JPH07113605B2 - Gas analyzer - Google Patents

Gas analyzer

Info

Publication number
JPH07113605B2
JPH07113605B2 JP19322787A JP19322787A JPH07113605B2 JP H07113605 B2 JPH07113605 B2 JP H07113605B2 JP 19322787 A JP19322787 A JP 19322787A JP 19322787 A JP19322787 A JP 19322787A JP H07113605 B2 JPH07113605 B2 JP H07113605B2
Authority
JP
Japan
Prior art keywords
gas
water
pipe
sample gas
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19322787A
Other languages
Japanese (ja)
Other versions
JPS6435348A (en
Inventor
捗 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP19322787A priority Critical patent/JPH07113605B2/en
Publication of JPS6435348A publication Critical patent/JPS6435348A/en
Publication of JPH07113605B2 publication Critical patent/JPH07113605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/61Non-dispersive gas analysers

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、ガス分析計に関する。さらに詳しくは、非
分散型赤外吸収検出器を用いて各種ガス中に存在するガ
ス成分濃度を連続的に検出できるガス分析計に関する。
この発明のガス分析計は、ことに大気や排気ガス中のSO
2、NOx、CO2等のガス成分の測定用分析計として有用で
ある。
TECHNICAL FIELD The present invention relates to a gas analyzer. More specifically, it relates to a gas analyzer capable of continuously detecting the concentration of gas components present in various gases by using a non-dispersive infrared absorption detector.
The gas analyzer of this invention is particularly suitable for SO in the atmosphere and exhaust gas.
It is useful as an analyzer for measuring gas components such as 2 , NOx and CO 2 .

(ロ)従来の技術 従来から、大気や排ガス中のガス成分を測定する装置と
して、赤外吸収検出器を用いた分析計が用いられてい
る。これは試料ガス導入口から試料ガスを吸引して非分
散型赤外吸収検出器(NDIR)の測定セルへ供給しうるガ
ス流路系からなり、NDIRで検出される2〜6μmの波長
の赤外光の吸光度に基づいて試料ガス中のガス成分例え
ばSO2、NOx、CO等の濃度を測定しうるよう構成されたも
のである。
(B) Conventional Technology An analyzer using an infrared absorption detector has been used as an apparatus for measuring gas components in the atmosphere and exhaust gas. This consists of a gas flow system that can suck the sample gas from the sample gas inlet and supply it to the measurement cell of a non-dispersive infrared absorption detector (NDIR). It has a red wavelength of 2 to 6 μm detected by NDIR. It is configured so that the concentrations of gas components such as SO 2 , NOx, and CO in the sample gas can be measured based on the absorbance of external light.

しかし、かかる測定においては、広範囲の波長光の吸収
を指標としているため、試料ガス中に共存する水分によ
って干渉を受け易い。ことに煙道排気ガス中には20重量
%程度迄の多量の水分が含まれる場合もしばしばであ
り、これにより大きな測定誤差を招く。
However, in such measurement, since the absorption of light in a wide range of wavelengths is used as an index, it is likely to be interfered by the moisture coexisting in the sample gas. In particular, the flue exhaust gas often contains a large amount of water up to about 20% by weight, which causes a large measurement error.

このため、上記ガス流路の途中に除湿器を介在させる方
法も知られており、例えばNOxやSO2の計測器ではかかる
除湿器を付設したものが標準化されるに至っている(JI
S B7981(1984)−7.2参照)。このうち汎用されてい
る冷却式除湿器は、通常、試料ガスを2℃に冷却するこ
とにより、ガス中の水分を一定値、即ち2℃の飽和水分
量である約0.7重量%程度まで一律に低下させるよう構
成された冷却トラップ式の除湿器からなるものである。
For this reason, a method of interposing a dehumidifier in the middle of the gas flow path is also known, and for example, a NOx or SO 2 measuring instrument equipped with such a dehumidifier has come to be standardized (JI
S B7981 (1984) -7.2). Of these, the commonly used cooling type dehumidifier normally cools the sample gas to 2 ° C. to uniformly keep the water content in the gas at a constant value, that is, about 0.7% by weight, which is the saturated water content at 2 ° C. It comprises a cold trap dehumidifier configured to lower.

そしてこの冷却式除湿器を用いることにより、水分量の
異なる種々の試料ガスについて各々正確な被検ガス成分
の測定が行なえるとされている。
It is said that the use of this cooling type dehumidifier enables accurate measurement of the test gas components for various sample gases having different water contents.

(ハ)発明が解決しようとする問題点 しかしながら、逆に水分量が0.7重量%未満のガスも測
定対象の試料ガスとして存在する。例えば、火力発電所
の排ガス中には通常はかなりの水分が含有されている
が、最近しばしばなされる発電停止時には大気しか供給
されず、これ以外にも乾燥試料ガス中のガス成分の測定
が必要となる場合がある。
(C) Problems to be Solved by the Invention However, conversely, a gas having a water content of less than 0.7 wt% also exists as a sample gas to be measured. For example, the exhaust gas from a thermal power plant usually contains a considerable amount of water, but only the atmosphere is supplied when power generation is stopped frequently these days. In addition to this, it is necessary to measure the gas components in the dry sample gas. May be

そして、かかる低水分量の試料ガスを前記ガス分析計で
測定する場合には逆に水分による干渉の程度が通常の測
定時(0.7重量%の水分含有を前提)に比して小さくな
り、結果的にゼロラインが変動して誤差が生じることと
なる問題があった。
When measuring such a low-moisture amount sample gas with the gas analyzer, conversely, the degree of interference due to moisture becomes smaller than that during normal measurement (assuming a water content of 0.7% by weight). There is a problem that the zero line fluctuates and an error occurs.

この発明は、かかる問題点を解決すべくなされたもので
あり、ことに水分量の高低やその程度に拘わらず正確な
測定を行なうことができるガス分析計を提供しようとす
るものである。
The present invention has been made to solve such a problem, and in particular, aims to provide a gas analyzer capable of performing accurate measurement regardless of the amount of water and the degree thereof.

(ニ)問題点を解決するための手段 かくしてこの発明によれば試料ガス導入口から試料ガス
を吸引して非分散型赤外吸収検出器の測定セル内に供給
しうるガス流路を有してなり、このガス流路の途中に、
試料ガス中の水分濃度を所定値迄低下しうる冷却式除湿
器を設け、さらにこの冷却式除湿器の手前に、水蒸気透
過性材からなり上記ガス流路の一部を構成するパイプ
と、このパイプを水中に保持する水貯留槽とからなる加
湿手段を設け、前記冷却式除湿器とこの加湿手段の双方
に試料ガスを通すことにより、一定の水分量を含有する
試料ガスを前記非分散型赤外吸収検出器に供給するよう
構成したことを特徴とするガス分析計が提供される。
(D) Means for Solving the Problems Thus, according to the present invention, there is provided a gas flow path capable of sucking the sample gas from the sample gas inlet and supplying the sample gas into the measurement cell of the non-dispersive infrared absorption detector. In the middle of this gas flow path,
A cooling type dehumidifier capable of reducing the water concentration in the sample gas to a predetermined value is provided, and a pipe, which is made of a water vapor permeable material and constitutes a part of the gas flow path, is provided in front of this cooling type dehumidifier. A humidifying means consisting of a water storage tank for holding the pipe in water is provided, and the sample gas containing a certain amount of water is passed through both the cooling type dehumidifier and this humidifying means to obtain the non-dispersion type sample gas. Provided is a gas analyzer configured to supply to an infrared absorption detector.

この発明の最も特徴とする点は前記冷却式除湿器の手前
に、特定の加湿手段を設けた点にある。かかる加湿手段
は、水蒸気透過性のパイプと水貯留槽とから構成される
ものである。
The most characteristic point of the present invention is that a specific humidifying means is provided in front of the cooling type dehumidifier. The humidifying means is composed of a water vapor permeable pipe and a water storage tank.

ここで水蒸気透過性パイプとしては、気一液の隔膜とな
りかつ液相側の水分を透過して気相側へ供給しうる材質
のものが適しており、ポリテトラフルオロエチレン等の
フッ素系樹脂からなるパイプが適している。このうちい
わゆる半透膜式除湿器に用いられているスルホン酸基含
有のフッ素系樹脂を用いるのが好ましい。かかるフッ素
系樹脂はナフィオン(NAFION;米国デュポン社)等の名
称で入手可能である。
Here, the water vapor permeable pipe is preferably made of a material capable of forming a gas-liquid separation membrane and transmitting water on the liquid phase side to the gas phase side, and is made of a fluororesin such as polytetrafluoroethylene. A suitable pipe is. Among these, it is preferable to use a sulfonic acid group-containing fluororesin used in a so-called semipermeable membrane dehumidifier. Such a fluororesin is available under the name such as NAFION (Dupont, USA).

かかる水蒸気透過性パイプは、少なくとも後段の冷却式
除湿器での除湿限界の水分濃度以上に、低水分量試料ガ
ス中へ水分を透過供給しうるような長さを有することが
必要である。例えば、冷却式除湿器でのトラップ温度が
2℃の場合には0.7重量%程度迄水分が除かれるので、
上記パイプでは低水分量の試料ガス中の水分濃度を0.7
重量%以上に上昇させうるよう構成する必要がある。か
かる長さは、条件によって異なるが通常100〜200cm程度
で充分である。
The water vapor permeable pipe needs to have a length that allows permeation and supply of moisture into the low moisture content sample gas at least above the moisture concentration at the dehumidification limit in the subsequent cooling type dehumidifier. For example, when the trap temperature in the cooling type dehumidifier is 2 ° C, the water content is removed up to about 0.7% by weight.
With the above pipe, the water concentration in the sample gas with a low water content is 0.7
It must be constructed so that it can be increased to a weight percentage or more. Although such a length varies depending on the conditions, about 100 to 200 cm is usually sufficient.

(ホ)作用 低水分量の試料ガスは冷却式除湿器の手前で加湿手段に
より該除湿器での除湿可能な濃度迄加湿される。それに
より除湿器通過後の試料ガス中の水分濃度は、高水分量
試料ガス供給時と同様な値に一律化されることとなる。
(E) Action The sample gas having a low water content is humidified by the humidifying means before the cooling type dehumidifier to a concentration at which dehumidification can be performed by the dehumidifier. As a result, the water concentration in the sample gas after passing through the dehumidifier is uniformized to the same value as when the high water content sample gas was supplied.

(ヘ)実施例 第1図に示す1はこの発明の一実施例の連続ガス分析計
を示す構成説明図である。図に示すごとく連続ガス分析
計は、試料ガス導入口2から非分散型赤外吸収検出器4
の測定用フローセル内に吸引ポンプ3によってガスを供
給しうるガス流路で構成されている。ガス流路の途中に
は水ドレイン12を備えた冷却式除湿器5が設けられ、そ
の後段には各々粒子除去用フィルタ8、絞り弁9、切換
弁10、流量計11が付設されている。ここで除湿器5は2
℃に調整された冷却容器からなる。そして、上記除湿器
5の手前には、加湿器6が設けられている。なお、図中
7は切換弁であり、切換弁10と同様に切換によって校正
用ガス(標準ガス)を各々ガス導入管15,16からガス流
路に導入しうるよう構成されている。なお、13は排気管
を、14は指示記録計を各々示す。
(F) Embodiment 1 FIG. 1 is a structural explanatory view showing a continuous gas analyzer according to an embodiment of the present invention. As shown in the figure, the continuous gas analyzer has a non-dispersive infrared absorption detector 4 from the sample gas inlet 2.
The measurement flow cell is composed of a gas flow path capable of supplying gas by the suction pump 3. A cooling type dehumidifier 5 equipped with a water drain 12 is provided in the middle of the gas flow path, and a particle removing filter 8, a throttle valve 9, a switching valve 10 and a flow meter 11 are provided at the subsequent stages thereof. Here, the dehumidifier 5 has 2
It consists of a cooling container adjusted to ℃. A humidifier 6 is provided in front of the dehumidifier 5. Reference numeral 7 in the drawing is a switching valve, and like the switching valve 10, is configured so that the calibration gas (standard gas) can be introduced into the gas flow paths from the gas introduction pipes 15 and 16, respectively. In addition, 13 is an exhaust pipe and 14 is an indicator recorder.

上記加湿器6の詳細な構成を第2図に示す。図に示すご
とく、加湿器6はフッ素系樹脂(NAFION;米国デュポン
社)からなる水蒸気透過性のらせん状パイプ61とこのパ
イプ61を水中に保持する水貯留槽62とからなり、このパ
イプ61は前記ガス流路の一部を構成しうるよう接続され
ている。そして、このパイプ61は口径6mm、長さ200cmに
調節されており、それにより該パイプ内を通過するガス
中の水分濃度を1重量%程度迄上昇させるよう機能す
る。ただし予めこの濃度以上の水分を含有するガスに対
して実質的に加湿はなされない。
The detailed structure of the humidifier 6 is shown in FIG. As shown in the figure, the humidifier 6 is composed of a water vapor permeable spiral pipe 61 made of a fluororesin (NAFION; DuPont, USA) and a water storage tank 62 for holding the pipe 61 in water. They are connected so as to form a part of the gas flow path. The pipe 61 is adjusted to have a diameter of 6 mm and a length of 200 cm, thereby functioning to increase the water concentration in the gas passing through the pipe to about 1% by weight. However, the gas containing water having a concentration above this concentration is not substantially humidified.

上記ガス分析計を用いて煙道排ガス中のSO2濃度を連続
測定する操作についてさらに説明する。まず、予め校正
を行なった後、加熱器付ガス採取管から採取された煙道
排ガスが、ガス試料として連続的に導入口2からガス流
路内に導入される。かかる煙道排ガス中の水分量は刻々
と変化するものであり、従って、この赤外吸収を指標と
して直接SO2濃度を算出すると著しい誤差が生じる。上
記ガス分析計においては、1 重量%を越える水分が含
有される場合には加湿器6では加湿されず、除湿器5に
おいて、その飽和水蒸気量、即ち約0.7重量%迄一律に
除湿され、この除湿試料ガスが検出器4内のフローセル
内に導入される。
The operation of continuously measuring the SO 2 concentration in the flue gas using the gas analyzer will be further described. First, after calibrating in advance, the flue gas collected from the gas sampling tube with a heater is continuously introduced as a gas sample from the inlet 2 into the gas flow path. The amount of water in the flue gas is constantly changing. Therefore, if the SO 2 concentration is directly calculated using this infrared absorption as an index, a significant error will occur. In the above gas analyzer, when the water content exceeds 1% by weight, it is not humidified by the humidifier 6 but uniformly dehumidified by the dehumidifier 5 up to its saturated water vapor content, that is, about 0.7% by weight. The dehumidified sample gas is introduced into the flow cell in the detector 4.

一方、1 重量%以下の水分が含有される場合には、加
湿器6でその濃度が1 重量%に上昇するように加湿さ
れ、次いでこの加湿された試料ガスが除湿器5において
前述と同様に約0.7重量%迄一律に除湿されてフローセ
ル内に導入される。
On the other hand, when the water content is 1% by weight or less, it is humidified by the humidifier 6 so that its concentration rises to 1% by weight, and the humidified sample gas is then stored in the dehumidifier 5 in the same manner as described above. It is uniformly dehumidified to about 0.7% by weight and introduced into the flow cell.

従って、加湿器6と除湿器5との組合せにより、水分含
有量の高低や変動に拘わらず、水分量が一定なSO2測定
用ガスを検出器4へ供給できることとなり、その赤外吸
収(2〜6μm)に基づいてベースラインが安定な煙道
排ガス中のSO2濃度が測定できることとなる。そして、
加湿器6も前記のごとき水蒸気透過性のパイプによって
気一液分離状態で行なわれるため、水中でバブリングを
行なって加湿するう手法のようにSO2の溶解損失を生じ
ることもない。
Therefore, the combination of the humidifier 6 and the dehumidifier 5 makes it possible to supply the SO 2 measuring gas having a constant water content to the detector 4 irrespective of whether the water content is high or low, and the infrared absorption (2 ˜6 μm), it is possible to measure the SO 2 concentration in the flue gas with a stable baseline. And
Since the humidifier 6 is also operated in a gas-liquid separated state by the water vapor permeable pipe as described above, SO 2 dissolution loss does not occur unlike the method of bubbling in water to humidify.

(ト)発明の効果 この発明のガス分析計によれば高水分量の試料ガスのみ
ならず、著しく低い水分量の試料ガスについてもベース
ラインの安定したガス成分測定が正確な可能となる。従
って、ことに水分量が種々変動しうるガスを試料ガスと
するガス成分の連続測定用分析計として有用である。
(G) Effect of the Invention According to the gas analyzer of the present invention, not only the sample gas having a high water content but also the sample gas having a remarkably low water content can be accurately measured with a stable baseline gas component. Therefore, it is particularly useful as an analyzer for continuous measurement of gas components in which a sample gas is a gas whose water content can vary variously.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例の連続ガス分析計を示す構
成説明図、第2図は、第1図の要部構成説明図である。 1……連続ガス分析計、 2……試料ガス導入口、 3……吸引ポンプ、 4……非分散型赤外吸収検出器、 5……冷却式除湿器、 6……加湿器、 61……らせん状パイプ、 62……水貯留槽。
FIG. 1 is a structural explanatory view showing a continuous gas analyzer according to an embodiment of the present invention, and FIG. 2 is a structural explanatory view of a main part of FIG. 1 ... Continuous gas analyzer, 2 ... Sample gas inlet, 3 ... Suction pump, 4 ... Non-dispersive infrared absorption detector, 5 ... Cooling dehumidifier, 6 ... Humidifier, 61 ... … Helical pipes, 62… Water storage tanks.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】試料ガス導入口から試料ガスを吸引して非
分散型赤外吸収検出器の測定セル内に供給しうるガス流
路を有してなり、このガス流路の途中に、試料ガス中の
水分濃度を所定値迄低下しうる冷却式除湿器を設け、さ
らにこの冷却式除湿器の手前に、水蒸気透過性材からな
り上記ガス流路の一部を構成するパイプと、このパイプ
を水中に保持する水貯留槽とからなる加湿手段を設け、
前記冷却式除湿器とこの加湿手段の双方に試料ガスを通
すことにより、一定の水分量を含有する試料ガスを前記
非分散型赤外吸収検出器に供給するよう構成したことを
特徴とするガス分析計。
1. A gas flow path is provided which can suck a sample gas from a sample gas introduction port and supply the sample gas into a measurement cell of a non-dispersive infrared absorption detector. A cooling type dehumidifier capable of reducing the water concentration in the gas to a predetermined value is provided, and a pipe which is made of a water vapor permeable material and constitutes a part of the gas flow path is provided in front of the cooling type dehumidifier, and this pipe. A humidifying means consisting of a water storage tank for holding
A gas characterized in that the sample gas containing a certain amount of water is supplied to the non-dispersion infrared absorption detector by passing the sample gas through both the cooling type dehumidifier and the humidifying means. Analyzer.
【請求項2】パイプが、フッ素系樹脂パイプである特許
請求の範囲第1項記載のガス分析計。
2. The gas analyzer according to claim 1, wherein the pipe is a fluororesin pipe.
【請求項3】パイプが、通過する試料ガス中の水分濃度
を少なくとも0.7重量%以上に加湿するよう構成されて
なる特許請求の範囲第1項記載のガス分析計。
3. The gas analyzer according to claim 1, wherein the pipe is configured to humidify the moisture concentration in the sample gas passing therethrough to at least 0.7% by weight or more.
JP19322787A 1987-07-31 1987-07-31 Gas analyzer Expired - Fee Related JPH07113605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19322787A JPH07113605B2 (en) 1987-07-31 1987-07-31 Gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19322787A JPH07113605B2 (en) 1987-07-31 1987-07-31 Gas analyzer

Publications (2)

Publication Number Publication Date
JPS6435348A JPS6435348A (en) 1989-02-06
JPH07113605B2 true JPH07113605B2 (en) 1995-12-06

Family

ID=16304435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19322787A Expired - Fee Related JPH07113605B2 (en) 1987-07-31 1987-07-31 Gas analyzer

Country Status (1)

Country Link
JP (1) JPH07113605B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2696692B2 (en) * 1992-03-13 1998-01-14 中部電力株式会社 Fluid modulation type gas analyzer
FR2856939B1 (en) * 2003-07-03 2005-09-30 Jobin Yvon Sas GAS HUMIDIFIER
JP2007108151A (en) * 2005-10-14 2007-04-26 Junzo Umemura Fourier transform infrared spectrophotometer without spectrum noise by steam or carbon dioxide gas
JP6052661B2 (en) * 2012-08-08 2016-12-27 国立研究開発法人産業技術総合研究所 Trace moisture generator
WO2016011447A1 (en) * 2014-07-18 2016-01-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Aerosol particle growth systems using polymer electrolyte membranes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108435A (en) * 1981-08-10 1983-06-28 Kazuo Amaya Removal of ammonia in air for sulpfur dioxide measuring use and moistening device
JPH076969B2 (en) * 1985-06-07 1995-01-30 株式会社島津製作所 Total carbon measuring device

Also Published As

Publication number Publication date
JPS6435348A (en) 1989-02-06

Similar Documents

Publication Publication Date Title
US3892549A (en) Gas dilution apparatus
US4098650A (en) Method and analyzer for determining moisture in a mixture of gases containing oxygen
US20060024839A1 (en) Inorganic carbon removal
JPH07113605B2 (en) Gas analyzer
US3533272A (en) Preparation of gas mixtures
Philips et al. A diffusion scrubber for the collection of gaseous nitric acid
CN206223643U (en) A kind of gas phase molecular absorption spectrometer based on sensor and use infiltration absorption dehydration device
CN208721484U (en) A kind of flue gas pre-processing device
EP1099949A1 (en) Device for measuring gases with odors
JPS61104256A (en) Apparatus for analysis of total volatile organic compound
JP2000097852A (en) Ammonia measuring device
JPS6116928B2 (en)
US20220260540A1 (en) Measurement method and measurement device using gas sensor
JPS6010256B2 (en) gas analyzer
JPH09159587A (en) Dehumidifying method and analysis method for analyzed combustion gas
JPS6035878Y2 (en) gas analyzer
JPS5717848A (en) Measuring method of ingredient in solution
JPS59196461A (en) Carbon measuring apparatus
JP4902503B2 (en) Method and analyzer for measuring gas concentration in gas flow
JPH0815151A (en) Gas analyzer
JPS6035877Y2 (en) gas analyzer
JP2894206B2 (en) Gas analyzer
JPH079088Y2 (en) Water quality measuring device
JP2000074878A (en) Carbon monoxide measuring apparatus
JPH02240539A (en) Analysis apparatus for ozone in solution

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees