JPH076969B2 - Total carbon measuring device - Google Patents

Total carbon measuring device

Info

Publication number
JPH076969B2
JPH076969B2 JP12463385A JP12463385A JPH076969B2 JP H076969 B2 JPH076969 B2 JP H076969B2 JP 12463385 A JP12463385 A JP 12463385A JP 12463385 A JP12463385 A JP 12463385A JP H076969 B2 JPH076969 B2 JP H076969B2
Authority
JP
Japan
Prior art keywords
carbon
peak
sample
combustion
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12463385A
Other languages
Japanese (ja)
Other versions
JPS61281966A (en
Inventor
洋造 森田
英之 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP12463385A priority Critical patent/JPH076969B2/en
Publication of JPS61281966A publication Critical patent/JPS61281966A/en
Publication of JPH076969B2 publication Critical patent/JPH076969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、水性系試料の炭素含有物質を燃焼させて生
成した二酸化炭素をガス検出器で検出することによつて
全炭素(無機及び有機)量を測定する全炭素測定装置に
関し、特に500〜700℃のごとき低温で炭素含有物質を燃
焼させて生成した二酸化炭素をガス検出器で検出しその
検出信号のピーク面積から全炭素量を測定する全炭素測
定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention detects total carbon (inorganic and inorganic carbon) by detecting carbon dioxide produced by burning a carbon-containing substance of an aqueous sample with a gas detector. For the total carbon measuring device for measuring the (organic) amount, especially the carbon dioxide produced by burning a carbon-containing substance at a low temperature such as 500 to 700 ° C is detected by a gas detector, and the total carbon amount is calculated from the peak area of the detection signal. The present invention relates to a total carbon measuring device.

(ロ)従来の技術 従来の全炭素測定装置としては特公昭49−25236号に開
示されているものが挙げられる。この測定装置は水性系
試料を酸素ガスで燃焼部に送り700〜1100℃好ましくは9
00〜1000℃に加熱して試料中の炭素含有物質を燃焼させ
生成した二酸化炭素をガス検出器で検出しその検出信号
のピーク高さを測定して全炭素量を測定する方法であ
る。
(B) Conventional Technique As a conventional total carbon measuring device, the one disclosed in Japanese Patent Publication No. 49-25236 can be mentioned. This measuring device sends an aqueous sample by oxygen gas to the combustion section at 700-1100 ° C, preferably 9
It is a method of measuring the total carbon content by heating the gas to a temperature of 100 to 1000 ° C. and burning the carbon-containing substance in the sample to detect the generated carbon dioxide with a gas detector and measuring the peak height of the detection signal.

しかしこの測定装置には次のような問題点がある。However, this measuring device has the following problems.

(i)燃焼温度が高いために、例えば海水のような無機
塩分(塩化ナトリウムなど)を多量に含有する試料の場
合、a)干渉性物質を発生し測定を妨害して測定精度を
低下させる、及びb)この無機塩分が燃焼管(石英ガラ
ス、アルミナなど)や燃焼触媒をおかし寿命を短くす
る。
(I) In the case of a sample containing a large amount of inorganic salts (such as sodium chloride) such as seawater due to a high combustion temperature, a) an interfering substance is generated, which interferes with the measurement and reduces the measurement accuracy, And b) This inorganic salt component shortens the service life by damaging the combustion tube (quartz glass, alumina, etc.) and the combustion catalyst.

(ii)ピーク高さで測定するために、a)燃焼温度を90
0℃以下に下げると難燃性の物質や、高い分解温度を要
する炭素塩(K2CO3など)などは測定値が低くなる、
b)試料注入の速度が測定値に影響する、c)試料注入
量が多過ぎると燃焼部の温度が一時的に低下するため感
度や繰返し精度が低下する。したがつて注入量を増加さ
せて測定感度を上昇させることがむつかしい、及びd)
注入量は一定でなければならない。
(Ii) To measure at peak height: a) burning temperature of 90
If the temperature is lowered to 0 ° C or below, flame retardant substances and carbon salts (such as K 2 CO 3 ) that require a high decomposition temperature will have low measured values.
b) The rate of sample injection influences the measured value. c) If the amount of sample injection is too large, the temperature of the combustion part is temporarily reduced, and the sensitivity and repeatability are reduced. Therefore, it is difficult to increase the injection amount to increase the measurement sensitivity, and d).
The injection volume must be constant.

また特開昭52−48391号には、水性試料を酸素ガス含有
の不活性ガスで燃焼部に送つて該不活性ガスを閉止して
燃焼部を密封状態にしておいて、700℃以下の低温で加
熱し試料中の炭素含有物質を充分に燃焼させた後、生成
した二酸化炭素ガスを不活性ガス流でガス検出器に送つ
て検出し、その検出信号のピーク高さを測定して全炭素
量を測定するいわゆる密封式の装置が開示されている。
この装置によれば燃焼温度が低いので前記従来例のよう
な燃焼温度が高いことが原因の問題点は解消するが、電
磁弁やタイマ装置を要しコスト高になるとか一旦ガス流
を停止するためにシステムブランク(全炭素分が零の水
を注入した際に生ずるピーク)が高くなるという不利な
点がある。
Further, in JP-A-52-48391, an aqueous sample is sent to a combustion part by an inert gas containing oxygen gas, the inert gas is closed and the combustion part is kept in a sealed state, and a low temperature of 700 ° C or lower is used. After burning the carbon-containing substance in the sample sufficiently by heating with, the generated carbon dioxide gas is sent to the gas detector with an inert gas flow to detect it, and the peak height of the detected signal is measured to measure the total carbon content. So-called sealed devices for measuring quantity have been disclosed.
Since this device has a low combustion temperature, the problem caused by the high combustion temperature as in the conventional example can be solved, but a solenoid valve and a timer device are required to increase the cost or stop the gas flow once. This has the disadvantage of increasing the system blank (the peak that occurs when water with zero total carbon content is injected).

(ハ)発明が解決しようとする問題点 この発明は、上記のごとき従来例の問題点を改善すると
ともに、500〜700℃という比較的低温で試料中の炭素含
有物質を燃焼させしかも上記密封式の装置のように特別
の装置や操作を要せず、特に炭素成分の含有量が微量の
(1ppm以下)試料を多量に注入して炭素分を測定するい
わゆる高感度測定に好適な炭素測定装置を提供するもの
である。
(C) Problems to be solved by the invention The present invention solves the problems of the conventional examples as described above, and also burns the carbon-containing substance in the sample at a relatively low temperature of 500 to 700 ° C. The carbon measuring device is suitable for so-called high-sensitivity measurement, in which a large amount of a small amount of carbon component (1 ppm or less) is injected to measure the carbon content, without requiring any special device or operation like the device Is provided.

(ニ)問題を解決するための手段及び作用 この発明は、純酸素又は酸素を含有する不活性ガスのキ
ヤリヤガス供給部、加湿部、試料導入部、二酸化炭素な
どの炭素含有ガス成分を実質的に吸着せず、低熱伝導度
で耐熱性の維持状担体に酸化触媒を担持させた触媒が充
填され加熱炉を具備した燃焼部、水分凝縮除去部、濾過
部、非分散形赤外線ガス検出器、検出信号のピーク面積
の演算・定量部並びに表示部を順に連結してなる全炭素
測定装置を提供するものである。
(D) Means and Actions for Solving the Problems This invention substantially eliminates carbon-containing gas components such as a carrier gas supply part, a humidification part, a sample introduction part, and carbon dioxide of pure oxygen or an inert gas containing oxygen. Non-adsorption, low thermal conductivity, heat-resistant, maintenance-like carrier filled with a catalyst supporting an oxidation catalyst, equipped with a heating furnace, combustion section, moisture condensation removal section, filtration section, non-dispersive infrared gas detector, detection The present invention provides an all-carbon measuring device in which a calculation / quantification unit for a peak area of a signal and a display unit are sequentially connected.

この発明には純酸素ガス又は、酸素ガス含有の不活性ガ
スが用いられるが、後者のガスとしては高純度空気など
が用いられる。いずれも不純物としてCO2、CO、炭化水
素が1ppm以下のものが望ましい。
Pure oxygen gas or an inert gas containing oxygen gas is used in the present invention, and high purity air or the like is used as the latter gas. It is desirable that impurities such as CO 2 , CO, and hydrocarbons be 1 ppm or less.

加湿器は、水酸化ナトリウムなとで弱アルカリ性とした
水を入れた容器からなり、キヤリアガスをこの水面上も
しくは水面下を通過させることができるよう構成された
ものである。本発明の装置の触媒床はシステムブランク
の発生が極力小さくなつているが、加湿器によりキヤリ
アガスを加湿することにより、さらに抑制する効果があ
る。
The humidifier is composed of a container containing water that is weakly alkaline such as sodium hydroxide, and is configured to allow the carrier gas to pass above or below the water surface. In the catalyst bed of the device of the present invention, the generation of system blanks is minimized, but the effect is further suppressed by humidifying the carrier gas with a humidifier.

なお、加湿器内の水をアルカリ性にするのは、水中に溶
解する二酸化炭素をアルカリ塩にして水中に固定するた
めと、キヤリアガス中にもし二酸化炭素が含まれている
場合、それを除去するためである。
The water in the humidifier is made alkaline in order to fix carbon dioxide dissolved in water into an alkaline salt and to fix it in the water, if carbon dioxide is included in the carrier gas. Is.

試料導入部は通常燃焼部の入口部に取付られている。The sample introduction part is usually attached to the inlet part of the combustion part.

燃焼部は石英などの耐熱性材料の容器からなり、次のよ
うな酸化触媒が充填されている。すなわち、白金、ロジ
ウム、これらの混合物などの貴金属触媒を担持させた、
二酸化炭素を実質的に吸着せず低熱伝導度の耐熱性維持
状担体(例えば石英ウール、アルミナと酸化珪素とから
なるセラミツク繊維など)が用いられる。
The combustion section is composed of a container made of a heat resistant material such as quartz, and is filled with the following oxidation catalyst. That is, platinum, rhodium, a noble metal catalyst such as a mixture thereof is supported.
A heat-resistant maintainable carrier having a low thermal conductivity that does not substantially adsorb carbon dioxide (eg, quartz wool, ceramic fiber made of alumina and silicon oxide, etc.) is used.

また上記燃焼部は前記触媒を500〜700℃以上に加熱しう
る加熱炉を具備している。
The combustion section is equipped with a heating furnace capable of heating the catalyst to 500 to 700 ° C or higher.

担体としては前記のような二酸化炭素を実質的に吸着し
ないものを用いているので、加湿器によるキヤリアガス
への加湿とあいまつてシステムブランクを低下させるこ
とができる。
Since a carrier that does not substantially adsorb carbon dioxide as described above is used as the carrier, it is possible to reduce the system blank in conjunction with humidification of the carrier gas by the humidifier.

また担体は前記のように熱伝導度が低く、しかも繊維状
で保水性の良好なものなので、多量(例えば400μl)
の試料を注入しても、全量が瞬時に気化するのではな
く、大半が触媒床の上部にいつたん保持される。それと
ともに、触媒床上部の温度は、水の気化熱などのために
一時的に低下するが、周囲から供給される熱により次第
に温度は回復し、保持されている水やTOC成分などが気
化する。
As mentioned above, the carrier has low thermal conductivity, and is fibrous and has good water retention, so a large amount (eg 400 μl)
When the above sample is injected, the entire amount is not instantaneously vaporized, but most of it is retained in the upper part of the catalyst bed. At the same time, the temperature of the upper part of the catalyst bed temporarily drops due to the heat of vaporization of water, etc., but the temperature gradually recovers due to the heat supplied from the surroundings, and the retained water and TOC components are vaporized. .

ただし、試料注入により温度低下するのは触媒床上部の
一部だけであり、それより下流側の大半の部分は加熱炉
の温度(500〜700℃)のままである。したがつて、気化
温度の低い成分から順次気化するが、いずれも加熱炉の
温度に保持された触媒層を通過するため完全に燃焼し炭
素分はすべてCO2に酸化される。
However, the temperature drop due to the sample injection is only part of the upper part of the catalyst bed, and most of the part downstream thereof remains at the heating furnace temperature (500 to 700 ° C). Therefore, the components with the lowest vaporization temperature are vaporized in sequence, but since they pass through the catalyst layer maintained at the temperature of the heating furnace, they are completely combusted and all the carbon content is oxidized to CO 2 .

全炭素成分の中には、気化−燃焼という過程を通らず
に、直接、熱分解するものもあるが、いずれにしても、
気化あるいは熱分解に要する温度が高い成分ほどCO2
発生があとになり、最終的にはいずれの炭素物質もほぼ
完全にCO2になる。したがつて、この発明の装置で多量
の試料を注入することにより発生するピークの形状は、
従来方式のようにTC成分の種類に関係なく常に1つのピ
ークになるのとは異なり、ほとんどの場合連なつた2つ
のピークになる。
Some of all carbon components are directly pyrolyzed without passing through the process of vaporization-combustion, but in any case,
The higher the temperature required for vaporization or thermal decomposition, the more CO 2 will be generated later, and eventually any carbon material will become almost completely CO 2 . Therefore, the shape of the peak generated by injecting a large amount of sample with the device of the present invention is
Unlike the conventional method, which always has one peak regardless of the type of TC component, in most cases, there are two continuous peaks.

しかも種々検討した結果2つのピークは試料中に含まれ
る炭素成分の沸点に関係しており、沸点が約200℃以下
のものは前のピーク、約300℃以上のものは後のピーク
として出ることがわかつた。このことにより、この発明
の装置では、単に全炭素濃度を測定するだけでなく、含
まれる全炭素成分に低沸点物質が多いのか高沸点物質が
多いかも判断することも可能であり、例えば、純水製造
プラントの管理に使用する場合、汚染などにより全炭素
が増加した場合の原因推定のための有益な情報がえられ
ることになる。
Moreover, as a result of various studies, two peaks are related to the boiling points of the carbon components contained in the sample. Those with a boiling point of about 200 ° C or lower appear as the previous peak and those with a boiling point of about 300 ° C or higher as the latter peak. I got caught. Thus, in the device of the present invention, it is possible not only to simply measure the total carbon concentration, but also to judge whether there are many low-boiling substances or high-boiling substances in the total carbon components contained, for example, pure carbon When used for the management of water production plants, it will provide useful information for estimating the cause when total carbon increases due to pollution or the like.

この発明の装置では、生成した二酸化炭素量は、検出器
からの検出信号のピーク面積の演算・定量部によつて算
出され、さりに表示部によつて表示される。そしてこの
発明に用いられる前記演算・定量部は前記の2つのピー
クの面積の合計を演算・定量するものであつて、例えば
下記のようなもので用いられ、図面によつて説明する。
In the device of the present invention, the generated amount of carbon dioxide is calculated by the calculation / quantification unit of the peak area of the detection signal from the detector, and is then displayed by the display unit. The calculation / quantification unit used in the present invention calculates / quantifies the total area of the two peaks, and is used, for example, in the following manner, which will be described with reference to the drawings.

第2図は演算・定量部と表示部との構成説明図、第3図
はこの作動を示すフローチヤート、第4a〜4g図は作動を
説明するためのグラフである。
FIG. 2 is a structural explanatory view of the calculation / quantification unit and the display unit, FIG. 3 is a flow chart showing this operation, and FIGS. 4a to 4g are graphs for explaining the operation.

次に演算・定量部の作動のステツプを説明する。Next, the step of operation of the calculation / quantification unit will be described.

101データの初期化 非分散形赤外線ガス検出器(NDIR)からの瞬時値を現在
の値を含めtn時間前までの値n+1個を記憶する。
101 Initialization of data The instant value from the non-dispersive infrared gas detector (NDIR) including the current value, the value n + 1 before tn time is stored.

瞬時値 Sn……S6……S2、S1、S0 時 刻 tn………………t2、t1、t0 102第4a図におけるピークの立上り点をチエツクす
る。
Instantaneous value Sn …… S 6 …… S 2 , S 1 , S 0 Time tn ……………… t 2 , t 1 , t 0 102 Check the rising point of the peak in Fig. 4a.

第4b図において、 103面積チエツク開始点補正 (i)ピーク立上り検出時の値S0がピーク検出開始時の
値S0がピーク検出時の値Saより小さいとき 第4c図においてS0≧Saとなるまで面積値加算は行なわな
いで(S=0)、S0≧Saとなつたらその時以後面積値加
算(S=S+S0)を行う。
In Figure 4b, 103 Area check start point correction (i) When the value S 0 at the time of peak rising detection is smaller than the value S 0 at the time of peak detection S 0 at the time of peak detection The area value is added until S 0 ≧ Sa in Fig. 4c. Is not performed (S = 0), and when S 0 ≧ Sa, the area value addition (S = S + S 0 ) is performed thereafter.

(ii)ピーク立上り検出時の値S0がSaより大きいとき 第4d図においてSi=Sa(n≦i<0)となるまで瞬時値
SiをSに加えておいて その後データサンプリング毎に面積値加算(S=S+S
c)を行う。
(Ii) When the value S 0 at peak rise detection is larger than Sa Instant value until Si = Sa (n ≦ i <0) in Fig. 4d
Add Si to S After that, the area value is added for each data sampling (S = S + S
Do c).

104ピーク点のチエツク Sp<S0のとき、S1=S0としてピーク値をメモリしてお
く。
104 When the check at the peak point Sp <S 0 , the peak value is stored as S 1 = S 0 .

105ピーク終了チエツク 第4e図において 106ベースラインのドリフトチエツク 第4f図において、ピーク終了チエツク点が(イ)の場
合は不可、(ロ)の場合は可とする。
105 Peak end check In Fig. 4e 106 Baseline drift check In Figure 4f, it is not possible if the peak end check point is (a), and is acceptable if it is (b).

107ピーク高さのチエツク Spが基準値Sp0より大きいときは可、Sp<Sp0のときは不
可とする。
107 Check if the peak height Sp is larger than the reference value Sp 0. If Sp <Sp 0 , it is not allowed.

108ピーク幅チエツク (t−ts)の値が基準値t0より大きいときは可、小さい
ときは不可とする。
108 When the value of the peak width check (t-ts) is larger than the reference value t 0, it is acceptable, and when it is smaller, it is not acceptable.

109ベースラインドリフト補正 第4g図(a)及び(b)においてS′=S−S0として補
正する。
109 corrected as S '= S-S 0 at baseline drift compensation first 4g view (a) and (b).

110面積値チエツク 補正面積S′が最小面積基準値S6より大きいときは可、
また小さいときは不可とする。なお、110のチエツクで
可となつたときピークが検出されたものとしてその値
S′の値をメモリーし、この値をもとに定量値演算を行
う。
110 Area value check Yes when the corrected area S'is larger than the minimum area reference value S 6 ,
When it is small, it is not possible. It should be noted that the value S'is stored on the assumption that a peak has been detected when the check has been successful in 110 checks, and a quantitative value calculation is performed based on this value.

注:a)105及び106で不可となつた場合は引続きピーク終
了点をチエツクする。
Note: a) If the result of 105 and 106 is not acceptable, continue to check the peak end point.

b)107〜110のチエツクで不可となつた場合はあらため
てピーク立上りからチエツクする。
b) If the check of 107 to 110 is not possible, check again from the peak rise.

(ホ)実施例 この発明の装置を、第1図に示す一実施例の構成説明図
で説明する。
(E) Embodiment An apparatus of the present invention will be described with reference to the configuration explanatory view of one embodiment shown in FIG.

第1図の全炭素測定装置(1)はキヤリアガス供給部
(2)、アルカリ性水(3)を入れた加湿器(4)、試
料注入部(6)、触媒(7)を充填した燃焼管(8)と
加熱炉(9)とからなる燃焼部(10)、水分凝縮除去部
(11)、濾過部(12)、NDIR(13)、NDIRからの検出信
号のピーク面積の演算・定量部(14)並びに表示部(1
5)から構成されている。なお、(5)は試料注入器で
ある。
The total carbon measuring device (1) in FIG. 1 is a carrier gas supply part (2), a humidifier (4) containing alkaline water (3), a sample injection part (6), and a combustion tube (6) filled with a catalyst (7). 8) and heating furnace (9), combustion section (10), water condensation removal section (11), filtration section (12), NDIR (13), calculation / quantification section of peak area of detection signals from NDIR ( 14) and display (1
It consists of 5). In addition, (5) is a sample injector.

この装置によつて次のようにして試料の全炭素が測定さ
れる。
The total carbon of the sample is measured by this device as follows.

まずキヤリアガスをキヤリアガス供給部(2)から加湿
器(4)に送つて加湿してから所定温度に保持した燃焼
部(10)に送り触媒(7)中を通過させ、次いで水分凝
縮部(11)、濾過部(12)及びNDIR(13)を順に通過さ
せて定常状態に保持する。次いで試料注入器(5)から
試料を試料注入部(6)に注入する。試料は燃焼部(1
0)内で酸化されて炭素成分が二酸化炭素に変換され、
水分凝縮除去部(11)で水分が除去され、次いで濾過部
(12)で濾過された後、NDIR(13)に送られ二酸化炭素
が検出される。そしてNDIR(13)からの検出信号のピー
ク面積の演算・定量部(14)で二酸化炭素量が測定さ
れ、測定値が表示部(15)に表示される。
First, the carrier gas is sent from the carrier gas supply section (2) to the humidifier (4) to be humidified, and then sent to the combustion section (10) maintained at a predetermined temperature to pass through the catalyst (7), and then the water condensing section (11). , The filter section (12) and the NDIR (13) are passed in order to maintain a steady state. Then, the sample is injected from the sample injector (5) into the sample injection section (6). Sample is burned (1
0) is oxidized and the carbon component is converted to carbon dioxide,
Water is removed by the water condensation / removal unit (11) and then filtered by the filtration unit (12), and then sent to the NDIR (13) to detect carbon dioxide. Then, the carbon dioxide amount is measured by the calculation / quantification unit (14) of the peak area of the detection signal from the NDIR (13), and the measured value is displayed on the display unit (15).

次に上記の測定装置を用い、下記の試料の炭素分を下記
条件下で測定した結果を述べる。
Next, the results of measuring the carbon content of the following samples under the following conditions using the above measuring device will be described.

(a)測定試料 超純水 エタノール(500ppb) フタル酸水素カリウム水溶液(500ppb) エタノール(250ppb)+フタル酸水素カリウム(250pp
b) 注:( )内は炭素濃度 試料注入量 400μl エタノールとフタル酸水素カリウムは標準試料 (b)測定条件 キヤリアガス:高純度空気 キヤリアガス流量:150ml/min 燃焼部内温度:680℃ 燃焼管:石英ガラス 酸化触媒:石英ウールに白金黒を担持させたもの。
(A) Measurement sample Ultrapure water Ethanol (500ppb) Potassium hydrogen phthalate aqueous solution (500ppb) Ethanol (250ppb) + potassium hydrogen phthalate (250ppb
b) Note: Carbon concentration in () Sample injection amount 400 μl Ethanol and potassium hydrogen phthalate are standard samples (b) Measurement conditions Carrier gas: High-purity air Carrier gas flow rate: 150 ml / min Combustion part temperature: 680 ° C Combustion tube: Quartz glass Oxidation catalyst: Platinum black supported on quartz wool.

上記測定の結果、えられたピークを第5図に示す。この
ピークのうちエタノール+フタル酸水素カリウム試料で
は、エタノール(左側)とフタル酸水素カリウム(右
側)の2つのピークが得られ、これらのピーク面積の合
計として全炭素分が測定される。
The peaks obtained as a result of the above measurement are shown in FIG. Among these peaks, in the ethanol + potassium hydrogen phthalate sample, two peaks of ethanol (left side) and potassium hydrogen phthalate (right side) are obtained, and the total carbon content is measured as the sum of these peak areas.

(ヘ)発明の効果 この発明の装置には次のような利点がある。(F) Effects of the Invention The device of the present invention has the following advantages.

(i)燃焼温度が低いので、試料中の無機塩分によつて
測定値が干渉されたり燃焼管や酸化触媒がおかされたり
することがない。
(I) Since the combustion temperature is low, the measured value is not interfered with by the inorganic salt content in the sample, and the combustion tube or the oxidation catalyst is not damaged.

(ii)キヤリアガスが加湿され、触媒の担体には二酸化
炭素を実質的に吸着しないものが用いられることから、
システムブランクを低下することができる。
(Ii) Since the carrier gas is humidified and the carrier of the catalyst is one that does not substantially adsorb carbon dioxide,
The system blank can be reduced.

(iii)燃焼温度が500〜700℃という低温で、触媒の担
体として熱伝導度が低く、しかも繊維状で保水性の良好
なものが用いられるので、試料水分の気化がゆるやかに
なる。したがつて炭素成分が微量(1ppm以下)の試料の
炭素分を高精度で測定するために比較的多量の試料(例
えば400μl)を注入して行う高感度測定の場合でも一
挙に多量の水分が気化しないので、急激に内圧が上昇し
て発生ガスの触媒床への通過速度が急激すぎて、十分な
酸化反応がおこらないということがない。
(Iii) Since the combustion temperature is as low as 500 to 700 ° C., a catalyst carrier having a low thermal conductivity, a fibrous material and a good water retention property is used, so that the evaporation of the sample water becomes slow. Therefore, even in the case of high-sensitivity measurement performed by injecting a relatively large amount of sample (for example, 400 μl) in order to measure the carbon content of a sample with a minute amount of carbon component (1 ppm or less) with high accuracy, a large amount of water is Since it does not vaporize, the internal pressure does not rise sharply and the passing speed of the generated gas to the catalyst bed is too rapid, so that a sufficient oxidation reaction does not occur.

また高感度測定時に例えば1ppmの標準溶液を400μl注
入して検量線を作成する必要があるが、実際に1ppmの標
準溶液を調整することは使用する水の純度の問題や調製
操作中の外部からの汚染の問題のため極めてむつかしく
細心の注意を要する。この発明の方法によれば調製の容
易な40ppm標準液を10μl注入すれば同じ結果(同じピ
ーク面積)が得られるので、これで検量線を作成するこ
とができる。
In addition, for high-sensitivity measurement, it is necessary to inject 400 μl of a 1 ppm standard solution to create a calibration curve, but actually adjusting the 1 ppm standard solution is a problem of the purity of the water used and from the outside during the preparation operation. It is extremely difficult and requires careful attention because of the pollution problem. According to the method of the present invention, the same result (same peak area) can be obtained by injecting 10 μl of 40 ppm standard solution, which is easy to prepare, and thus a calibration curve can be prepared.

上記のようにこの発明の装置は、特に上記の高感度測定
に好適である。
As described above, the device of the present invention is particularly suitable for the above high sensitivity measurement.

(iv)試料の燃焼は瞬時的には完了しないので、低沸点
の炭素含有成分のピークと高沸点の炭素含有成分のピー
クと高沸点の炭素含有成分のピークとの複合のピークが
得られ、試料中の炭素含有成分の情報が得られる。
(Iv) Since the combustion of the sample is not completed instantaneously, a composite peak of the peak of the low boiling point carbon-containing component, the peak of the high boiling point carbon-containing component and the peak of the high boiling point carbon-containing component is obtained, Information on the carbon-containing components in the sample is obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の装置の一実施例の構成説明図、第2
図は、第1図における、検出信号のピーク面積の演算・
定量部(14)及び表示部(15)のブロツク図、第3図は
第1図における演算・定量部(14)の作動を示すフロー
チヤート、第4a図〜第4g図(a)及び(b)は第3図の
フローチヤート説明図、第5図はこの発明の装置で測定
して得られた生成二酸化炭素のピーク図である。 (1)……全炭素測定装置、(2)……キヤリアガス供
給部、(3)……アルカリ性水、(4)……加湿器、
(5)……試料注入器、(6)……試料導入部、(7)
……酸化触媒、(8)……燃焼管、(9)……加熱炉、
(10)……燃焼部、(11)……水分凝縮除去部、(12)
……濾過部、(13)非分散形赤外線ガス検出器、(14)
……検出信号のピーク面積の演算・定量部、(15)……
表示部。
FIG. 1 is a structural explanatory view of an embodiment of the device of the present invention, and FIG.
The figure shows the calculation of the peak area of the detection signal in Fig. 1.
Block diagrams of the quantification unit (14) and the display unit (15). Fig. 3 is a flow chart showing the operation of the calculation / quantification unit (14) in Fig. 1, Figs. 4a to 4g (a) and (b). ) Is an explanatory diagram of the flow chart in FIG. 3, and FIG. 5 is a peak diagram of carbon dioxide produced obtained by measurement with the apparatus of the present invention. (1) ... total carbon measuring device, (2) ... carrier gas supply section, (3) ... alkaline water, (4) ... humidifier,
(5) …… Sample injector, (6) …… Sample introduction part, (7)
…… Oxidation catalyst, (8) …… Combustion tube, (9) …… Heating furnace,
(10) …… Combustion section, (11) …… Moisture condensation removal section, (12)
... Filtration unit, (13) Non-dispersive infrared gas detector, (14)
...... Peak area calculation / quantification part of detection signal, (15) ……
Display section.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】純酸素又は酸素を含有する不活性ガスのキ
ヤリヤガス供給部、加湿部、試料導入部、二酸化炭素な
どの炭素含有ガス成分を実質的に吸着せず、低熱伝導度
で耐熱性の繊維状担体に酸化触媒を担持させた触媒が充
填され加熱炉を具備した燃焼部、水分凝縮除去部、濾過
部、非分散形赤外線ガス検出器、検出信号のピーク面積
の演算・定量部並びに表示部を順に連結してなる全炭素
測定装置。
1. Pure oxygen or an inert gas containing oxygen, a carrier gas supply part, a humidification part, a sample introduction part, a carbon-containing gas component such as carbon dioxide is not substantially adsorbed, and it has a low thermal conductivity and heat resistance. Combustion part equipped with a heating furnace filled with a catalyst supporting an oxidation catalyst on a fibrous carrier, moisture condensation removal part, filtration part, non-dispersion type infrared gas detector, calculation / quantification part of peak area of detection signal and display An all-carbon measuring device in which parts are connected in order.
JP12463385A 1985-06-07 1985-06-07 Total carbon measuring device Expired - Fee Related JPH076969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12463385A JPH076969B2 (en) 1985-06-07 1985-06-07 Total carbon measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12463385A JPH076969B2 (en) 1985-06-07 1985-06-07 Total carbon measuring device

Publications (2)

Publication Number Publication Date
JPS61281966A JPS61281966A (en) 1986-12-12
JPH076969B2 true JPH076969B2 (en) 1995-01-30

Family

ID=14890243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12463385A Expired - Fee Related JPH076969B2 (en) 1985-06-07 1985-06-07 Total carbon measuring device

Country Status (1)

Country Link
JP (1) JPH076969B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137147A1 (en) * 2018-12-26 2020-07-02 株式会社堀場製作所 Elemental analysis device, program for elemental analysis device, and elemental analysis method
WO2022091748A1 (en) * 2020-11-02 2022-05-05 株式会社堀場製作所 Element analysis method, element analysis device, and program for element analysis device
JPWO2023042660A1 (en) * 2021-09-17 2023-03-23

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113605B2 (en) * 1987-07-31 1995-12-06 株式会社島津製作所 Gas analyzer
US7034304B2 (en) 2003-07-25 2006-04-25 Honeywell International, Inc. Chamber for gas detector
US7089781B2 (en) * 2003-11-04 2006-08-15 Honeywell International, Inc. Detector with condenser

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527793A (en) * 1975-07-09 1977-01-21 Toray Ind Inc Method and equipment for measuring total carbon amount
JPS5248391A (en) * 1975-10-15 1977-04-18 Toray Ind Inc Method of measurement of total carbon content and apparatus therefor
JPS5830541A (en) * 1981-07-21 1983-02-23 Toyota Motor Corp Variable shock absorber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137147A1 (en) * 2018-12-26 2020-07-02 株式会社堀場製作所 Elemental analysis device, program for elemental analysis device, and elemental analysis method
WO2022091748A1 (en) * 2020-11-02 2022-05-05 株式会社堀場製作所 Element analysis method, element analysis device, and program for element analysis device
JPWO2023042660A1 (en) * 2021-09-17 2023-03-23
WO2023042660A1 (en) * 2021-09-17 2023-03-23 株式会社トクヤマ Method for measuring surface carbon amount of inorganic solid

Also Published As

Publication number Publication date
JPS61281966A (en) 1986-12-12

Similar Documents

Publication Publication Date Title
Hammond et al. A diffusion monitor to measure exposure to passive smoking
Andreae et al. Determination of germanium in natural waters by graphite furnace atomic absorption spectrometry with hydride generation
US4409336A (en) Method of analysis for determining very low sulfur levels in volatilizable samples
CN103353496B (en) For the filtration enriching apparatus of dioxin trace organic substance in on-line checkingi flue gas
US3753654A (en) Method for determining organic materials in water
US7062952B2 (en) Combustible gas detector having flow-through sensor container and method for measuring such gases
JPH076969B2 (en) Total carbon measuring device
JPH0750022B2 (en) Organic substance analysis method and apparatus using portable structure
Dědina Quartz tube atomizers for hydride generation atomic absorption spectrometry: mechanism of selenium hydride atomization and fate of free atoms
CN112557642B (en) Gas sensor for detecting methane in expired gas
Evans et al. Amperometric sensor for carbon dioxide: design, characteristics, and performance
Dobbs et al. Measurement of organic carbon in water using the hydrogen-flame ionization detector
Montgomery et al. The determination of low concentrations of organic carbon in water
CN104459075B (en) The detection method of online TOC monitor
CA1096197A (en) Apparatus for measuring excess oxygen or combustibles in a gaseous sample of a combustion process
CN211348070U (en) High-precision gas chromatograph
JPH05302920A (en) Carbon measuring apparatus
Jain et al. A review of breath alcohol methods
JP3315009B2 (en) Method and apparatus for measuring engine oil consumption
JPS60143767A (en) Total carbon measurement
US3421856A (en) Method and apparatus for determining the oxygen demand of oxidizable materials
JPH08101187A (en) Measuring device for organic carbon with volatility
JPH0245825B2 (en) KIHATSUSEIJUKITANSONOSOKUTEIHOOYOBISOKUTEISOCHI
JPS6358160A (en) Apparatus for measuring organocarbon
Hobbs Gas analysis

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees