended mixing ratio in advance. The cylinder may be configured such that a mixed gas prepared in the above manner can be supplied through a flow path connected to the cylinder.

従って萌者には化学組成が既知の炭化水素ガス供給部と
その流量制御部とをこの順に管路接続してなる炭化水素
ガス供給流路、酸素ガス供給部とその洸量制@部とをこ
の順に管路接続してなる酸素ガス供給流路、および所望
により不活性ガス供給部とその流量制御部とをこの順に
管路接続してなる不活性ガス供給流路を各供給流路の出
口端部で集めて合流させた合流流路からなる構成が好ま
しく、また後者には化学組成が既知の炭化水素ガスと該
炭化水素ガスを完全燃焼するのに必要な量以上の酸素ガ
スと所望により添加される不活性ガスからなる混合ガス
ボンベおよびガス圧調整部とをこの順に管路接続した流
路からなる構成が好ましい。
Therefore, we have a hydrocarbon gas supply flow path which is formed by connecting a hydrocarbon gas supply section with a known chemical composition and its flow rate control section in this order, and an oxygen gas supply section and its flow rate control section. An oxygen gas supply flow path formed by connecting pipes in this order, and an inert gas supply flow path formed by connecting an inert gas supply section and its flow rate control section in this order, if desired, at the outlet of each supply flow path. It is preferable to have a configuration consisting of a merging flow path that is collected at the end and merged, and the latter contains a hydrocarbon gas of known chemical composition, oxygen gas in an amount greater than the amount necessary for complete combustion of the hydrocarbon gas, and optionally. A preferred configuration is a flow path in which a mixed gas cylinder containing an inert gas to be added and a gas pressure adjustment section are connected via a pipe in this order.

上記炭化水素ガス供給部としては、炭化水素ガスボンベ
と所望により乾燥部とを連結したものが挙げられる。上
記乾燥部を設置するか否かは目的物の水分標準ガスの水
分濃度とその要求される精度によって適宜決定される。
Examples of the hydrocarbon gas supply section include one in which a hydrocarbon gas cylinder is connected to a drying section if desired. Whether or not to install the drying section is appropriately determined depending on the moisture concentration of the target moisture standard gas and the required accuracy.

なお、このことは後述の各使用ガスの乾燥部についても
同様である。
Note that this also applies to the drying sections for each gas used, which will be described later.

この乾燥部としては金属、ガラスなどでつくられた筒状
の容器にモレキュラーノープ3A(リンデ社製)などの
乾燥剤を充填したものが用いられる。
As this drying section, a cylindrical container made of metal, glass, etc., filled with a desiccant such as Molecular Nope 3A (manufactured by Linde) is used.

上記酸素ガス供給部としては、精製空気供給器、酸素ガ
スボンベもしくは酸素ガスと不活性ガスとの混合ガスの
ボンベと、所望によりその乾燥部とを連結した構成を有
するものが挙げられる。精製空気供給器としては、空気
をコンプレッサで加圧し精製する通常用いられるものが
挙げられる。酸素ガスボンベとしては、約99%以上の
高純度のものが挙げられる。酸素ガスと不活性ガスボン
ベとの混合ガスのボンベとしては、不活性ガス中の酸素
ガス濃度り月Oppw〜30%のものが用いられる。
Examples of the oxygen gas supply section include one having a configuration in which a purified air supply device, an oxygen gas cylinder, or a mixed gas cylinder of oxygen gas and an inert gas is connected to a drying section, if desired. Examples of the purified air supply device include those commonly used for pressurizing and purifying air with a compressor. Examples of oxygen gas cylinders include those with a high purity of about 99% or more. As a mixed gas cylinder of oxygen gas and an inert gas cylinder, one in which the oxygen gas concentration in the inert gas is Oppw~30% is used.

乾燥部を要する場合は萌記のものと同様のものが用いら
れる。
If a drying section is required, one similar to that used in Moeki is used.

所望によって設置される不活性ガスボンベとしては、約
99%以上の高純度の不活性ガスボンベが適している。
As the inert gas cylinder installed as desired, an inert gas cylinder with a high purity of about 99% or more is suitable.

また不活性ガスとしては、窒素、ヘリウム、アルゴン等
が挙げられる。
Examples of the inert gas include nitrogen, helium, and argon.

上記各ガス供給路に用いられる流量制御部は通常用いら
れているものでよく、例えば調圧弁、圧力計、流量制御
弁および流量計をこの順に管路接続したものが等が挙げ
られる。この外に毛細管式流量比混合法や質量流量制御
方式などの高精度の流量制御装置を用いてもよい。また
ガス圧調節部としては通常用いられるものでよく、調圧
弁と圧力計をこの順に管路接続したもの等が挙げられる
The flow rate control unit used in each of the above-mentioned gas supply paths may be one that is commonly used, such as one in which a pressure regulating valve, a pressure gauge, a flow rate control valve, and a flow meter are connected in this order through a pipe line. In addition to this, a highly accurate flow rate control device such as a capillary flow ratio mixing method or a mass flow rate control method may be used. The gas pressure regulating section may be any commonly used one, such as one in which a pressure regulating valve and a pressure gauge are connected in this order through a pipe.

この発明の装置に用いる酸化反応部としては、例えば白
金、酸化銅、酸化コバルト等の酸化触媒を必要に応じて
充填した石英ガラス、セラミック、耐熱金属性等の反応
管と、この反応管を加熱する温度調節器付加熱炉とで構
成されたもの等が挙げられる。上記加熱炉は反応管内を
300〜1000℃に加熱しうるちのが通常用いられる
The oxidation reaction section used in the apparatus of this invention includes a reaction tube made of quartz glass, ceramic, heat-resistant metal, etc. filled with an oxidation catalyst such as platinum, copper oxide, cobalt oxide, etc. as required, and a reaction tube that is heated. An example of this is one that is configured with a temperature controller and an additional heating furnace. The above-mentioned heating furnace is usually used to heat the inside of the reaction tube to 300 to 1000°C.

この発明の装置に用いる二酸化炭素検出計は、非分散型
赤外線式ガス分析計、熱伝導度式ガス分析計等が用いら
れるが、測定セルにガスを流してもガスの組成変化など
が生じない点で非分散型赤外線式ガス分析計が好ましい
The carbon dioxide detector used in the device of this invention is a non-dispersive infrared gas analyzer, a thermal conductivity gas analyzer, etc., but there is no change in the composition of the gas even when the gas is passed through the measurement cell. In this respect, a non-dispersive infrared gas analyzer is preferred.

この発明の装置に用いる化学組成既知の炭化水素ガスと
しては、メタン、エタン、エチレン、アセチレン等のガ
スが挙げられる。これらのガスは組成、濃度が明らかで
安定に保存し得る標準ガス(ボンベに充填されたもの)
状態で容易に入手可能である。またこれらは純ガス(1
00%)を使用することら可能である。上記ガスのうち
エチレンは発生する二酸化炭素ガスが発生する水分と等
モルであるため、二酸化炭素濃度と水分濃度とは等しく
なり、二酸化炭素検出計の指示はそのまま水分濃度とし
て使用できる点で好ましいガスである。
Hydrocarbon gases of known chemical composition used in the apparatus of this invention include gases such as methane, ethane, ethylene, and acetylene. These gases are standard gases (filled in cylinders) whose composition and concentration are clear and can be stored stably.
readily available in the condition. Also, these are pure gases (1
00%). Among the above gases, ethylene is a preferable gas because the carbon dioxide gas generated is equimolar to the moisture generated, so the carbon dioxide concentration and the moisture concentration are equal, and the indication from the carbon dioxide detector can be used as the moisture concentration. It is.

他のガスを用いる場合、発生する二酸化炭素ガスと水分
とのそれぞれのモル比は異なるが、各モル比で補正すれ
ばよい。また低濃度の水分(例えば数ppmオーダ)を
つくる場合には、共に生ずる二酸化炭素ガスも同様低濃
度になるため、二酸化炭素濃度の測定の容易さの点で、
二酸化炭素対水分のモル比率の高い炭化水素を試用する
方が有利となる。例えばメタンよりもエチレンの方が4
倍高い濃度の二酸化炭素ガスを発生することになる。
When using other gases, the respective molar ratios of the generated carbon dioxide gas and water will be different, but each molar ratio may be corrected. Furthermore, when producing low concentration water (for example, on the order of several ppm), the concentration of carbon dioxide gas that is also produced will be similarly low, so in terms of ease of measuring carbon dioxide concentration,
It is advantageous to try hydrocarbons with a high molar ratio of carbon dioxide to water. For example, ethylene is more 4 than methane.
This results in the generation of twice as high a concentration of carbon dioxide gas.

この発明の装置に用いる酸素ガスは、上記炭化水素を完
全燃焼させるのに必要な量以上が供給される。この場合
過剰の酸素ガスが水分標準ガスに含まれていてもよい。
The oxygen gas used in the apparatus of the present invention is supplied in an amount greater than that required to completely burn the hydrocarbons. In this case, excess oxygen gas may be included in the moisture standard gas.

なお、高濃度側の水分標準ガスの発生については、炭化
水素と酸素の混合ガスの爆発下限濃度があるため、あま
り高濃度ガスはつくれないが、この装置は1%程度以下
の水分濃度の標準ガス発生装置として充分対応が可能な
ものである。
Regarding the generation of moisture standard gas on the high concentration side, it is not possible to generate very high concentration gas because there is a lower explosive concentration limit for the mixed gas of hydrocarbon and oxygen, but this device can generate standard moisture gas with a moisture concentration of about 1% or less. It can be fully used as a gas generator.

(ホ)作用 この発明の装置によれば、水分を発生する炭化水素の酸
化反応の進行状態を、この水分と同時に発生される二酸
化炭素ガスを検出することにより監視できるため、発生
する水分濃度を常に正確に求めることができる。
(e) Effect: According to the device of the present invention, the progress of the oxidation reaction of hydrocarbons that generate moisture can be monitored by detecting carbon dioxide gas that is generated simultaneously with the moisture, so the concentration of generated moisture can be monitored. can always be determined accurately.

以下実施例によりこの発明の詳細な説明するが、これに
よりこの発明は限定されるものではない。
The present invention will be described in detail below with reference to Examples, but the present invention is not limited thereby.

(へ)実施例 第1図はこの発明の水分標準ガス発生装置の一実施例の
構成説明図である。
(f) Embodiment FIG. 1 is an explanatory diagram of the structure of an embodiment of the moisture standard gas generator of the present invention.

(1)はエチレンと窒素との混合ガスボンベ、(2)は
酸素と窒素との混合ガスボンベである。この装置の混合
ガス供給流路(a)は、それぞれの混合ガスボンベから
ストップパルプ(3)(3°)を経てそれぞれ乾燥部(
4)(4” )、それぞれの調圧弁(5)(5” )、
圧力計(6)(6’)、流量制御弁(7X7’)、流量
計(8)(8°)を経て(9)で合流されている。一方
水分標憔ガス発生流路(b)は、上記合流部(9)から
酸化反応管(10)、二酸化炭素検出計(11)を経て
流量計(12)に管路接続されている。また上記酸化反
応管(10)の周囲にはヒータ(13X13°)が付設
されており、二酸化炭素検出計(11)からは増幅部(
14)および水分濃度換算・指示計(15)か接続され
ている。
(1) is a mixed gas cylinder of ethylene and nitrogen, and (2) is a mixed gas cylinder of oxygen and nitrogen. The mixed gas supply flow path (a) of this device runs from each mixed gas cylinder to the stop pulp (3) (3°) and then to the drying section (3°).
4) (4”), each pressure regulating valve (5) (5”),
They are joined at (9) via pressure gauges (6) (6'), flow rate control valves (7X7'), and flow meters (8) (8°). On the other hand, the moisture standard gas generation channel (b) is connected to the flow meter (12) via the oxidation reaction tube (10) and the carbon dioxide detector (11) from the confluence section (9). Furthermore, a heater (13×13°) is attached around the oxidation reaction tube (10), and an amplification section (
14) and a moisture concentration conversion/indicator (15) are connected.

乾燥部(4)(4°)は、モレキュランーブを充填した
ガラス製カラムから構成されており、これにより上記混
合ガス中の水分濃度が予め0.lppm以下にされる。
The drying section (4) (4°) is composed of a glass column filled with a molecular tube, so that the water concentration in the mixed gas is set to 0. lppm or less.

上g2調圧弁(5X5’)および圧力計(6X6’)に
より一定圧に制御し、流量制御弁(7) (7″)およ
び流量計(8)(8’)とによりそれぞれの混合ガスの
流量が所望の流量に調節される。
The upper g2 pressure regulating valve (5X5') and pressure gauge (6X6') control the pressure to a constant level, and the flow rate control valve (7) (7'') and flow meter (8) (8') control the flow rate of each mixed gas. is adjusted to the desired flow rate.

上記酸化反応管(10)は石英ガラス製のものでこの中
には、白金触媒が充填されている。また該反応管内はヒ
ータ(13)(13°)により約500℃程度に加熱さ
れている。
The oxidation reaction tube (10) is made of quartz glass and is filled with a platinum catalyst. Further, the inside of the reaction tube is heated to about 500° C. by a heater (13) (13°).

上記二酸化炭素検出計(11)には、非分散型赤外線式
ガス分析計を使用している。
A non-dispersive infrared gas analyzer is used as the carbon dioxide detector (11).

以上のように構成された水分標準ガス発生装置により下
記の条件で水分標準ガスを発生させた。
A moisture standard gas was generated under the following conditions using the moisture standard gas generator configured as described above.

エチレンと窒素との混合ガス中のエチレン濃度500 
    ppIll   ・ エチレンと窒素との混合ガスの流量 200     mf2/min 酸素と窒素との混合ガス中の酸素濃度 5000     ppm 酸素と窒素との混合ガスの流量 200mρ/+++in 上記の結果、生成した水分標準ガスの水分濃度は500
ppmであった。
Ethylene concentration in mixed gas of ethylene and nitrogen 500
ppIll ・Flow rate of mixed gas of ethylene and nitrogen 200 mf2/min Oxygen concentration in mixed gas of oxygen and nitrogen 5000 ppm Flow rate of mixed gas of oxygen and nitrogen 200 mρ/+++in As a result of the above, the moisture standard gas generated Water concentration is 500
It was ppm.

以上のことから、この発明の装置によれば比較的簡単な
構造かつ簡単な操作で高精度の水分標準ガスが得られる
From the above, according to the apparatus of the present invention, a highly accurate moisture standard gas can be obtained with a relatively simple structure and simple operation.

(ト)発明の効果 この発明の装置によれば、水分とともに発生する二酸化
炭素ガスの濃度を監視することにより水分濃度を監視す
ることかできるため、より正確で信頼性の高い水分標準
ガスが得られ、原料ガス中の炭化水素濃度の誤りや、流
量制御系の操作ミスやエラーまたは酸化反応部の酸化効
率の劣化などによる水分濃度の誤差を防止できる。また
、この発明の装置では二酸化炭素ガスの監視により、従
来に比べて運転開始時から充分な水分濃度のガス発生ま
での初期安定化時間が短縮できる。またさらにこの発明
の装置は、鉄鋼の酸化還元機構の解、明試験の水分発生
器、焼鈍炉への水分供給源、食品の乾燥防止用などのよ
うな水分管理を要する各種試験や工業用途の水分供給源
に用いることができる。
(g) Effects of the Invention According to the device of the present invention, the moisture concentration can be monitored by monitoring the concentration of carbon dioxide gas generated together with moisture, so a more accurate and reliable moisture standard gas can be obtained. This makes it possible to prevent errors in the water concentration due to errors in the hydrocarbon concentration in the raw material gas, operational mistakes or errors in the flow rate control system, or deterioration in the oxidation efficiency of the oxidation reaction section. Further, in the apparatus of the present invention, by monitoring carbon dioxide gas, the initial stabilization time from the start of operation to the generation of gas with a sufficient moisture concentration can be shortened compared to the conventional apparatus. Furthermore, the apparatus of the present invention is useful for various tests and industrial applications that require moisture management, such as solving the oxidation-reduction mechanism of steel, moisture generators for light tests, moisture supply sources for annealing furnaces, and for preventing food from drying out. Can be used as a moisture supply source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の水分標準ガス発生装置の一実施例の
構成説明図である。 (1)−・・・・・エチレンと窒素との混合ガスボンベ
、(2)・・・・・・酸素と窒素との混合ガスボンベ、
(3)(3°)・・・・・ストップバルブ、(4)(4
’ )・・・・・乾燥部、  (5X5°)・・・・・
調圧弁、(6X6°)・・・・・・圧力計、  (7)
(7’ )・・・・・・流量制御弁、(8) (8°)
(12)・・・・・・流I計、(9)・・・・・合流部
、(lO)・・・・・・酸化反応管、 (11)・・・・・・二酸化炭素検出計、(13X13
”)・・・・・・ヒータ、(14)・・・・・・増幅部
、筑 1 図
FIG. 1 is an explanatory diagram of the configuration of one embodiment of the moisture standard gas generator of the present invention. (1) -... Mixed gas cylinder of ethylene and nitrogen, (2) -... Mixed gas cylinder of oxygen and nitrogen,
(3) (3°)... Stop valve, (4) (4
)...Drying section, (5X5°)...
Pressure regulating valve, (6X6°)...Pressure gauge, (7)
(7')...Flow control valve, (8) (8°)
(12)...Flow I meter, (9)...Confluence section, (lO)...Oxidation reaction tube, (11)...Carbon dioxide detection meter , (13X13
”)... Heater, (14)... Amplifying section, Chiku 1 Figure

Claims (1)

【特許請求の範囲】 1、化学組成が既知の炭化水素ガス、この炭化水素ガス
を完全燃焼させるのに必要な量以上の酸素ガスおよび所
望により添加される不活性ガスからなる混合ガスを供給
する混合ガス供給流路と、この供給流路から上記炭化水
素ガスと酸素ガスを反応させる酸化反応部を経て該酸化
反応部で発生する二酸化炭素ガスを検出する二酸化炭素
検出計に至る水分標準ガス発生流路とからなる水分標準
ガス発生装置。 2、混合ガス供給流路が、化学組成が既知の炭化水素ガ
ス供給部とその流量制御部とをこの順に管路接続してな
る炭化水素ガス供給流路、酸素ガス供給部とその流量制
御部とをこの順に管路接続してなる酸素ガス供給流路、
および所望により不活性ガス供給部とその流量制御部と
をこの順に管路接続してなる不活性ガス供給流路を各供
給流路の出口端部で集めて合流させた合流流路からなる
特許請求の範囲第1項記載の水分標準ガス発生装置。 3、混合ガス供給流路が、化学組成が既知の炭化水素ガ
スと該炭化水素ガスを完全燃焼するのに必要な量以上の
酸素ガスと所望により添加される不活性ガスからなる混
合ガスボンベおよびガス圧調整部とをこの順に管路接続
した流路からなる特許請求の範囲第1項記載の水分標準
ガス発生装置。
[Claims] 1. Supplying a mixed gas consisting of a hydrocarbon gas of known chemical composition, oxygen gas in an amount greater than the amount necessary to completely burn the hydrocarbon gas, and an inert gas added as desired. Moisture standard gas generation through a mixed gas supply channel and this supply channel to an oxidation reaction section where the hydrocarbon gas and oxygen gas are reacted to a carbon dioxide detector that detects carbon dioxide gas generated in the oxidation reaction section. Moisture standard gas generator consisting of a flow path. 2. The mixed gas supply channel is formed by connecting a hydrocarbon gas supply section with a known chemical composition and its flow rate control section in this order, and an oxygen gas supply section and its flow rate control section. and an oxygen gas supply flow path formed by connecting the and in this order,
and a patent consisting of a merging channel in which an inert gas supply channel is formed by connecting an inert gas supply section and its flow rate control section in this order, and the inert gas supply channels are collected and merged at the outlet end of each supply channel, if desired. A moisture standard gas generator according to claim 1. 3. A mixed gas cylinder and gas in which the mixed gas supply flow path consists of a hydrocarbon gas of known chemical composition, oxygen gas in an amount greater than the amount necessary to completely burn the hydrocarbon gas, and an inert gas added as desired. The moisture standard gas generating device according to claim 1, comprising a flow path in which the pressure adjusting section is connected in this order through a pipe line.
JP17632686A 1986-07-25 1986-07-25 Water standard gas generating device Pending JPS6332340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17632686A JPS6332340A (en) 1986-07-25 1986-07-25 Water standard gas generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17632686A JPS6332340A (en) 1986-07-25 1986-07-25 Water standard gas generating device

Publications (1)

Publication Number Publication Date
JPS6332340A true JPS6332340A (en) 1988-02-12

Family

ID=16011629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17632686A Pending JPS6332340A (en) 1986-07-25 1986-07-25 Water standard gas generating device

Country Status (1)

Country Link
JP (1) JPS6332340A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795839A (en) * 1991-11-12 1998-08-18 Nippon Oil Co., Ltd. Catalyst components for polymerization of olefins

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795839A (en) * 1991-11-12 1998-08-18 Nippon Oil Co., Ltd. Catalyst components for polymerization of olefins

Similar Documents

Publication Publication Date Title
KR0163608B1 (en) Calibration system for ultra high purity gas analysis
US8435448B2 (en) Sensor for measuring syngas ratio in the high temperature and pressure condition
US4288062A (en) Apparatus for control and monitoring of the carbon potential of an atmosphere in a heat-processing furnace
EP2429941B1 (en) Generation of sulfur trioxide and sulfuric acid
WO1994007795A1 (en) Water generating method
US20060233701A1 (en) Method and apparatus to improve the industrial production of hydrogen-carbon monoxide
JPH0198951A (en) Gas calorimeter apparatus and heating value measurement
JPS6332340A (en) Water standard gas generating device
US5224776A (en) Instrument and method for heating value measurement by stoichiometric combustion
Thursfield et al. Methane oxidation in a mixed ionic–electronic conducting ceramic hollow fibre reactor module
US3630956A (en) Method of producing gases with controlled concentrations of water vapor
US5008203A (en) Method for the determination of oxygen demand in sulfur recovery installations
GB2076158A (en) Measuring hydrocarbon concentrations
US4761744A (en) Method and device for determining heats of combustion of gaseous hydrocarbons
JPS63103960A (en) Analysis of ortho-and para-hydrogen
JP4162938B2 (en) Hydrogen production plant control device, hydrogen production device, and hydrogen production method
JPH0384440A (en) Method and instrument for measuring trace oxygen
JP2002031628A (en) Element analyzer
JPS63135840A (en) Moisture reference gas generator
JPS59135342A (en) Moisture reference gas generator
JP2600077B2 (en) Method and apparatus for continuous measurement of calorific value of organic gas
JPS5843695B2 (en) Method and device for analyzing total nitrogen or simultaneous total nitrogen and total carbon in water
JPH02195255A (en) Apparatus for measuring carbon potential in furnace atmosphere in reduction atmosphere furnace
JPS59112247A (en) Apparatus for generating hydrated standard gas
KR100647245B1 (en) Calorimeter in the byproduct gas management system for ironworks