JP2002031628A - Element analyzer - Google Patents

Element analyzer

Info

Publication number
JP2002031628A
JP2002031628A JP2000215338A JP2000215338A JP2002031628A JP 2002031628 A JP2002031628 A JP 2002031628A JP 2000215338 A JP2000215338 A JP 2000215338A JP 2000215338 A JP2000215338 A JP 2000215338A JP 2002031628 A JP2002031628 A JP 2002031628A
Authority
JP
Japan
Prior art keywords
sample
carrier gas
gas
combustion tube
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000215338A
Other languages
Japanese (ja)
Inventor
Kenji Iharada
健志 居原田
Hiroshi Murakami
博司 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2000215338A priority Critical patent/JP2002031628A/en
Publication of JP2002031628A publication Critical patent/JP2002031628A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an element analyzer not affected by the fluctuations in pressure caused by steam generated in a combustion pipe. SOLUTION: Carrier gas is supplied to a TC combustion pipe 5 by connecting a gas flow rate control part 12 controlling high purity air to a constant flow rate to supply the same as the carrier gas, a humidifier 13 giving humidity to the carrier gas and a check valve 11 for preventing the inflow of measuring gas from the TC combustion pipe 5, and a bypass flow channel 18 for allowing the carrier gas to bypass toward the outlet of an IC reactor is provided on the upstream side of the check valve 11. By this constitution, the rise in the internal pressure of the humidifier 11 caused by the generation of steam in the TC combustion pipe 5 is suppressed and the effect on measuring accuracy can be eliminated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排水、下水、環境
水などの液体試料あるいは土壌や繊維などの固体試料、
さらには環境雰囲気中の気体試料中に含まれる元素量を
測定し、前記試料物質を検査したり管理するために用い
られる元素分析計に関する。
The present invention relates to a liquid sample such as waste water, sewage and environmental water or a solid sample such as soil and fiber,
Further, the present invention relates to an element analyzer used for measuring the amount of elements contained in a gas sample in an environmental atmosphere, and inspecting and managing the sample substance.

【0002】[0002]

【従来の技術】従来の元素分析計の一例として全有機体
炭素計(TOC計)の構成を図2に示し、全有機体炭素
量の測定方法を説明する。ロータリバルブ4のコモンポ
ートに接続されたシリンジタイプの試料注入器1に試料
容器2中の試料3を吸入した後、前記試料注入器1をス
ライド式TC試料注入部5b側ポートに切り換えて、所
定量の試料をTC燃焼管5に注入する。試料3中の炭素
成分はTC燃焼管5内のTC触媒及び高純度空気ボンベ
6aから供給されたキャリアガス14の下で高温で燃焼
酸化され、全てCOに変換される。このCOを含ん
だ燃焼ガス、すなわち測定ガスはIC反応器7及び除湿
・ガス処理部8を経由して赤外線ガス分析部(NDI
R)9に送られ、そこでCO濃度が測定される。この
CO濃度の値を基に、データ処理部10が試料中の全
炭素量を算出する。
2. Description of the Related Art The configuration of a total organic carbon meter (TOC meter) is shown in FIG. 2 as an example of a conventional elemental analyzer, and a method of measuring the total organic carbon amount will be described. After the sample 3 in the sample container 2 is sucked into the syringe type sample injector 1 connected to the common port of the rotary valve 4, the sample injector 1 is switched to the port on the slide TC sample injector 5b side. A fixed amount of the sample is injected into the TC combustion tube 5. Carbon component in the sample 3 is burned oxidized at high temperature under the carrier gas 14 supplied from the TC catalyst and high purity air cylinder 6a of the TC combustion tube 5, it is all converted to CO 2. The combustion gas containing CO 2 , that is, the measurement gas passes through an IC reactor 7 and a dehumidification / gas processing unit 8 and is used for an infrared gas analysis unit (NDI).
R) 9 where the CO 2 concentration is measured. The data processing unit 10 calculates the total carbon amount in the sample based on the value of the CO 2 concentration.

【0003】次に、試料注入器1を試料容器2側ポート
に切り換え、試料注入器1に試料3を吸入した後、試料
注入器1をスライド式IC試料注入部7b側ポートに切
り換え、所定量の試料3をIC反応器7に注入する。I
C反応器7において、試料3中の無機炭素(IC)はそ
こに貯溜されているIC反応液7aと反応してCO
なる。そして、上記のTC量測定の場合と同様このCO
の濃度がNDIR9により測定され、データ処理部1
0によりIC量が算出される。このようにして測定され
たTC及びIC量から全有機体炭素量TOCは、TOC
=TC−ICとして算出される。
Next, the sample injector 1 is switched to the port on the sample container 2 side, and after the sample 3 is sucked into the sample injector 1, the sample injector 1 is switched to the port on the slide IC sample injector 7 b, and a predetermined amount is set. Is injected into the IC reactor 7. I
In the C reactor 7, the inorganic carbon (IC) in the sample 3 reacts with the IC reaction solution 7a stored therein to form CO 2 . Then, as in the case of the TC amount measurement described above, this CO
2 was measured by NDIR9, and the data processing unit 1
The IC amount is calculated from 0. From the TC and IC amount thus measured, the total organic carbon amount TOC is calculated as TOC
= TC-IC.

【0004】[0004]

【発明が解決しようとする課題】従来のTOC計は上記
のように構成されているが、試料3をTC燃焼管5に注
入すると、試料3はTC触媒とキャリアガスの下で燃焼
し、水蒸気その他のガス成分が発生して内部圧力が増加
する。TC燃焼管5の内部圧力が上昇すると、逆止弁1
1が閉じられ、ガス流量制御部12からのキャリアガス
14は加湿器13内で加圧されることになり加湿器13
内部の圧力が上昇する。
The conventional TOC meter is configured as described above. However, when the sample 3 is injected into the TC combustion tube 5, the sample 3 burns under the TC catalyst and the carrier gas and the steam Other gas components are generated and the internal pressure increases. When the internal pressure of the TC combustion pipe 5 increases, the check valve 1
1 is closed, the carrier gas 14 from the gas flow controller 12 is pressurized in the humidifier
Internal pressure increases.

【0005】TC燃焼管5内の測定ガスがIC反応器7
を経由して赤外線ガス分析部9に送られ圧力上昇がおさ
まってくると、逆止弁11が開きキャリアガス14がT
C燃焼管5に流入するが、このときしばらくの間、加湿
器13内に加圧されて貯えられていたキャリアガス14
が流れるため、TC燃焼管5内のキャリアガス流量が所
定流量より増加し測定ガス濃度が変化する。その状態で
測定ガスが赤外線ガス分析部9の検出器に入ると、CO
濃度の測定結果に誤差を生じることになる。
The measurement gas in the TC combustion tube 5 is supplied to the IC reactor 7
When the pressure is reduced and sent to the infrared gas analyzer 9 via the, the check valve 11 opens and the carrier gas 14
The carrier gas 14 flows into the humidifier 13 for a while.
Flows, the flow rate of the carrier gas in the TC combustion pipe 5 increases from a predetermined flow rate, and the measured gas concentration changes. In this state, when the measurement gas enters the detector of the infrared gas analyzer 9, CO
An error occurs in the measurement results of the two concentrations.

【0006】本発明は、このような事情に鑑みてなされ
たものであって、試料燃焼管内あるいは試料反応管での
水蒸気その他のガス成分の発生による内部圧力の上昇が
原因で生じる元素の測定誤差を除去した元素分析計を提
供することを目的とする。
The present invention has been made in view of such circumstances, and has been made in consideration of the measurement error of elements caused by an increase in internal pressure due to generation of water vapor and other gas components in a sample combustion tube or a sample reaction tube. It is an object of the present invention to provide an elemental analyzer from which is eliminated.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の元素分析計は、試料を試料燃焼管や試料反
応管に注入して反応させ、得られた測定ガスを分析手段
により分析し、試料中の元素量を測定する元素分析計に
おいて、前記試料燃焼管に一定流量のキャリアガスを供
給するためのガス流量制御部と、キャリアガスに湿度を
与えるための加湿器と、測定ガスの逆流を阻止する逆止
弁とを連結して前記試料燃焼管にキャリアガスを供給す
ると共に、前記逆止弁の上流側にキャリアガスの一部を
前記試料燃焼管からバイパスさせるためのバイパス流路
を設けたことを特徴とするものである。
In order to achieve the above object, an elemental analyzer according to the present invention is characterized in that a sample is injected into a sample combustion tube or a sample reaction tube and reacted, and the obtained measurement gas is analyzed by the analysis means. In an elemental analyzer that analyzes and measures the amount of elements in a sample, a gas flow controller for supplying a constant flow rate of a carrier gas to the sample combustion tube, a humidifier for providing humidity to the carrier gas, A check valve for preventing backflow of gas is connected to supply a carrier gas to the sample combustion tube, and a bypass for bypassing a part of the carrier gas from the sample combustion tube upstream of the check valve. A flow path is provided.

【0008】本発明の元素分析計は上記の構成により、
TC燃焼器内で発生する水蒸気による内部圧力の上昇に
伴う加湿器内の圧力上昇を、バイパス流路のキャリアガ
ス流量の増加によって軽減することにより、元素分析計
の検出器で生ずる測定誤差を除去することができる。
[0008] The element analyzer of the present invention has the above structure,
Eliminates measurement errors caused by detectors in elemental analyzers by reducing the pressure increase in the humidifier due to the increase in internal pressure due to water vapor generated in the TC combustor by increasing the flow rate of carrier gas in the bypass flow path. can do.

【0009】[0009]

【発明の実施の形態】本発明の一実施例である全有機体
炭素計(TOC計)を図面を参照しながら説明する。本
実施例のTOC計の基本的構成は図2に示した従来のT
OC計と同じであるが、試料3を採取してから酸化反応
させるまでの酸化反応部の構成は図1に示す通りであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A total organic carbon analyzer (TOC analyzer) according to one embodiment of the present invention will be described with reference to the drawings. The basic configuration of the TOC meter according to the present embodiment is the conventional TC shown in FIG.
Although the same as the OC meter, the configuration of the oxidation reaction section from the time when the sample 3 is collected until the oxidation reaction is performed is as shown in FIG.

【0010】本発明による酸化反応部は、試料容器2中
の試料3を吸入してスライド式TC試料注入部5bまた
はスライド式IC試料注入部7bに注入するための試料
注入器1及びロータリバルブ4と、前記スライド式TC
試料注入部5bを経由して注入される試料3を、本発明
の特徴であるキャリアガス供給部20から供給されるキ
ャリアガスと酸化触媒の下でTC炉5aからの高熱で燃
焼酸化して、全炭素をCOに変換するTC燃焼管5
と、前記スライド式IC試料注入部7bを経由して注入
された試料3をIC反応液7aの下で無機炭素(IC)
をCOに変換するIC反応器7から構成されている。
The oxidation reaction section according to the present invention comprises a sample injector 1 and a rotary valve 4 for sucking the sample 3 in the sample container 2 and injecting it into the slide TC sample injection section 5b or the slide IC sample injection section 7b. And the sliding TC
The sample 3 injected via the sample injection section 5b is burned and oxidized with high heat from the TC furnace 5a under the carrier gas supplied from the carrier gas supply section 20 and the oxidation catalyst, which is a feature of the present invention, TC combustion tube 5 that converts all carbon to CO 2
And the sample 3 injected through the slide type IC sample injection portion 7b is transferred to the inorganic carbon (IC) under the IC reaction solution 7a.
From an IC reactor 7 for converting CO 2 into CO 2 .

【0011】前記キャリアガス供給部20は、図1に示
すように高純度空気6を圧縮して貯留している高純度空
気ボンベ6aから供給された高純度空気6を一定流量の
キャリアガス14として制御するガス流量制御部12
と、ブランク値を小さくする目的のためにキャリアガス
14に湿度を与える加湿器13と、同加湿器13から送
出されたキャリアガスの内の一定流量を逆止弁11を介
してスライド式TC試料注入部5bに供給するためのキ
ャピラリー15を流路とするキャリアガス流路17と、
他の一定流量をIC反応器7の出口へ分流させるための
キャピラリー16を流路とするバイパス流路18とから
構成されている。
As shown in FIG. 1, the carrier gas supply section 20 converts the high purity air 6 supplied from the high purity air cylinder 6a which stores the compressed high purity air 6 into a carrier gas 14 having a constant flow rate. Gas flow controller 12 to be controlled
And a humidifier 13 for providing humidity to the carrier gas 14 for the purpose of reducing the blank value, and a fixed flow rate of the carrier gas sent from the humidifier 13 through a check valve 11 for a slide TC sample. A carrier gas channel 17 having a capillary 15 as a channel for supplying to the injection section 5b;
A bypass flow path 18 having a capillary 16 as a flow path for diverting another constant flow rate to the outlet of the IC reactor 7.

【0012】前記キャピラリー15及びキャピラリー1
6には、内径0.1mm程度のステンレス製の細管が用
いられ、その長さを調節することによってそれぞれの流
路を通るキャリアガスの流量を調節している。例えば、
本実施例ではキャリアガス流路17とバイパス流路18
のキャリアガス流量をそれぞれ150ml/minと7
5ml/min(流量比で2:1)に調節している。
The above-mentioned capillary 15 and capillary 1
For 6, a stainless steel thin tube having an inner diameter of about 0.1 mm is used, and the flow rate of the carrier gas passing through each flow path is adjusted by adjusting its length. For example,
In this embodiment, the carrier gas flow path 17 and the bypass flow path 18
The carrier gas flow rates of 150 ml / min and 7
It is adjusted to 5 ml / min (2: 1 in flow ratio).

【0013】上記構成の元素分析計の酸化反応は次のよ
うな動作手順によって行われる。先ず、ロータリバルブ
4により試料注入器1を試料容器2側ポートに切り換
え、試料注入器1に試料3を吸入する。次に、試料注入
器1をスライド式TC試料注入部5b側ポートに切り換
え、試料注入器1より試料3をスライド式TC試料注入
部5bを介してTC燃焼管5に注入する。
The oxidation reaction of the element analyzer having the above structure is performed according to the following operation procedure. First, the sample injector 1 is switched to the sample container 2 side port by the rotary valve 4, and the sample 3 is sucked into the sample injector 1. Next, the sample injector 1 is switched to the port on the slide TC sample injector 5b side, and the sample 3 is injected from the sample injector 1 into the TC combustion tube 5 via the slide TC sample injector 5b.

【0014】前記TC燃焼管5はTC触媒を内蔵すると
共に前記キャリアガス流路17から逆止弁11を介して
150ml/minのキャリアガスが供給され、TC炉
5aにより600℃以上の一定高温で加熱されている。
このTC燃焼管5中に試料3が注入されると、試料3中
の全炭素は燃焼酸化されてCOに変換されると共に、
その燃焼中に水蒸気その他のガス成分が発生し、TC燃
焼管5の内部圧力が上昇する。そのため、逆止弁11が
閉じられ加湿器13内の圧力が上昇しようとするが、そ
の圧力上昇に比例してバイパス流路18中のキャリアガ
ス流量も増加するので加湿器13内の圧力上昇は抑えら
れる。
The TC combustion tube 5 has a built-in TC catalyst and is supplied with a carrier gas of 150 ml / min from the carrier gas passage 17 via the check valve 11. Heated.
When the sample 3 is injected into the TC combustion tube 5, all the carbon in the sample 3 is burned and oxidized and converted into CO 2 , and
During the combustion, steam and other gas components are generated, and the internal pressure of the TC combustion tube 5 increases. As a result, the check valve 11 is closed and the pressure in the humidifier 13 tends to increase, but the flow rate of the carrier gas in the bypass passage 18 also increases in proportion to the increase in the pressure. Can be suppressed.

【0015】TC燃焼管5の試料3が燃焼して測定ガス
となりIC反応器7に送出されることによりTC燃焼管
5の内部圧力がもとの圧力に戻ると、逆止弁11が開
き、キャリアガス流路17のキャリアガス流量及びバイ
パス流路18のキャリアガス流量はそれぞれ元の流量比
に回復する。これにより、TC燃焼管5には150ml
/minの所定流量のキャリアガスが供給され、一定濃
度のCOを含んだ測定ガスは図2に示したものと同様
の赤外線ガス分析部9の検出部に流入し、その全炭素は
COに変換されデータ処理部10にて試料中の全炭素
量(TC)が算出される。
When the internal pressure of the TC combustion tube 5 returns to the original pressure by burning the sample 3 of the TC combustion tube 5 to become a measurement gas and sending it to the IC reactor 7, the check valve 11 opens, The carrier gas flow rate in the carrier gas flow path 17 and the carrier gas flow rate in the bypass flow path 18 are respectively restored to the original flow rate ratios. As a result, the TC combustion tube 5 has 150 ml
/ Predetermined flow rate carrier gas of min is supplied, the measuring gas containing CO 2 of a constant concentration flows into detecting section of the same infrared gas analyzer unit 9 to that shown in FIG. 2, the entire carbon CO 2 And the data processor 10 calculates the total carbon amount (TC) in the sample.

【0016】次に、図2に示したようにロータリバルブ
4により試料注入器1を試料容器2側ポートに切り換
え、試料注入器1に試料3を吸入した後、前記試料注入
器1をスライド式IC試料注入部7b側に切り換え、所
定量の試料3を試料注入器1によりIC反応器7に注入
する。試料3中の無機炭素(IC)はCOに変換さ
れ、このCOの濃度がNDIR9により測定され、デ
ータ処理部10によりIC量が算出される。このように
して測定されたTC及びIC量から全有機体炭素量TO
Cは、TOC=TC−ICとして算出される。
Next, as shown in FIG. 2, the sample injector 1 is switched to the port on the sample container 2 side by the rotary valve 4, and the sample 3 is sucked into the sample injector 1, and then the sample injector 1 is slid. Switching to the IC sample injection section 7b side, a predetermined amount of the sample 3 is injected into the IC reactor 7 by the sample injector 1. Sample 3 in inorganic carbon (IC) is converted to CO 2, the concentration of the CO 2 is measured by NDIR9, IC amount by the data processing unit 10 is calculated. From the TC and IC amounts thus measured, the total organic carbon amount TO
C is calculated as TOC = TC-IC.

【0017】なお、前記キャリアガス流路17中のキャ
リアガス流量に対するバイパス流路18中のキャリアガ
ス流量比は、0.5〜1内で、測定誤差の許容範囲内で
できるだけ小さい値を使用することが望ましい。
The ratio of the flow rate of the carrier gas in the bypass passage 18 to the flow rate of the carrier gas in the carrier gas flow path 17 is within 0.5 to 1 and is as small as possible within the allowable range of the measurement error. It is desirable.

【0018】以上、本実施例においては液体試料を測定
対象として説明しているが、試料として固体試料でも気
体試料でも測定対象として用いることができる。固体試
料の場合であれば、試料をベルトコンベアに搭載して、
水平状態に設置したTC燃焼管5に送り込み、燃焼酸化
させることにより、また、気体試料であれば直接TC燃
焼管5に導入することにより液体試料の場合と同様な測
定方法で元素量を測定することができる。また、試料中
の全窒素(TN)を測定する場合には、燃焼酸化によっ
て全窒素を一酸化窒素(NO)に変換し、前記赤外線分
析部9の代わりに化学発光式ガス分析部を使用してNO
を測定することにより全窒素量を測定することができ
る。
As described above, in this embodiment, a liquid sample is described as a measurement target, but a solid sample or a gas sample can be used as a measurement target. If it is a solid sample, load the sample on a belt conveyor,
The amount of elements is measured by the same measurement method as in the case of a liquid sample by sending it to the TC combustion tube 5 installed in a horizontal state and burning and oxidizing it, or by directly introducing the gas sample into the TC combustion tube 5. be able to. When measuring the total nitrogen (TN) in the sample, the total nitrogen is converted to nitric oxide (NO) by combustion oxidation, and a chemiluminescent gas analyzer is used instead of the infrared analyzer 9. NO
By measuring the total amount of nitrogen, the total amount of nitrogen can be measured.

【0019】[0019]

【発明の効果】本発明の元素分析計は上記のように構成
されており、燃焼管内に発生する水蒸気による圧力変動
を抑制することができ、赤外線ガス分析部の検出器に入
るキャリアガス流量と圧力が一定となるので、測定精度
及び安定性を向上することができる。
The elemental analyzer of the present invention is configured as described above, and can suppress the pressure fluctuation due to the water vapor generated in the combustion tube. Since the pressure is constant, measurement accuracy and stability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の元素分析計の酸化反応部の実施例の構
成図である。
FIG. 1 is a configuration diagram of an embodiment of an oxidation reaction section of an element analyzer of the present invention.

【図2】従来の元素分析計の概略構成図である。FIG. 2 is a schematic configuration diagram of a conventional element analyzer.

【符号の説明】[Explanation of symbols]

1…試料注入器 2…試料容器 3…試料 4…ロータリバルブ 5…TC燃焼管 5a…TC炉 5b…スライド式TC試料注入部 6…高純度空気 6a…高純度空気ボンベ 7…IC反応器 7a…IC反応液 7b…スライド式IC試料注入部 8…除湿・ガス処理部 9…赤外線ガス分析部(NDIR) 10…データ処理部 11…逆止弁 12…ガス流量制御部 13…加湿器 14…キャリアガス 15、16…キャピラリー 17…キャリアガス流路 18…バイパス流路 DESCRIPTION OF SYMBOLS 1 ... Sample injector 2 ... Sample container 3 ... Sample 4 ... Rotary valve 5 ... TC combustion tube 5a ... TC furnace 5b ... Slide type TC sample injection part 6 ... High purity air 6a ... High purity air cylinder 7 ... IC reactor 7a ... IC reaction liquid 7b ... Slide type IC sample injection part 8 ... Dehumidification / gas processing part 9 ... Infrared gas analysis part (NDIR) 10 ... Data processing part 11 ... Check valve 12 ... Gas flow control part 13 ... Humidifier 14 ... Carrier gas 15, 16 Capillary 17 Carrier gas channel 18 Bypass channel

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】試料を試料燃焼管や試料反応管に注入して
反応させ、得られた測定ガスを分析手段により分析し、
試料中の元素量を測定する元素分析計において、前記試
料燃焼管に一定流量のキャリアガスを供給するためのガ
ス流量制御部と、キャリアガスに湿度を与えるための加
湿器と、測定ガスの逆流を阻止する逆止弁とを連結して
前記試料燃焼管にキャリアガスを供給すると共に、前記
逆止弁の上流側にキャリアガスの一部を前記試料燃焼管
からバイパスさせるためのバイパス流路を設けたことを
特徴とする元素分析計。
1. A sample is injected into a sample combustion tube or a sample reaction tube to cause a reaction, and the obtained measurement gas is analyzed by an analysis means.
In an elemental analyzer for measuring the amount of elements in a sample, a gas flow control unit for supplying a constant flow rate of a carrier gas to the sample combustion tube, a humidifier for giving humidity to the carrier gas, and a reverse flow of the measurement gas And supplying a carrier gas to the sample combustion tube by connecting a check valve that prevents the carrier gas from flowing through the sample combustion tube on the upstream side of the check valve. An elemental analyzer characterized by being provided.
JP2000215338A 2000-07-17 2000-07-17 Element analyzer Pending JP2002031628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000215338A JP2002031628A (en) 2000-07-17 2000-07-17 Element analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000215338A JP2002031628A (en) 2000-07-17 2000-07-17 Element analyzer

Publications (1)

Publication Number Publication Date
JP2002031628A true JP2002031628A (en) 2002-01-31

Family

ID=18710773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000215338A Pending JP2002031628A (en) 2000-07-17 2000-07-17 Element analyzer

Country Status (1)

Country Link
JP (1) JP2002031628A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294139A (en) * 2008-06-06 2009-12-17 Shimadzu Corp Autosampler and total organic carbon meter
CN102410988A (en) * 2011-12-02 2012-04-11 泰安市科瑞光学仪器有限公司 Infrared TOC (total organic carbon) analyzer
CN103969395A (en) * 2014-05-21 2014-08-06 南京麒麟科学仪器集团有限公司 Solenoid valve gas path system of high frequency furnace
CN106643164A (en) * 2016-12-14 2017-05-10 南京麒麟科学仪器集团有限公司 Novel electric-arc furnace and infrared carbon sulfur analysis meter
CN107917969A (en) * 2016-10-10 2018-04-17 赛默飞世尔科学股份有限公司 Elemental analyser
WO2022190466A1 (en) * 2021-03-12 2022-09-15 株式会社堀場製作所 Element analysis device, operation method for element analysis device, and work program for element analysis device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294139A (en) * 2008-06-06 2009-12-17 Shimadzu Corp Autosampler and total organic carbon meter
CN102410988A (en) * 2011-12-02 2012-04-11 泰安市科瑞光学仪器有限公司 Infrared TOC (total organic carbon) analyzer
CN103969395A (en) * 2014-05-21 2014-08-06 南京麒麟科学仪器集团有限公司 Solenoid valve gas path system of high frequency furnace
CN107917969A (en) * 2016-10-10 2018-04-17 赛默飞世尔科学股份有限公司 Elemental analyser
CN107917969B (en) * 2016-10-10 2022-04-01 赛默飞世尔科学股份有限公司 Element analyzer
CN106643164A (en) * 2016-12-14 2017-05-10 南京麒麟科学仪器集团有限公司 Novel electric-arc furnace and infrared carbon sulfur analysis meter
WO2022190466A1 (en) * 2021-03-12 2022-09-15 株式会社堀場製作所 Element analysis device, operation method for element analysis device, and work program for element analysis device

Similar Documents

Publication Publication Date Title
US7297549B2 (en) Method of determining measurement bias in an emissions monitoring system
RU2115108C1 (en) Method and device for determining gas mixture component
US9194850B2 (en) Measurement device for total organic carbon
JP4413160B2 (en) Exhaust gas component analyzer
EP0611965B1 (en) Carbon analyzer for both aqueous solutions and solid samples
JPH07318555A (en) Total organic carbon meter
US5041265A (en) Hydrogen gas analyzer with improved delivery system
JP2002031628A (en) Element analyzer
Tidona et al. Reducing interference effects in the chemiluminescent measurement of nitric oxides from combustion systems
US4325911A (en) Stack gas analyzer and thermal oxidation device therefor
US20060222563A1 (en) Gas analyzer and method for controlling hydrogen flame ionization detector
JP4314737B2 (en) Chemiluminescent nitrogen oxide concentration meter
US5976889A (en) Gas analyzer and method for detecting NOx
JP2004184191A (en) Method and analyzer for analyzing nitrogen compound in engine exhaust gas
JPH05302920A (en) Carbon measuring apparatus
JP4188096B2 (en) measuring device
JP2666448B2 (en) Total organic carbon analyzer
JP4247985B2 (en) Flow path switching analyzer and measuring apparatus using the same
JPH0827273B2 (en) Carbon measuring device
US4211748A (en) Stack gas analyzer and thermal oxidation device therefor
JP5393880B2 (en) A device for supplying and delivering a gas mixture in a controlled manner
US20230194496A1 (en) Method for determining a carbon content of a sample and toc analyzer
JPH08101187A (en) Measuring device for organic carbon with volatility
JP2002267653A (en) Nitrogen concentration measuring instrument
JP2001147228A (en) Combustion type water analyzer