JP3260779B2 - Purification method of aromatic hydrocarbon vapor - Google Patents

Purification method of aromatic hydrocarbon vapor

Info

Publication number
JP3260779B2
JP3260779B2 JP21052491A JP21052491A JP3260779B2 JP 3260779 B2 JP3260779 B2 JP 3260779B2 JP 21052491 A JP21052491 A JP 21052491A JP 21052491 A JP21052491 A JP 21052491A JP 3260779 B2 JP3260779 B2 JP 3260779B2
Authority
JP
Japan
Prior art keywords
vapor
benzene
purification
concentration
aromatic hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21052491A
Other languages
Japanese (ja)
Other versions
JPH04341322A (en
Inventor
孝 島田
恵一 岩田
雅子 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP21052491A priority Critical patent/JP3260779B2/en
Publication of JPH04341322A publication Critical patent/JPH04341322A/en
Application granted granted Critical
Publication of JP3260779B2 publication Critical patent/JP3260779B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は芳香族炭化水素蒸気の精
製方法に関し、さらに詳細には芳香族炭化水素蒸気中に
不純物として含まれる酸素を極低濃度まで除去しうる芳
香族炭化水素蒸気の精製方法に関する。ベンゼン、トル
エン、キシレンなどの芳香族炭化水素は主に化学製品の
合成原料、溶剤などとして多量に使用されてきたが、近
年、用途も多様化し、その目的によっては不純物の極め
て少ないものが必要とされる。例えば、ベンゼンはダイ
ヤモンド膜を製造するための原料としても使用されてお
り、成膜技術の進歩とともに純度の高いものが要求され
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying an aromatic hydrocarbon vapor, and more particularly to a method for purifying an aromatic hydrocarbon vapor capable of removing oxygen contained as an impurity in an aromatic hydrocarbon vapor to an extremely low concentration. It relates to a purification method. Aromatic hydrocarbons such as benzene, toluene, and xylene have been used in large quantities mainly as raw materials for synthesis of chemical products and as solvents, but in recent years their uses have been diversified, and depending on the purpose, it is necessary to use one with extremely few impurities. Is done. For example, benzene is also used as a raw material for producing a diamond film, and high purity is required as the film forming technology advances.

【0002】[0002]

【従来の技術】炭素物質の成膜時などに使用されるベン
ゼンのプロセスへの供給方法としては例えば、一端の開
いたボトルなどの容器にベンゼンを入れ、これを恒温槽
に浸して適当な温度に制御することによって発生させた
ベンゼン蒸気をマスフローコントローラなどで流量を制
御しながら成膜用のリアクターに供給する方法、あるい
はベンゼンをバブラーに入れて水素、窒素、ヘリウムな
どによりバブリングして発生させたベンゼン蒸気をリア
クターに供給する方法などが一般的である。しかしなが
ら、これらの蒸気中には、原料液をボトルやバブラーに
仕込む場合に混入する酸素、水分などの大気成分が存在
し、使用に先立っておこなわれる原料液体中での不活性
ガスなどによるパージだけでは充分に除去することはで
きない。このうち水分については芳香族炭化水素蒸気を
合成ゼオライトなどの脱湿剤と接触させることにより除
去することが可能であるが、酸素については低濃度まで
除去しうる方法は知られていない。。
2. Description of the Related Art As a method for supplying benzene used in a process of forming a carbon material to a film, for example, benzene is put into a container such as a bottle having an open end, and the benzene is immersed in a thermostat to set an appropriate temperature. Benzene vapor generated by controlling the flow rate to a reactor for film formation while controlling the flow rate with a mass flow controller, or by generating benzene vapor by bubbling hydrogen, nitrogen, helium, etc. into a bubbler A method of supplying benzene vapor to the reactor is generally used. However, these vapors contain atmospheric components such as oxygen and moisture that are mixed in when the raw material liquid is charged into a bottle or bubbler, and are only purged by an inert gas or the like in the raw material liquid prior to use. Cannot be sufficiently removed. Among them, water can be removed by bringing aromatic hydrocarbon vapor into contact with a dehumidifier such as synthetic zeolite, but a method capable of removing oxygen to a low concentration is not known. .

【0003】[0003]

【発明が解決しようとする課題】窒素、水素など一般的
なガス中に含まれる酸素を効率よく除去する方法として
ニッケル系触媒を用いることが知られており、この触媒
を芳香族炭化水素中の酸素除去に適用することが考えら
れる。しかしながら、ニッケル系触媒を用いた場合に
は、蒸気流通の初期段階において芳香族炭化水素蒸気が
触媒に捕捉されて濃度が低下し、出口蒸気中の炭化水素
濃度はなかなか安定しない。このため、蒸気の流量が大
きい場合には比較的短時間で所定の濃度に達するが、蒸
気の量が線速度(LV)で5cm/秒以下のように小さ
いときにはプロセスへの供給を開始するまでに長時間の
空流しを要するという問題がある。また、水素ベースの
芳香族炭化水素蒸気の場合はベンゼンやトルエンの一部
がニッケルの触媒作用によって還元されてシクロヘキサ
ンなどを副生するため、出口蒸気の純度および濃度が低
下することも判明した。このようにニッケル系の触媒を
用いた場合には品質の安定した芳香族炭化水素蒸気を得
ることができず、効率的な成膜作業などが困難である。
従って、芳香族炭化水素蒸気中の不純物を効率よく除去
しうると同時に、低線速度においても、蒸気を流し始め
てから短時間で精製筒出口蒸気が所定の流量および濃度
に到達しうる精製方法が要望されている。
It is known to use a nickel-based catalyst as a method for efficiently removing oxygen contained in common gases such as nitrogen and hydrogen. Application to oxygen removal is conceivable. However, when a nickel-based catalyst is used, the aromatic hydrocarbon vapor is trapped by the catalyst in the initial stage of the vapor flow, and the concentration of the aromatic hydrocarbon decreases, and the hydrocarbon concentration in the outlet vapor is not stable. For this reason, when the flow rate of the steam is large, the concentration reaches a predetermined concentration in a relatively short time, but when the amount of the steam is small, such as 5 cm / sec or less at a linear velocity (LV), the supply to the process is started. However, there is a problem that it requires a long period of airflow. In addition, in the case of hydrogen-based aromatic hydrocarbon vapor, it was also found that the purity and concentration of the outlet vapor decreased because part of benzene and toluene was reduced by the catalytic action of nickel to produce by-products such as cyclohexane. As described above, when a nickel-based catalyst is used, an aromatic hydrocarbon vapor having a stable quality cannot be obtained, and it is difficult to efficiently form a film.
Therefore, there is a purification method capable of efficiently removing impurities in the aromatic hydrocarbon vapor, and at the same time, even at a low linear velocity, the vapor at the purification cylinder outlet can reach a predetermined flow rate and concentration in a short time after starting to flow the vapor. Requested.

【0004】[0004]

【課題を解決するための手段】本発明者らは、ベンゼ
ン、トルエン、キシレンなど芳香族炭化水素蒸気に含有
される酸素を極低濃度まで効率よく除去するとともに短
時間で濃度の安定する精製方法を得るべく鋭意研究を重
ねた結果、これらの蒸気を金属銅または還元処理した銅
化合物を主成分とする精製剤と接触させることにより酸
素濃度を0.1ppm以下、さらには0.01ppm以
下まで除去しうることを見いだし、本発明を完成した。
すなわち本発明は、芳香族炭化水素蒸気を、金属銅また
は還元処理した銅化合物を主成分とする精製剤と接触さ
せて、該芳香族炭化水素蒸気中に不純物として含まれる
酸素を除去することを特徴とする芳香族炭化水素蒸気の
精製方法である。本発明はベンゼン、トルエン、キシレ
ンなどの芳香族炭化水素蒸気単独、水素(水素ガスベー
ス)および窒素、アルゴンなどの不活性ガス(不活性ガ
スベース)で希釈された芳香族炭化水素蒸気(以下総称
して炭化水素蒸気と記す)中に含まれる酸素の除去に適
用される。
SUMMARY OF THE INVENTION The present inventors have developed a purification method for efficiently removing oxygen contained in aromatic hydrocarbon vapors such as benzene, toluene and xylene to an extremely low concentration and stabilizing the concentration in a short time. results of extensive studies to obtain, copper and these vapors were metal copper or reduction treatment
The present inventors have found that the oxygen concentration can be reduced to 0.1 ppm or less and further to 0.01 ppm or less by contacting with a purifying agent containing a compound as a main component, thereby completing the present invention.
That is, the present invention provides a method for converting an aromatic hydrocarbon vapor into metallic copper or
Is a method for purifying aromatic hydrocarbon vapor, which comprises contacting with a purifying agent mainly containing a reduced copper compound to remove oxygen contained as an impurity in the aromatic hydrocarbon vapor. The present invention relates to aromatic hydrocarbon vapors such as benzene, toluene and xylene alone, aromatic hydrocarbon vapors diluted with hydrogen (based on hydrogen gas) and inert gases such as nitrogen and argon (based on inert gas) (hereinafter collectively referred to as "aromatic hydrocarbon vapors"). (Hereinafter referred to as hydrocarbon vapor).

【0005】本発明において用いられる精製剤は金属銅
または銅の酸化物などを還元処理した銅化合物を主成分
とするものである。また、銅以外の金属成分としてクロ
ム、鉄、コバルトなどが少量含有されているものであっ
てもよい。これらの精製剤は単独で用いられてもよく、
また、担体などに担持させた形で用いてもよいが、銅の
表面と蒸気の接触効率を高める目的などから、通常は担
体などに担持させた形態で使用される。銅の酸化物を得
るには種々の方法があるが、例えば、銅の硝酸塩、硫酸
塩、塩化物、有機酸塩などに苛性ソーダ、苛性カリ、炭
酸ナトリウム、アンモニアなどのアルカリを加えて酸化
物の中間体を沈澱させ、得られた沈澱物を焼成するなど
の方法がある。これらはそのまま、または、アルミナ、
シリカなどの担体物質と混練し、通常は押出成型、打錠
成型などで成型体とし、必要に応じてさらに適当な大き
さに破砕して使用される。成型方法としては乾式法ある
いは湿式法を用いることができ、その際、少量の水、滑
剤などを使用してもよい。また、市販の酸化銅触媒など
種々なものがあるのでそれらから選択したものを使用し
てもよい。要は、還元銅、酸化銅などが微細に分散され
て、その表面積が大きくガスとの接触効率の高い形態の
ものであればよい。精製剤の比表面積としては一般的に
は大きいほうがよいが、BET法で例えば30〜250
/g程度の範囲のものであれば充分である。また、
銅の含有量は金属銅換算で通常は、1〜95wt%であ
り、好ましくは20〜95wt%である。銅の含有量が
1wt%よりも少なくなると脱酸素能力が低くなり、ま
た95wt%よりも高くなると水素による還元の際にシ
ンタリングが生じて活性が低下することがある。
[0005] The purifying agent used in the present invention is mainly composed of copper compound obtained by reducing metallic copper or copper oxide. Further, a material containing a small amount of chromium, iron, cobalt, or the like as a metal component other than copper may be used. These purification agents may be used alone,
In addition, although it may be used in a form supported on a carrier or the like, it is usually used in a form supported on a carrier or the like for the purpose of increasing the contact efficiency between the surface of copper and steam. There are various methods for obtaining copper oxides.For example, adding an alkali such as caustic soda, caustic potash, sodium carbonate, and ammonia to copper nitrate, sulfate, chloride, organic acid salt, etc. to form an intermediate oxide. There are methods such as precipitating the body and calcining the obtained precipitate. These can be used as is, or alumina,
It is kneaded with a carrier substance such as silica, and usually formed into a molded product by extrusion molding, tablet molding, or the like, and is further crushed to an appropriate size, if necessary, before use. As a molding method, a dry method or a wet method can be used, and in that case, a small amount of water, a lubricant, or the like may be used. In addition, since there are various catalysts such as commercially available copper oxide catalysts, those selected from them may be used. In short, any form may be used as long as reduced copper, copper oxide, and the like are finely dispersed and have a large surface area and a high contact efficiency with a gas. Generally, the larger the specific surface area of the purifying agent is, the better it is.
A range of about m 2 / g is sufficient. Also,
The copper content is usually 1 to 95 wt%, preferably 20 to 95 wt% in terms of metallic copper. When the content of copper is less than 1 wt%, the deoxidizing ability is reduced. When the content of copper is more than 95 wt%, sintering occurs during reduction with hydrogen, and the activity may be reduced.

【0006】精製剤は炭化水素蒸気の精製に使用するに
先立って活性化処理をおこなうことが好ましい。精製剤
の活性化には通常は水素還元が用いられる。例えば35
0℃以下で窒素などで希釈した水素の混合ガスを精製筒
に通すことによっておこなうことができるが、発熱反応
であるため、温度が急上昇しないよう注意が必要であ
る。
[0006] The refining agent is preferably subjected to an activation treatment prior to use in refining hydrocarbon vapor. Hydrogen reduction is usually used to activate the purifying agent . For example, 35
The reaction can be carried out by passing a mixed gas of hydrogen diluted with nitrogen or the like at 0 ° C. or lower through a purification column. However, since it is an exothermic reaction, care must be taken so that the temperature does not rise rapidly.

【0007】炭化水素蒸気の精製は、通常は、還元処理
した銅化合物が充填された精製筒に炭化水素蒸気を通す
ことによっておこなわれ、炭化水素蒸気がこれと接触す
ることによって炭化水素蒸気中に不純物として含まれる
酸素が除去される。本発明に適用される炭化水素蒸気中
の酸素濃度は通常は100ppm以下である。酸素濃度
がこれよりも高くなると発熱量が増加するため条件によ
っては除熱手段が必要となる。精製筒に充填される精製
の充填長は炭化水素蒸気中の酸素濃度、使用精製剤
特性および酸素除去条件などによって決められるが、通
常は50〜1500mmである。充填長が50mmより
も短くなると酸素除去率が低下する虞れがあり、また、
1500mmよりも長くなると圧力損失が大きくなり過
ぎる虞れが生ずる。精製時の炭化水素蒸気の空筒線速度
(LV)は供給される炭化水素蒸気中の酸素濃度および
操作条件などによって異なり一概に特定できないが、通
常は100cm/秒以下、好ましくは30cm/秒以下
である。炭化水素蒸気と精製剤の接触温度は精製筒の入
口に供給されるガスの温度で200℃以下、好ましくは
−10〜100℃であり、通常は常温(0〜60℃)で
よく特に加熱や冷却は必要としない。圧力にも特に制限
はなく常圧、減圧、加圧のいずれでも処理が可能である
が、通常は、20Kg/cmabs以下、好ましくは
0.1〜10Kg/cmabsである。また、炭化水
素蒸気中に少量の水分が含有されていても脱酸素能力に
は特に悪影響をおよぼすことはなく、さらに担体などを
用いる場合には、その種類によっては水分も同時に除去
されるが、本発明における酸素除去工程に、必要に応じ
てさらに合成ゼオライトなどの脱湿剤による水分除去工
程を適宜組み合わせることも可能であり、これによって
水分も完全に除去され、極めて高純度の精製炭化水素蒸
気を得ることができる。
[0007] Purification of the hydrocarbon vapors are typically copper compound reduction treatment is carried out by passing the hydrocarbon vapor to the purification column filled, the hydrocarbon vapor by the hydrocarbon vapor is contacted with this Oxygen contained as an impurity is removed. The oxygen concentration in the hydrocarbon vapor applied to the present invention is usually 100 ppm or less. If the oxygen concentration is higher than this, the calorific value increases, so a heat removal means is required depending on the conditions. Purification filled in the purification column
Charging length of agent concentration of oxygen in the hydrocarbon vapors, but are determined by the characteristics and the oxygen removal conditions of use purification agent, usually a 50~1500Mm. If the filling length is shorter than 50 mm, the oxygen removal rate may decrease, and
If it is longer than 1500 mm, the pressure loss may be too large. The cylinder linear velocity (LV) of the hydrocarbon vapor at the time of refining differs depending on the oxygen concentration in the supplied hydrocarbon vapor and the operating conditions and cannot be specified unconditionally, but is usually 100 cm / sec or less, preferably 30 cm / sec or less. It is. The contact temperature between the hydrocarbon vapor and the refining agent is 200 ° C. or lower, preferably -10 to 100 ° C., as the temperature of the gas supplied to the inlet of the refining cylinder, and is usually room temperature (0 to 60 ° C.). No cooling is required. Atmospheric pressure is not particularly limited to the pressure, vacuum, although it is possible either process the pressure is, usually, 20 Kg / cm 2 abs or less, preferably 0.1~10Kg / cm 2 abs. Also, even if a small amount of water is contained in the hydrocarbon vapor, there is no particular adverse effect on the deoxygenation ability.Moreover, when a carrier is used, depending on the type, water is also removed at the same time. The oxygen removing step in the present invention can be further combined with a water removing step using a dehumidifier such as synthetic zeolite as needed, whereby the water is completely removed, and the purified hydrocarbon vapor of extremely high purity is removed. Can be obtained.

【0008】[0008]

【実施例】実施例1 (精製剤の調製) 硫酸銅の20wt%水溶液に炭酸ソーダの20wt%水
溶液をpH9〜10になるまで加え、塩基性炭酸銅の結
晶を析出させた。この結晶を繰り返し濾過、洗浄し、空
気気流中130℃で5時間乾燥させた後、300℃で5
時間焼成して酸化銅を生成させた。この酸化銅にアルミ
ナゾル(触媒化成工業(株)製Cataloid−AS
−2)を混合し、ニーダーで混練した。続いて空気中1
30℃で5時間乾燥させ、さらに350℃で5時間焼成
し、焼成物を破砕して顆粒状とした。このものを打錠成
型にて6mmφ×4mmHの円筒状のペレットに成型し
た。これを破砕してふるいにかけ、6〜12メッシュの
ものを集めた。この精製剤の比表面積は39m/gで
あった。内径16.4mm、長さ400mmのステンレ
ス製の精製筒に63.3ml (101.3g、充填密度
1.6g/ml、充填長300mm)充填した。 (精製剤の活性化処理) この精製筒に10vol%の水素(窒素ベース)を常圧
で温度180℃、流量0.633L/分(LV=5cm
/秒)で6時間流し還元処理をおこなった後、常温に冷
却した。 (ベンゼン蒸気の精製) 引き続いて、ベンゼン蒸気の精製をおこなった。液体の
ベンゼンを内径5.5cm、高さ20cmのステンレス
製バブラーに約200ml入れ、このバブラーを10℃
に設定した恒温槽に浸してベンゼン蒸気圧をコントロー
ルし、窒素でベンゼンをバブリングすることによって窒
素ベースで9vol%のベンゼンを含む蒸気を発生させ
た。このベンゼンを含む蒸気中の酸素濃度を黄燐発光式
酸素分析計(測定下限濃度0.01ppm)を用いて測
定したところ、0.20ppmであった。この蒸気を精
製筒に0.633L/分(LV=5cm/秒)で流して
出口蒸気中の酸素濃度を測定したところ、酸素は検出さ
れず、0.01ppm以下であった。また精製を始めて
から100分後においても出口蒸気の酸素濃度は0.0
1ppm以下であった。また、精製筒出口蒸気中のベン
ゼン濃度をガスクロマトグラフ法により測定したとこ
ろ、蒸気を流し始めてから50分で入口蒸気中と同じ9
vol%に達し、さらに120分間測定を続けたが変化
はなかった。ベンゼンを含む蒸気の流通を止めてそのま
ま2時間封入したあと再び蒸気を流した場合は、16分
で出口蒸気中のベンゼン濃度は入口蒸気中と同じになっ
た。結果を表1に示す。 実施例2 実施例1と同種の精製剤を用い、窒素の代わりにベース
ガスを水素とし9vol%のベンゼンおよび不純物とし
て0.16ppmの酸素を含む水素ベースの蒸気を用い
た他は実施例1と同様にしてベンゼン蒸気の精製をおこ
なった。蒸気を流し始めてから65分でベンゼン濃度は
入口蒸気中と同じ9vol%に達し、さらに120分間
測定を続けたが変化はなかった。ベンゼンを含む蒸気の
流通を止めてそのまま2時間封入したあと再び蒸気を流
した場合は、16分で出口蒸気中のベンゼン濃度は入口
蒸気中と同じになった。結果を表1に示す。
EXAMPLES Example 1 (Preparation of Purifying Agent ) A 20 wt% aqueous solution of sodium carbonate was added to a 20 wt% aqueous solution of copper sulfate until the pH became 9 to 10 to precipitate crystals of basic copper carbonate. The crystals are repeatedly filtered and washed, dried at 130 ° C. for 5 hours in an air stream, and then dried at 300 ° C. for 5 hours.
Calcination was performed for a period of time to produce copper oxide. Alumina sol was added to the copper oxide (Cataloid-AS manufactured by Catalyst Chemical Industry Co., Ltd.).
-2) and kneaded with a kneader. Then in the air 1
It was dried at 30 ° C. for 5 hours, and further calcined at 350 ° C. for 5 hours, and the calcined product was crushed into granules. This was formed into a 6 mmφ × 4 mmH cylindrical pellet by tableting. This was crushed and sieved to collect 6 to 12 mesh. The specific surface area of this purifying agent was 39 m 2 / g. A stainless steel purification cylinder having an inner diameter of 16.4 mm and a length of 400 mm was filled with 63.3 ml (101.3 g, packing density 1.6 g / ml, filling length 300 mm). (Activation treatment purification agent) temperature 180 ° C. at atmospheric pressure to 10 vol% of hydrogen (nitrogen base) in the purification tube, the flow rate 0.633L / min (LV = 5 cm
/ S) for 6 hours to perform a reduction treatment, and then cooled to room temperature. (Purification of benzene vapor) Subsequently, benzene vapor was purified. About 200 ml of liquid benzene was placed in a stainless steel bubbler having an inner diameter of 5.5 cm and a height of 20 cm.
The benzene vapor pressure was controlled by immersion in a constant temperature bath set as described above, and benzene was bubbled with nitrogen to generate a vapor containing 9 vol% benzene on a nitrogen basis. The oxygen concentration in the benzene-containing vapor was measured using a yellow phosphorus emission type oxygen analyzer (measurement lower limit concentration: 0.01 ppm), and was found to be 0.20 ppm. When this steam was passed through the purification cylinder at 0.633 L / min (LV = 5 cm / sec) and the oxygen concentration in the outlet steam was measured, no oxygen was detected and the concentration was 0.01 ppm or less. Further, even after 100 minutes from the start of the purification, the oxygen concentration of the outlet steam is 0.0
It was 1 ppm or less. Further, when the benzene concentration in the outlet vapor of the purification cylinder was measured by a gas chromatograph method, the same as in the inlet vapor 50 minutes after the start of the steam flow.
vol% was reached, and the measurement was continued for another 120 minutes, but there was no change. When the flow of the vapor containing benzene was stopped and sealed for 2 hours as it was, and the vapor was flowed again, the benzene concentration in the outlet vapor became the same as that in the inlet vapor in 16 minutes. Table 1 shows the results. Example 2 Example 1 was repeated except that the same kind of purifying agent as in Example 1 was used, and instead of nitrogen, hydrogen was used as the base gas and hydrogen-based steam containing 9 vol% benzene and 0.16 ppm of oxygen as impurities was used. Purification of benzene vapor was performed in the same manner. The benzene concentration reached 9 vol% as in the inlet steam 65 minutes after the start of the steam flow, and the measurement was continued for another 120 minutes, but there was no change. When the flow of the vapor containing benzene was stopped and sealed for 2 hours as it was, and the vapor was flowed again, the benzene concentration in the outlet vapor became the same as that in the inlet vapor in 16 minutes. Table 1 shows the results.

【0009】実施例3 (精製剤) 市販の酸化銅触媒(日産ガードラー(株)製、G10
8)を精製剤として用いた。このものは担体としてSi
を使用しCuとして30wt%、比表面積が120
/gであり、直径5mm、高さ4.5mmの成型体
である。この酸化銅触媒を8〜10メッシュに破砕した
もの63.3mlを内径16.4mm、長さ400mm
のステンレス製精製筒に充填長300mm(充填密度
1.0g/ml)に充填した。 (精製剤の還元処理) この精製筒に10vol%の水素(窒素ベース)を常圧
で温度180℃、流量0.633L/分(LV=5cm
/秒)で6時間流し還元処理を行った後、常温に冷却し
た。 (ベンゼン蒸気の精製) 引き続いて、ベンゼン蒸気の精製を行った。実施例1と
同様に窒素ガスをバブリングして発生させた9vol%
のベンゼンおよび不純物として0.20ppmの酸素を
含む窒素ベースのベンゼン蒸気を、0.633L/分
(LV=5cm/秒)で精製筒に流して出口蒸気中の酸
素濃度を測定したところ、酸素は検出されず、0.01
ppm以下であった。精製を始めてから100分後にお
いても出口蒸気の酸素濃度は0.01ppm以下であっ
た。また、精製筒出口蒸気中のベンゼン濃度をガスクロ
マトグラフ法により測定したところ、蒸気を流し始めて
から50分で入口蒸気中と同じ濃度に達し、さらに12
0分間測定を続けたが変化はなかった。結果を表1に示
す。 実施例4 実施例3と同種の精製剤を用い、窒素の代わりにベース
ガスが水素で9vol%のベンゼンおよび不純物として
0.16ppmの酸素を含む水素ベースの蒸気を用いた
他は実施例3と同様にしてベンゼン蒸気の精製をおこな
った。蒸気を流し始めてから60分で入口蒸気中と同じ
9vol%に達し、さらに120分間測定を続けたが変
化はなかった。結果を表1に示す。
Example 3 ( Purifying agent ) Commercially available copper oxide catalyst (G10 manufactured by Nissan Gardler Co., Ltd.)
8) was used as a purification agent . This is Si
30 wt% as Cu using O 2 and specific surface area of 120
m 2 / g, a molded body having a diameter of 5 mm and a height of 4.5 mm. 63.3 ml of this copper oxide catalyst crushed to 8 to 10 mesh was 16.4 mm in inner diameter and 400 mm in length.
Was packed into a stainless steel purification cylinder having a filling length of 300 mm (filling density: 1.0 g / ml). (Reduction of refining agent) The purification tube to 10 vol% of hydrogen (nitrogen base) Temperature 180 ° C. at atmospheric pressure, the flow rate 0.633L / min (LV = 5 cm
/ S) for 6 hours to perform a reduction treatment, and then cooled to room temperature. (Purification of benzene vapor) Subsequently, benzene vapor was purified. 9 vol% generated by bubbling nitrogen gas in the same manner as in Example 1.
Benzene and nitrogen-based benzene vapor containing 0.20 ppm of oxygen as an impurity were passed through a purification column at 0.633 L / min (LV = 5 cm / sec), and the oxygen concentration in the outlet vapor was measured. Not detected, 0.01
ppm or less. Even after 100 minutes from the start of the purification, the oxygen concentration of the outlet steam was 0.01 ppm or less. Further, when the benzene concentration in the vapor at the outlet of the purifying cylinder was measured by gas chromatography, it reached the same concentration as that in the vapor at the inlet 50 minutes after the start of flowing the vapor, and furthermore 12
The measurement was continued for 0 minutes, but there was no change. Table 1 shows the results. Example 4 Example 3 was repeated except that the same type of purifying agent as in Example 3 was used, and instead of nitrogen, a hydrogen-based vapor containing 9 vol% of benzene as a base gas and 0.16 ppm of oxygen as an impurity was used instead of nitrogen. Purification of benzene vapor was performed in the same manner. In 60 minutes from the start of the steam flow, the volume reached 9 vol% as in the inlet steam, and the measurement was continued for another 120 minutes, but there was no change. Table 1 shows the results.

【0010】実施例5 実施例1で用いたと同種の精製剤を内径16.4mm、
長さ400mmのステンレス製の精製筒に63.3ml
(101.3g、充填密度1.6g/ml、充填長30
0mm)充填した後、実施例1におけると同じ条件で活
性化処理をおこない、引続いてトルエン蒸気の精製をお
こなった。21℃に設定した液体トルエンに窒素ガスを
バブリングして発生させた3vol%のトルエンおよび
不純物として0.32ppmの酸素を含む窒素ベースの
トルエン蒸気を、0.633L/分(LV=5cm/
秒)で精製筒に流して出口蒸気中の酸素濃度を測定した
ところ酸素は検出されず、0.01ppm以下であっ
た。精製を始めてから100分後においても出口蒸気中
の酸素濃度は0.01ppm以下であった。また、精製
筒出口中のトルエン濃度をガスクロマトグラフ法により
測定したところ、蒸気を流し始めてから70分で入口蒸
気中と同じ濃度に達し、さらに120分間測定を続けた
が変化はなかった。結果を表1に示す。
Example 5 The same kind of purifying agent as used in Example 1 was used for an inner diameter of 16.4 mm.
63.3 ml in a 400 mm long stainless steel purification cylinder
(101.3 g, packing density 1.6 g / ml, filling length 30
After the filling, an activation treatment was performed under the same conditions as in Example 1, and subsequently, purification of toluene vapor was performed. Nitrogen-based toluene vapor containing 3 vol% of toluene and 0.32 ppm of oxygen as an impurity generated by bubbling nitrogen gas into liquid toluene set at 21 ° C. was added at 0.633 L / min (LV = 5 cm /
(Sec), the oxygen concentration in the outlet steam was measured after flowing through the purification cylinder, and no oxygen was detected, and it was 0.01 ppm or less. Even after 100 minutes from the start of the purification, the oxygen concentration in the outlet steam was 0.01 ppm or less. Further, when the toluene concentration in the outlet of the purifying cylinder was measured by gas chromatography, it reached the same concentration as in the inlet steam 70 minutes after the start of the steam flow, and the measurement was continued for 120 minutes, but there was no change. Table 1 shows the results.

【0011】比較例1 市販のニッケル触媒(日揮(株)製、N−111)を用
いた。組成はNi+NiOの形であり、Niとして45
〜47wt%、Cr2〜3wt%、Cu2〜3wt%、
珪藻土27〜29wt%および黒鉛4〜5wt%で比表
面積は161m/gであり、直径5mm、高さ4.5
mmの成型体である。このニッケル系触媒を8〜10メ
ッシュに破砕したもの63.3mlを実施例で用いたと
同じ精製筒に充填長300mm(充填密度1.0g/m
l)に充填した。これに水素を常圧で温度150℃、流
量0.465l/分(LV=3.6cm/秒)で3時間
活性化処理を行った後、常温に冷却した。 (ベンゼン蒸気の精製)引き続いて、ベンゼン蒸気の精
製を行った。実施例1と同様に発生させた窒素ベースで
9vol%のベンゼンおよび不純物として0.20pp
mの酸素を含む蒸気を精製筒に0.633l/分(Lv
=5cm/秒)で流して出口蒸気中の酸素濃度を測定し
たところ、酸素は検出されず、0.01ppm以下であ
った。しかしながら、精製筒出口蒸気中のベンゼン濃度
をガスクロマトグラフ法により測定したところ、蒸気を
流し始めてから60分では5.9vol%であり、12
0分経過後においても7.7vol%にしかならなかっ
た。結果を表1に示す。 比較例2 比較例1と同種のニッケル系触媒を用い、窒素の代わり
にベースガスを水素とし、9vol%のベンゼンおよび
不純物として0.16ppmの酸素を含む水素ベースの
ベンゼン蒸気を用いた他は比較例1と同様にして精製を
おこない、出口蒸気中の酸素濃度を測定したところ酸素
は検出されず、0.01ppm以下であった。しかしな
がら、精製筒出口ガス中のベンゼン濃度をガスクロマト
グラフ法により測定したところ、蒸気を流し始めてから
60分経過後では1.8vol%であり、120分経過
後においても2.7vol%にしかならないばかりでな
く5.0vol%と多量のシクロヘキサンが副成してい
ることが確認された。結果を表1に示す。
Comparative Example 1 A commercially available nickel catalyst (N-111, manufactured by JGC Corporation) was used. The composition is in the form of Ni + NiO, where Ni is 45
~ 47wt%, Cr2 ~ 3wt%, Cu2 ~ 3wt%,
The specific surface area is 161 m 2 / g with diatomaceous earth 27 to 29 wt% and graphite 4 to 5 wt%, diameter 5 mm, height 4.5.
mm. 63.3 ml of this nickel-based catalyst crushed to 8 to 10 mesh was charged into the same purification cylinder as used in the examples, with a packing length of 300 mm (a packing density of 1.0 g / m2).
l). This was activated with hydrogen at normal pressure at a temperature of 150 ° C. and a flow rate of 0.465 l / min (LV = 3.6 cm / sec) for 3 hours, and then cooled to normal temperature. (Purification of benzene vapor) Subsequently, benzene vapor was purified. 9% by volume of benzene and 0.20 pp as impurities based on nitrogen generated as in Example 1.
0.633 l / min (Lv
= 5 cm / sec) and the oxygen concentration in the outlet steam was measured. As a result, no oxygen was detected and the concentration was 0.01 ppm or less. However, when the benzene concentration in the vapor at the outlet of the purifying cylinder was measured by gas chromatography, it was 5.9 vol% 60 minutes after the start of the vapor flow, and was 12%.
After lapse of 0 minutes, it was only 7.7 vol%. Table 1 shows the results. Comparative Example 2 A comparison was made except that a nickel-based catalyst similar to that of Comparative Example 1 was used, hydrogen was used as a base gas instead of nitrogen, and hydrogen-based benzene vapor containing 9 vol% benzene and 0.16 ppm oxygen as impurities was used. Purification was performed in the same manner as in Example 1, and the oxygen concentration in the outlet steam was measured. As a result, no oxygen was detected and the concentration was 0.01 ppm or less. However, when the benzene concentration in the gas at the outlet of the purifying cylinder was measured by gas chromatography, it was 1.8 vol% after 60 minutes from the start of flowing steam, and only 2.7 vol% after 120 minutes. However, it was confirmed that a large amount of 5.0% by volume of cyclohexane was formed as a by-product. Table 1 shows the results.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】本発明によって、従来除去が困難であっ
たベンゼン、トルエン、キシレンなどの芳香族炭化水素
蒸気中に含まれる酸素を0.1ppm以下、さらには
0.01ppm以下のような極低濃度まで除去すること
ができると同時に水素ベースの蒸気の精製においてもシ
クロヘキサンなどの副生物を生ずることがなく、しか
も、ガスを流し始めてから短時間で所定の濃度および流
量の超高純度の芳香族炭化水素蒸気を得ることが可能と
なった。
According to the present invention, oxygen contained in aromatic hydrocarbon vapors such as benzene, toluene, xylene and the like, which has conventionally been difficult to remove, is reduced to an extremely low level of 0.1 ppm or less, more preferably 0.01 ppm or less. At the same time, by-products such as cyclohexane do not occur in the purification of hydrogen-based vapors, and ultra-high-purity aromatics of a specified concentration and flow rate can be obtained in a short time after starting the gas flow. It has become possible to obtain hydrocarbon vapors.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01D 53/86 B01J 21/00 - 38/74 C07C 7/148 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) B01D 53/86 B01J 21/00-38/74 C07C 7/148

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 芳香族炭化水素蒸気を、金属銅または還
元処理した銅化合物を主成分とする精製剤と接触させ
て、該芳香族炭化水素蒸気中に不純物として含まれる酸
素を除去することを特徴とする芳香族炭化水素蒸気の精
製方法。
1. The method of claim 1, wherein the aromatic hydrocarbon vapor is converted to metallic copper or
A method for purifying aromatic hydrocarbon vapor, comprising contacting a purified agent mainly composed of a copper compound subjected to a primary treatment with oxygen to remove oxygen contained as an impurity in the aromatic hydrocarbon vapor.
JP21052491A 1991-05-17 1991-05-17 Purification method of aromatic hydrocarbon vapor Expired - Lifetime JP3260779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21052491A JP3260779B2 (en) 1991-05-17 1991-05-17 Purification method of aromatic hydrocarbon vapor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21052491A JP3260779B2 (en) 1991-05-17 1991-05-17 Purification method of aromatic hydrocarbon vapor

Publications (2)

Publication Number Publication Date
JPH04341322A JPH04341322A (en) 1992-11-27
JP3260779B2 true JP3260779B2 (en) 2002-02-25

Family

ID=16590795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21052491A Expired - Lifetime JP3260779B2 (en) 1991-05-17 1991-05-17 Purification method of aromatic hydrocarbon vapor

Country Status (1)

Country Link
JP (1) JP3260779B2 (en)

Also Published As

Publication number Publication date
JPH04341322A (en) 1992-11-27

Similar Documents

Publication Publication Date Title
US4268488A (en) Process for the catalytic reduction of nitrogen oxides in gaseous mixtures
GB1572168A (en) Hydrogenation catalyst and process
US3682585A (en) Removal of paramagnetic gases
US4034062A (en) Removal of oxygen from gas stream with copper catalyst
EP0523525A1 (en) Process for purification of gaseous organometallic compounds
JP2732262B2 (en) How to purify arsine
JP3260779B2 (en) Purification method of aromatic hydrocarbon vapor
CA1069487A (en) Hydrogenation catalyst
JP3260786B2 (en) Steam purification method
JP3410121B2 (en) Ammonia purification method
US4257918A (en) Catalyst mixture for the catalytic reduction of nitrogen oxides in gaseous mixtures
JP3522785B2 (en) Purification method of carbon dioxide
JP3292251B2 (en) Steam purification method
JP2700412B2 (en) Hydride gas purification method
JP3302402B2 (en) Ammonia decomposition catalyst
US2111469A (en) Manufacture of formaldehyde
US3125608A (en) Purification of vinyl chloride
JPH05124813A (en) Refining method of gaseous ammonia
JP2700413B2 (en) Hydride gas purification method
JPS5945654B2 (en) Vinyl chloride purification method
JP2640521B2 (en) Hydrogen sulfide purification method
JP3154340B2 (en) Method for purifying germanium hydride
JPH02144149A (en) Method for reactivating platinum-group metal carrying catalyst
JP3217854B2 (en) Organic metal purification method
JP3279608B2 (en) Steam purification method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10