JPH08101187A - Measuring device for organic carbon with volatility - Google Patents

Measuring device for organic carbon with volatility

Info

Publication number
JPH08101187A
JPH08101187A JP6238009A JP23800994A JPH08101187A JP H08101187 A JPH08101187 A JP H08101187A JP 6238009 A JP6238009 A JP 6238009A JP 23800994 A JP23800994 A JP 23800994A JP H08101187 A JPH08101187 A JP H08101187A
Authority
JP
Japan
Prior art keywords
gas
poc
carbon dioxide
sample
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6238009A
Other languages
Japanese (ja)
Inventor
Kenji Iharada
健志 居原田
Minako Inoue
美奈子 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP6238009A priority Critical patent/JPH08101187A/en
Publication of JPH08101187A publication Critical patent/JPH08101187A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: To provide a volatile organic carbon measuring device which can measure POC precisely. CONSTITUTION: A specimen TP supplied to a specimen sparge vessel 1 from a specimen vessel 4 by an injector 2 and a rotary valve 3 is subjected to bubbling with a carrier gas, and the POC component of the specimen TP is gasified in the unchanged state, while a part of the whole of the inorganic carbon component(s) is turned into carbon dioxide gas, which flows into flow paths I, II in equal quantity via a distributer 5. The gas having flowed to the flow path I is combusted in a POC combusting tube 7 so that the POC component in the gas is turned into carbon dioxide gas and supplied to one of the cells in a non-dispersive infrared gas analyzer 8 of comparative flow type, while the other portion of gas which has flowed to the flow path II is supplied in the unchanged state to the other cell of the gas analyzer 8. This gas analyzer 8 of comparative flow type senses the difference between the carbon dioxide amounts passing through the two cells, and a signal processing means 9 calculates the POC amount in the specimen TP processing the sensed signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、上下水道水、各種プラ
ント用水、河川等の水中に含まれる主として有機炭素の
量を測定するために用いられる炭素量測定装置に関し、
特に、揮発性有機炭素の量を測定する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon content measuring apparatus mainly used for measuring the quantity of organic carbon contained in water such as water and sewage water, water for various plants, and water in rivers,
In particular, it relates to a device for measuring the amount of volatile organic carbon.

【0002】[0002]

【従来技術】近年、公害調査等のため、上下水道水、各
種プラント用水、河川等の水中に含まれる有機炭素(O
C)を計測する必要が高まっており、揮発性有機炭素
(Purgeable OC(以下「POC」という。))の計測
も公害調査等の重要な項目の一つとなっている。
2. Description of the Related Art In recent years, organic carbon (O) contained in water such as water and sewage water, water for various plants, water in rivers, etc.
The need for measuring C) is increasing, and the measurement of volatile organic carbon (Purgeable OC (hereinafter referred to as “POC”)) is also one of the important items in pollution investigations.

【0003】かかるPOC測定に際して、従来では、次
の2つの方法が採用されていた。
Conventionally, the following two methods have been adopted for such POC measurement.

【0004】まず、第1の方法では、試料水をキャリア
ガスでバブリングし、このときキャリアガス中に抽出さ
れたPOCのガスと、無機体炭素(IC)から変換され
たニ酸化炭素のうち、二酸化炭素(CO2 )を水酸化リ
チウム(LiOH)などのアルカリ物質を用いて吸着、
除去した後、残りのPOCガスを燃焼させて二酸化炭素
に変換してから、この二酸化炭素の量をガス分析計等で
測定することにより、POCの量を計測していた。
First, in the first method, sample water is bubbled with a carrier gas, and among the POC gas extracted into the carrier gas at this time and carbon dioxide converted from inorganic carbon (IC), Carbon dioxide (CO2) is adsorbed using an alkaline substance such as lithium hydroxide (LiOH),
After the removal, the remaining POC gas was burned to convert it into carbon dioxide, and then the amount of this carbon dioxide was measured with a gas analyzer or the like to measure the amount of POC.

【0005】また、第2の方法では、試料水をキャリア
ガスでバブリングし、このときキャリアガス中に抽出さ
れたPOCガスと、無機体炭素(IC)から変換された
ニ酸化炭素のうち、POC吸着剤、例えばモレキュラー
シーブ等を用いてPOCガスをトラップし、無機体炭素
から変換されたニ酸化炭素が完全に通過した後、温度を
上げるなどしてトラップからPOCを脱着させ、これを
燃焼させて二酸化炭素に変換してから、この二酸化炭素
の量をガス分析計等で測定することにより、POCの量
を計測していた。
In the second method, the sample water is bubbled with a carrier gas, and the POC gas extracted in the carrier gas at this time and the carbon dioxide converted from inorganic carbon (IC) are POC. The POC gas is trapped by using an adsorbent such as a molecular sieve, and after the carbon dioxide converted from the inorganic carbon has completely passed through, the temperature is raised to desorb the POC from the trap and burn it. The amount of POC was measured by measuring the amount of this carbon dioxide with a gas analyzer or the like after converting it to carbon dioxide.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記第
1の方法では、POCにエステルが含まれている場合
等、POCの成分によっては、POC自体が前記した水
酸化リチウム(LiOH)などのアルカリ物質に吸着さ
れるため、POCの測定に際して負の誤差を与える場合
があった。
However, in the first method, depending on the POC component, such as when the POC contains an ester, the POC itself may be an alkaline substance such as lithium hydroxide (LiOH). Therefore, a negative error may be given in the measurement of POC.

【0007】また、上記第2の方法では、例えば、低分
子量化合物等POCの成分によっては、すべてのPOC
が前記POC吸着剤に完全に吸着されない場合があるた
め、上記第1の方法の場合と同様にPOCの測定に際し
て負の誤差を与えることがあった。さらに、上記第2の
方法では、POC吸着剤の昇温、降温という操作が必要
になるため、測定に長時間を要していた。
In the second method, depending on the POC component such as a low molecular weight compound, all the POC
May not be completely adsorbed by the POC adsorbent, so that a negative error may be given in the POC measurement as in the case of the first method. Further, in the second method, the operation of raising and lowering the temperature of the POC adsorbent is required, so that the measurement takes a long time.

【0008】そこで、本発明はかかる問題点を解消する
ため、試料中のPOCの正確な測定を可能とする揮発性
有機炭素測定装置を提供する。
Therefore, the present invention provides a volatile organic carbon measuring apparatus capable of accurately measuring the POC in a sample in order to solve such a problem.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明にかかる揮発性有機炭素測定装置は、試料溶
液を保持し、抽出ガスを吹き込むことにより試料溶液中
の揮発性有機炭素を気化させるバブリング手段と、揮発
性有機炭素を燃焼させる燃焼手段を備え、前記バブリン
グ手段からのガスを燃焼させることにより、その揮発性
有機炭素成分を二酸化炭素ガスに変換する第1の流路
と、前記バブリング手段からのガスをそのまま通過させ
る第2の流路と、前記第1の流路と前記第2の流路から
それぞれ供給されるガス中の二酸化炭素の量から試料中
の揮発性有機炭素の量を計測する計測手段と、を備えた
ことを特徴とする。
In order to achieve the above object, the volatile organic carbon measuring apparatus according to the present invention holds a sample solution and blows an extraction gas to remove the volatile organic carbon in the sample solution. A bubbling means for vaporizing, and a combustion means for burning volatile organic carbon, by burning the gas from the bubbling means, a first flow path for converting the volatile organic carbon component into carbon dioxide gas, Volatile organic carbon in the sample based on the amount of carbon dioxide in the gas supplied from each of the first flow path and the second flow path and the second flow path that allows the gas from the bubbling means to pass through as it is. And a measuring means for measuring the amount of.

【0010】[0010]

【作用】本発明の作用を図1に基づいて説明すると、試
料注入器2及びロータリバルブ3によって試料容器4か
ら試料スパージ容器1に供給された試料TPは、キャリ
アガスによってバブリングされ、試料TP中のPOC成
分はそのまま気化し、無機体炭素成分の一部またはすべ
ては二酸化炭素ガスに変換されて分配器5を介して等量
づつ流路I及び流路IIに流れ込む。流路Iに流れたガス
は、POC燃焼管7で燃焼され、ガス中のPOC成分が
二酸化炭素ガスに変換され、比較流通型の非分散型赤外
線ガス分析計8の一方のセルに供給されると共に、流路
IIに流れたガスは、そのまま非分散型赤外線ガス分析計
8の他方のセルに供給される。そして、比較流通型の非
分散型赤外線ガス分析計8は両セルを通過する二酸化炭
素量の差を検出し、信号処理手段9は検出された信号を
処理することによって、試料TP中のPOC量を算出す
る。
The operation of the present invention will be described with reference to FIG. 1. The sample TP supplied from the sample container 4 to the sample sparge container 1 by the sample injector 2 and the rotary valve 3 is bubbled by the carrier gas, The POC component is vaporized as it is, and a part or all of the inorganic carbon component is converted into carbon dioxide gas and flows into the flow passages I and II via the distributor 5 in equal amounts. The gas flowing through the flow path I is burned in the POC combustion tube 7, the POC component in the gas is converted into carbon dioxide gas, and the COC gas is supplied to one cell of the non-dispersive infrared gas analyzer 8 of the comparative flow type. Along with the flow path
The gas flowing in II is directly supplied to the other cell of the non-dispersion type infrared gas analyzer 8. Then, the comparison flow type non-dispersion type infrared gas analyzer 8 detects the difference in the amount of carbon dioxide passing through both cells, and the signal processing means 9 processes the detected signal, thereby the amount of POC in the sample TP. To calculate.

【0011】[0011]

【実施例】以下、本発明の一実施例を図1及び図2に基
づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS.

【0012】図1は本発明にかかる揮発性有機炭素測定
装置の一例であり、1はガラス製の試料スパージ容器
で、これに試料TPを収容したのち、下方から高純度空
気等のキャリアガスを吹き込むことによって試料TPの
バブリングを行い、試料TP中のPOC成分を気化し、
これに伴って無機体炭素成分の一部またはすべてが二酸
化炭素に変換される。なお、高純度空気等のキャリアガ
ス2は不図示のボンベ等から一定量が供給されるよう構
成されている。
FIG. 1 shows an example of a volatile organic carbon measuring apparatus according to the present invention. Reference numeral 1 is a glass sample sparging container, in which a sample TP is accommodated, and then a carrier gas such as high-purity air is supplied from below. Bubbling of the sample TP by blowing, vaporize the POC component in the sample TP,
Along with this, part or all of the inorganic carbon component is converted to carbon dioxide. The carrier gas 2 such as high-purity air is configured to be supplied in a fixed amount from a cylinder or the like (not shown).

【0013】2は試料注入器で、試料容器4に保持され
た試料TPをロータリバルブ3を介して所定量吸入し、
その後ロータリバルブ3を切り換えて試料スパージ容器
1に吸入した試料TPを送出する。
Reference numeral 2 denotes a sample injector, which inhales a predetermined amount of the sample TP held in the sample container 4 through the rotary valve 3,
After that, the rotary valve 3 is switched to deliver the sample TP sucked into the sample sparge container 1.

【0014】5は分配器で、試料スパージ容器1で気化
したPOCガスと二酸化炭素ガスを流路I及び流路IIに
それぞれ等量づつ分配供給する。この流路Iにはその途
中に、例えば、白金等の酸化触媒を内部に充填した石英
ガラス製のPOC燃焼管7が接続されており、このPO
C燃焼管7はその周囲に配設された電気炉6によって加
熱される。このため、流路Iを通過したガスのうち、そ
のPOC成分はPOC燃焼管7を通過する際に燃焼され
て二酸化炭素ガスに変換されて、比較流通型の非分散型
赤外線分析装置8の一方のセルに供給される。一方、流
路IIを通過するガスはそのまま比較流通型の非分散型赤
外線分析装置8の他方のセルに供給される。
Reference numeral 5 denotes a distributor, which distributes the POC gas and carbon dioxide gas vaporized in the sample sparge container 1 to the flow paths I and II in equal amounts. A POC combustion tube 7 made of, for example, quartz glass having an oxidation catalyst such as platinum filled therein is connected to the flow path I in the middle thereof.
The C combustion tube 7 is heated by the electric furnace 6 arranged around it. Therefore, of the gas that has passed through the flow path I, its POC component is burned when passing through the POC combustion tube 7 and converted into carbon dioxide gas, and one of the non-dispersive infrared analyzers 8 of the comparative flow type. Supplied to the cell. On the other hand, the gas passing through the flow path II is directly supplied to the other cell of the non-dispersive infrared analyzer 8 of the comparative flow type.

【0015】8は比較流通型の非分散型赤外線分析装置
であり、一方のセルに供給された二酸化炭素の量に対す
る他方のセルに供給された二酸化炭素の量の相対値、す
なわち両者の検出量の差を信号として出力する。本実施
例の場合、流路IIから供給された二酸化炭素の量(無機
体炭素成分を示す二酸化炭素の量)に対する流路Iから
供給された二酸化炭素の量(POC成分と無機体炭素成
分との和を示す二酸化炭素の量)の相対値を示す信号が
出力されるよう構成されている。9は信号処理手段で、
比較流通型の非分散型赤外線分析装置8からの二酸化炭
素の差信号に基づいて、周知の方法に基づき試料TP中
のPOC量を算出する。
Reference numeral 8 is a comparative distribution type non-dispersive infrared analyzer, which is a relative value of the amount of carbon dioxide supplied to one cell to the amount of carbon dioxide supplied to the other cell, that is, the detected amount of both. The difference is output as a signal. In the case of the present embodiment, the amount of carbon dioxide supplied from the flow path I (the amount of POC component and the inorganic carbon component) with respect to the amount of carbon dioxide supplied from the flow path II (the amount of carbon dioxide indicating the inorganic carbon component). Is configured to output a signal indicating a relative value of (amount of carbon dioxide indicating the sum of). 9 is a signal processing means,
Based on the difference signal of carbon dioxide from the non-dispersive infrared analyzer 8 of the comparative flow type, the POC amount in the sample TP is calculated by a known method.

【0016】次に、本発明の上記実施例の動作を図1に
基づいて説明する。同図において、試料注入器2及びロ
ータリバルブ3によって試料容器4から試料スパージ容
器1に供給された試料TPは、キャリアガスによってバ
ブリングされ、試料TP中のPOC成分はそのまま気化
し、無機体炭素成分の一部またはすべては二酸化炭素ガ
スに変換される。ここで、気化したPOCガスと二酸化
炭素ガスは分配器5に到達し、当分量づつ流路I及び流
路IIに分配される。
Next, the operation of the above embodiment of the present invention will be described with reference to FIG. In the figure, the sample TP supplied from the sample container 4 to the sample sparge container 1 by the sample injector 2 and the rotary valve 3 is bubbled by the carrier gas, the POC component in the sample TP is vaporized as it is, and the inorganic carbon component Some or all of this is converted to carbon dioxide gas. Here, the vaporized POC gas and carbon dioxide gas reach the distributor 5 and are distributed to the flow paths I and II in equal amounts.

【0017】ここで、流路Iに流れたガスは、そのPO
C成分がPOC燃焼管7を通過する際に燃焼され二酸化
炭素ガスに変換されるが、無機体炭素成分から変換され
た二酸化炭素ガスはPOC燃焼管7をそのまま通過し
て、比較流通型の非分散型赤外線分析計8の一方のセル
に供給される。また、流路IIに流れたガスは、そのまま
流路IIを通過し、非分散型赤外線ガス分析計8の他方の
セルに供給される。
Here, the gas flowing through the flow path I is the PO
When the C component passes through the POC combustion pipe 7, it is burned and converted into carbon dioxide gas, but the carbon dioxide gas converted from the inorganic carbon component passes through the POC combustion pipe 7 as it is, and the non-comparative type It is supplied to one cell of the dispersion type infrared analyzer 8. Further, the gas flowing through the flow path II passes through the flow path II as it is and is supplied to the other cell of the non-dispersion type infrared gas analyzer 8.

【0018】そして、非分散型赤外線分析計8では、一
方のセルに供給された二酸化炭素の量に対する他方のセ
ルに供給された二酸化炭素の量の相対値、すなわち両者
の検出量の差を検出してその信号を信号処理手段9に出
力する。ここで、流路Iから供給される二酸化炭素の量
は、試料TP中のPOC成分と抽出された無機体炭素成
分の量の和に対応し、流路IIから供給される二酸化炭素
の量は試料TPから抽出された無機体炭素成分の量のみ
に対応するため、両流路の二酸化炭素量の差信号は試料
TP中のPOC成分の量に対応する値を示すこととな
る。非分散型赤外線分析計8から出力されたPOC成分
の量に対応する二酸化炭素の量を示す信号は、信号処理
手段9において、途中の化学反応等を考慮した周知の信
号処理を受けて、実際のPOC量が求められる。
The non-dispersive infrared analyzer 8 detects the relative value of the amount of carbon dioxide supplied to the other cell to the amount of carbon dioxide supplied to the other cell, that is, the difference between the detected amounts of the two. Then, the signal is output to the signal processing means 9. Here, the amount of carbon dioxide supplied from the channel I corresponds to the sum of the amounts of the POC component and the extracted inorganic carbon component in the sample TP, and the amount of carbon dioxide supplied from the channel II is Since it corresponds only to the amount of the inorganic carbon component extracted from the sample TP, the difference signal between the amounts of carbon dioxide in both channels shows a value corresponding to the amount of the POC component in the sample TP. The signal indicating the amount of carbon dioxide corresponding to the amount of the POC component output from the non-dispersive infrared analyzer 8 is actually subjected to well-known signal processing in consideration of a chemical reaction in the middle in the signal processing means 9, and is actually The POC amount of is calculated.

【0019】図2は、本発明にかかる揮発性有機炭素測
定装置の第2の実施例を示す図であり、基本的な構成は
図1の実施例と同じであるが、分配器5に換えて、試料
スパージ容器1からのガスを流路I及び流路IIに切り換
え供給する3方電磁弁5’を、また比較流通型の非分散
型赤外線分析計8に換えて、一方のセルにリファレンス
ガスを密封したリファレンス型の非分散型赤外線分析計
8’を用いた点のみが異なる。
FIG. 2 is a diagram showing a second embodiment of the volatile organic carbon measuring apparatus according to the present invention. The basic structure is the same as that of the embodiment of FIG. Then, the three-way solenoid valve 5 ′ for switching and supplying the gas from the sample sparge container 1 to the flow path I and the flow path II is replaced with a non-dispersive infrared analyzer 8 of a comparative flow type, and a reference is made to one cell. The only difference is that a reference non-dispersive infrared analyzer 8'in which a gas is sealed is used.

【0020】ここで、本発明の第2の実施例の動作を図
2に基づいて説明する。まず、3方電磁弁5’を流路I
側に切り換えた状態で、試料注入器2及びロータリバル
ブ3によって試料容器4から試料スパージ容器1に一定
量の試料TPを供給し、キャリアガスによってバブリン
グする。これにより、試料TP中のPOC成分はそのま
ま気化し、無機体炭素成分の一部またはすべては二酸化
炭素ガスに変換され、これらのガスは3方電磁弁5’を
介して流路Iに流れ込む。
The operation of the second embodiment of the present invention will be described with reference to FIG. First, set the three-way solenoid valve 5'to the flow path I.
In the state of switching to the side, a fixed amount of the sample TP is supplied from the sample container 4 to the sample sparge container 1 by the sample injector 2 and the rotary valve 3, and the carrier gas is bubbled. As a result, the POC component in the sample TP is vaporized as it is, part or all of the inorganic carbon component is converted into carbon dioxide gas, and these gases flow into the flow path I via the three-way solenoid valve 5 ′.

【0021】流路Iに流れたガスは、そのPOC成分が
POC燃焼管7で燃焼され二酸化炭素ガスに変換される
が、無機体炭素成分から変換された二酸化炭素ガスはP
OC燃焼管7をそのまま通過して、非分散型赤外線ガス
分析計8’のセルに供給され二酸化炭素の量が検出され
る。
The POC component of the gas flowing through the flow path I is burned in the POC combustion pipe 7 and converted into carbon dioxide gas. The carbon dioxide gas converted from the inorganic carbon component is P
After passing through the OC combustion tube 7 as it is, the amount of carbon dioxide supplied to the cell of the non-dispersion type infrared gas analyzer 8'is detected.

【0022】次に、3方電磁弁5’を流路II側に切り換
え、試料注入器2及びロータリバルブ3によって試料容
器4から試料スパージ容器1に前回と同量の試料TPを
供給し、再度キャリアガスによってバブリングする。こ
れにより、試料TP中のPOC成分はそのまま気化し、
無機体炭素成分の一部またはすべては二酸化炭素ガスに
変換され、これらのガスは3方電磁弁5’を介して流路
IIに流れ込む。そして、流路IIに流れたガスはそのまま
流路IIを通過し、非分散型赤外線ガス分析計8’のセル
に供給され、二酸化炭素の量が検出される。検出された
両信号は、信号処理手段9で、その差分が採られた後、
所定の信号処理を受け、図1の場合と同様に試料TP中
に含まれるPOC量が求められる。
Next, the three-way solenoid valve 5'is switched to the flow path II side, the sample injector 2 and the rotary valve 3 supply the same amount of the sample TP from the sample container 4 to the sample sparge container 1 as before, and again. Bubble with carrier gas. As a result, the POC component in the sample TP is vaporized as it is,
Part or all of the inorganic carbon component is converted into carbon dioxide gas, and these gases are flowed through the three-way solenoid valve 5 '.
Pour into II. Then, the gas flowing in the flow path II passes through the flow path II as it is, is supplied to the cell of the non-dispersion type infrared gas analyzer 8 ', and the amount of carbon dioxide is detected. After the difference between the two detected signals is taken by the signal processing means 9,
The predetermined signal processing is performed, and the POC amount contained in the sample TP is obtained as in the case of FIG.

【0023】上述したように、本発明によれば、従来の
ようにPOCを検出するための過程で一部のPOCが欠
落するといった事態が生じないため、試料中のPOC量
を確実かつ正確に計測することができる。特に、本発明
の第1の実施例では、流路I及び流路IIに同時にバブリ
ングしたガスを流すことができるため、計測時間が短縮
できるという利点があり、また、本発明の第2の実施例
では、流路I及び流路IIに別個にバブリングしたガスを
流すため、第1の実施例に比べて計測時間が長くなる
が、流路I及び流路IIに流れるガスをより正確な量とで
きるため、POC量の検出精度が向上する。
As described above, according to the present invention, the situation in which some POCs are lost in the conventional process for detecting POCs does not occur, so the amount of POCs in a sample can be reliably and accurately determined. It can be measured. In particular, the first embodiment of the present invention has an advantage that the measurement time can be shortened because the bubbling gas can be flowed in the flow passage I and the flow passage II at the same time, and the second embodiment of the present invention can be performed. In the example, since the separately bubbled gas is flowed in the flow paths I and II, the measurement time is longer than that in the first embodiment, but the gas flowing in the flow paths I and II is more accurately measured. Therefore, the detection accuracy of the POC amount is improved.

【0024】なお、上述の実施例において、試料TPに
塩酸等の酸を少量加えて試料TPのPHを3〜4以下に
して測定を行うと、試料スパージ容器内でのバブリング
の際に無機体炭素ICの抽出が速やかに、しかも完全に
行われるので、第2の実施例において流路IIを用いた測
定から無機体炭素ICの量を計測することも可能にな
る。ただし、POC量を計測する目的だけの場合は、酸
の添加は特に必要とされるものではない。
In the above-mentioned embodiment, when a small amount of acid such as hydrochloric acid is added to the sample TP and the pH of the sample TP is set to 3 to 4 or less and the measurement is performed, the inorganic substance is not bubbled during bubbling in the sample sparge container. Since the extraction of carbon IC is carried out quickly and completely, it becomes possible to measure the amount of inorganic carbon IC from the measurement using the channel II in the second embodiment. However, for the purpose of measuring the POC amount only, the addition of acid is not particularly required.

【0025】[0025]

【発明の効果】本発明によれば、POCを検出するため
過程で一部のPOCが欠落するといった事態が生じない
ため、試料中のPOC量を確実かつ正確に計測すること
ができる。
As described above, according to the present invention, since a situation in which a part of POC is lost during the process of detecting POC does not occur, the amount of POC in a sample can be measured reliably and accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる揮発性有機炭素測定装置の一実
施例である。
FIG. 1 is an example of a volatile organic carbon measuring device according to the present invention.

【図2】本発明にかかる揮発性有機炭素測定装置の他の
実施例である。
FIG. 2 is another embodiment of the volatile organic carbon measuring device according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・・試料スパージ容器 2・・・・・・試料注入器 3・・・・・・ロータリバルブ 4・・・・・・試料容器 5・・・・・・分配器 6・・・・・・電気炉 7・・・・・・POC燃焼管 8・・・・・・比較流通型の非分散型赤外線分析計 9・・・・・・信号処理手段 1 ・ ・ Sample sparging container 2 ・ ・ ・ ・ ・ ・ Sample injector 3 ・ ・ ・ ・ ・ ・ Rotary valve 4 ・ ・ ・ ・ ・ ・ Sample container 5 ・ ・ ・ ・ ・ ・ Distributor 6 ・ ・··· Electric furnace 7 ··· POC combustion tube 8 ··· Comparative flow type non-dispersive infrared analyzer 9 ··· Signal processing means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料溶液を保持し、抽出ガスを吹き込む
ことにより試料溶液中の揮発性有機炭素を気化させるバ
ブリング手段と、 揮発性有機炭素を燃焼させる燃焼手段を備え、前記バブ
リング手段からのガスを燃焼させることにより、その揮
発性有機炭素成分を二酸化炭素ガスに変換する第1の流
路と、 前記バブリング手段からのガスをそのまま通過させる第
2の流路と、 前記第1の流路と前記第2の流路からそれぞれ供給され
るガス中の二酸化炭素の量から試料中の揮発性有機炭素
の量を測定する計測手段と、 を備えたことを特徴とする揮発性有機炭素測定装置。
1. A gas from the bubbling means, comprising a bubbling means for holding the sample solution and vaporizing the volatile organic carbon in the sample solution by blowing an extraction gas, and a combustion means for burning the volatile organic carbon. A first flow path for converting the volatile organic carbon component into carbon dioxide gas by burning the second flow path, a second flow path for allowing the gas from the bubbling means to pass therethrough, and the first flow path. A measuring device for measuring the amount of volatile organic carbon in a sample from the amount of carbon dioxide in the gas respectively supplied from the second flow path, and a volatile organic carbon measuring device.
JP6238009A 1994-09-30 1994-09-30 Measuring device for organic carbon with volatility Pending JPH08101187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6238009A JPH08101187A (en) 1994-09-30 1994-09-30 Measuring device for organic carbon with volatility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6238009A JPH08101187A (en) 1994-09-30 1994-09-30 Measuring device for organic carbon with volatility

Publications (1)

Publication Number Publication Date
JPH08101187A true JPH08101187A (en) 1996-04-16

Family

ID=17023793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6238009A Pending JPH08101187A (en) 1994-09-30 1994-09-30 Measuring device for organic carbon with volatility

Country Status (1)

Country Link
JP (1) JPH08101187A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010090641A (en) * 2000-04-10 2001-10-19 손정익 Infrared CO2 analyzing system using sample injection method
JP2007170982A (en) * 2005-12-22 2007-07-05 Dkk Toa Corp Gas analyzer
WO2011155086A1 (en) * 2010-06-10 2011-12-15 三菱重工業株式会社 Gas calorific-value measurement device and gas calorific-value measurement method
WO2016132526A1 (en) * 2015-02-20 2016-08-25 株式会社島津製作所 Device for pretreatment of specimen and analyzer equipped therewith, and method for pretreatment of specimen

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010090641A (en) * 2000-04-10 2001-10-19 손정익 Infrared CO2 analyzing system using sample injection method
JP2007170982A (en) * 2005-12-22 2007-07-05 Dkk Toa Corp Gas analyzer
JP4688672B2 (en) * 2005-12-22 2011-05-25 東亜ディーケーケー株式会社 Gas analyzer
WO2011155086A1 (en) * 2010-06-10 2011-12-15 三菱重工業株式会社 Gas calorific-value measurement device and gas calorific-value measurement method
JP2011257320A (en) * 2010-06-10 2011-12-22 Mitsubishi Heavy Ind Ltd Gas heating value measurement device and gas heating value measurement method
WO2016132526A1 (en) * 2015-02-20 2016-08-25 株式会社島津製作所 Device for pretreatment of specimen and analyzer equipped therewith, and method for pretreatment of specimen
JPWO2016132526A1 (en) * 2015-02-20 2017-07-20 株式会社島津製作所 Sample pretreatment apparatus, analyzer equipped with the same, and sample pretreatment method

Similar Documents

Publication Publication Date Title
JPH07318555A (en) Total organic carbon meter
JP2001356094A (en) Method for analyzing impurities in gas flow
JPH08101187A (en) Measuring device for organic carbon with volatility
CN110412190A (en) The analysis system and its analysis method of methane and non-methane total hydrocarbons
CN110031587A (en) Measure the pre-concentration-gas chromatograph and detection method of sulfide content in hydrogen
CN211627474U (en) Analysis system for nitrogen element in fertilizer
CN110376324A (en) Utilize the method and gas chromatograph of flame ionization ditector measurement oxygen concentration
JPH05302920A (en) Carbon measuring apparatus
CN211627469U (en) Carbon-hydrogen nitrogen element analysis system based on chromatographic separation
WO1993011421A1 (en) Method and apparatus for monitoring a supply of gas
JP3315009B2 (en) Method and apparatus for measuring engine oil consumption
JPH06242097A (en) Organic carbon measuring equipment
JP2002031628A (en) Element analyzer
CN112986453B (en) Method and system for high-resolution determination of organic carbon isotopes in stalagmite
JPH0827273B2 (en) Carbon measuring device
JP3111647B2 (en) Carbon content measuring device
JPH076969B2 (en) Total carbon measuring device
Zuev et al. Rapid determination of the chemical oxygen demand in water with the use of high-temperature solid-electrolyte cells
SU1713882A1 (en) Method of measuring hydrogen concentration
JPH0245825B2 (en) KIHATSUSEIJUKITANSONOSOKUTEIHOOYOBISOKUTEISOCHI
JPS594285Y2 (en) Total organic carbon measuring device
CN111141857A (en) Carbon-hydrogen nitrogen element analysis system and method based on chromatographic separation
JPH1151869A (en) Total organic carbon/total nitrogen meter
JP2874599B2 (en) Total organic carbon meter
RU2166753C2 (en) Procedure and device determining concentration of organic substances in liquid sample