JPS639742B2 - - Google Patents

Info

Publication number
JPS639742B2
JPS639742B2 JP14465082A JP14465082A JPS639742B2 JP S639742 B2 JPS639742 B2 JP S639742B2 JP 14465082 A JP14465082 A JP 14465082A JP 14465082 A JP14465082 A JP 14465082A JP S639742 B2 JPS639742 B2 JP S639742B2
Authority
JP
Japan
Prior art keywords
substrate
semiconductor thin
organometallic
thin film
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14465082A
Other languages
Japanese (ja)
Other versions
JPS5934628A (en
Inventor
Naoki Kobayashi
Takashi Fukui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14465082A priority Critical patent/JPS5934628A/en
Publication of JPS5934628A publication Critical patent/JPS5934628A/en
Publication of JPS639742B2 publication Critical patent/JPS639742B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 本発明は、有機金属化合物を原料として用いる
半導体薄膜製造法に関するものにして、特に、簡
単な装置で、容易な操作で、安全に、短時間に、
大面積の半導体薄膜を製造する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing semiconductor thin films using organometallic compounds as raw materials, and in particular, the present invention relates to a method for producing a semiconductor thin film using an organometallic compound as a raw material, and in particular, a method for producing a semiconductor thin film using a simple device, easy operation, safely, and in a short time.
The present invention relates to a method for manufacturing large-area semiconductor thin films.

従来、有機金属化合物を用いる半導体薄膜製造
法は気相成長によるものであつた。GaAs基板上
にGaAsを成長させる場合を例にとつて説明する
と次の通りである。
Conventionally, semiconductor thin film manufacturing methods using organometallic compounds have been based on vapor phase growth. An example of growing GaAs on a GaAs substrate will be explained as follows.

従来の気相エピタキシヤル成長装置の構成を第
1図に示す。第1図を参照して、加熱用RFコイ
ル10、基板支持用サセプタ11を備えた反応管
1中に原料化合物等を導入するための導入管12
を設け、この導入管12に水素化物用ボンベ1
3、原料化合物用ボンベ14を、それぞれ、バル
ブ30,40を介して接続するとともに、原料化
合物を搬送するためのキヤリアガスボンベ15を
キヤリアガス純化装置50および水素化物用ボン
ベ13、原料化合物用ボンベ14よりのそれぞれ
のガスを反応管1へ搬送するように、マスフロー
コントローラ31,41を介して導入管12に接
続してある。GaAsを成長させる場合、アルシン
AsH3の入つているボンベ13およびトリメチル
ガリウムGa(CH33の入つているボンベ14の、
それぞれのバルブ30,40を開き、導入管12
を介して原料ガスをRFコイル10により加熱さ
れた基板支持用サセプタ11の入つた反応管1に
導入する。
The configuration of a conventional vapor phase epitaxial growth apparatus is shown in FIG. Referring to FIG. 1, an introduction pipe 12 for introducing raw material compounds etc. into a reaction tube 1 equipped with a heating RF coil 10 and a substrate supporting susceptor 11.
A hydride cylinder 1 is installed in this introduction pipe 12.
3. The raw material compound cylinders 14 are connected via valves 30 and 40, respectively, and the carrier gas cylinder 15 for transporting the raw material compounds is connected to the carrier gas purification device 50, the hydride cylinder 13, and the raw material compound cylinder 14. are connected to the introduction tube 12 via mass flow controllers 31 and 41 so as to convey the respective gases to the reaction tube 1. When growing GaAs, arsine
a cylinder 13 containing AsH 3 and a cylinder 14 containing trimethylgallium Ga (CH 3 ) 3 ;
Open each valve 30, 40 and open the inlet pipe 12.
The raw material gas is introduced into the reaction tube 1 containing the substrate supporting susceptor 11 heated by the RF coil 10.

この方法は、原料供給系が複雑であり、装置が
高価であること、用いる有機金属化合物の蒸気圧
が高く、引火性が強いこと、アルシンAsH3など
の族水素化物の許容濃度が低く、毒性が著しく
強いため、装置の取り扱い保守に細心の注意が必
要であることなど、大量生産用としては欠点が多
い方法であつた。
This method requires a complicated raw material supply system and expensive equipment, the organometallic compound used has a high vapor pressure and is highly flammable, the permissible concentration of group hydrides such as arsine AsH 3 is low, and it is toxic. This method has many drawbacks for mass production, such as the fact that it requires extreme care when handling and maintaining the equipment because it is extremely strong.

本発明の目的は、上記の従来技術におけるよう
な欠点のない半導体薄膜製造法を提供することに
ある。さらに詳細には、簡単な装置で、容易な操
作で、安全に、短時間に大面積の薄膜を製造する
方法を提供することにある。
An object of the present invention is to provide a method for manufacturing semiconductor thin films that does not have the drawbacks of the prior art described above. More specifically, it is an object of the present invention to provide a method for safely producing a large-area thin film in a short time using a simple device, easy operation, and safety.

上記の目的の本発明の半導体薄膜製造法の特徴
とするところは、半導体薄膜の製造において、原
料化合物として、族有機金属化合物と族有機
金属化合物との付加物、あるいは、族有機金属
化合物と族有機金属化合物との付加物を用い、
前記の有機金属付加物を基板に塗布し、水素雰囲
気中で加熱処理して、基板上に族化合物、あ
るいは族化合物の半導体薄膜を形成すること
にある。
The feature of the semiconductor thin film production method of the present invention for the above purpose is that in the production of semiconductor thin films, adducts of group organometallic compounds and group organometallic compounds, or group organometallic compounds and group organometallic compounds are used as raw material compounds. Using adducts with organometallic compounds,
The method involves applying the organometallic adduct to a substrate and heat-treating it in a hydrogen atmosphere to form a group compound or a semiconductor thin film of the group compound on the substrate.

本発明を、さらに具体的に、GaAsの場合を例
にとつて説明すれば、次の通りである。
The present invention will be explained in more detail by taking the case of GaAs as an example.

原料化合物として、トリメチルガリウム
(CH33Gaと、トリメチルアルシン(CH33Asと
の付加物である(CH33Ga・As(CH33、また
は、ジメチルガリウムクロライド(CH32ClGa
とトリメチルアルシン(CH33Asとの付加物で
ある(CH32ClGa・As(CH33などを用いる。こ
れらの有機金属付加物は、分子が大きいために、
室温付近で蒸気圧の低い液体であり、従来技術に
おける蒸気圧の高く引火性の強いトリメチルガリ
ウム(CH33Gaに比べ引火する危険性は少なく、
取り扱いやすい物質である。また、成長時に、従
来技術におけるような、毒性の著しく強いアルシ
ンAsH3を流す必要もなく、安全性の点でも優れ
ている。
As a raw material compound, ( CH 3 ) 3 Ga·As(CH 3 ) 3 , which is an adduct of trimethylgallium (CH 3 ) 3 Ga and trimethylarsine (CH 3 ) 3 As, or dimethylgallium chloride (CH 3 ) ) 2ClGa
(CH 3 ) 2 ClGa・As(CH 3 ) 3 , which is an adduct of trimethylarsine (CH 3 ) 3 As, is used. Because these organometallic adducts have large molecules,
It is a liquid with a low vapor pressure near room temperature, and has less risk of ignition than trimethylgallium (CH 3 ) 3 Ga, which has a high vapor pressure and is highly flammable in conventional technology.
It is an easy-to-handle substance. In addition, there is no need to flush highly toxic arsine AsH 3 during growth, unlike in conventional techniques, and the method is superior in terms of safety.

本発明においては、これらの有機金属付加物を
GaAs単結晶基板、ガラス基板上に、スプレーな
どによつて塗布し、次に、水素雰囲気中で加熱処
理する。加熱処理によつて、有機金属付加物のメ
チル基、すなわちCH3基は付加物から解離し、水
素と反応してメタンガスCH4、もしくはメチル基
どうし反応してエタンガスとなり系外に排出され
る。そのあとに、GaAsの薄膜が残ることにな
る。
In the present invention, these organometallic adducts are
It is applied onto a GaAs single crystal substrate or a glass substrate by spraying or the like, and then heat-treated in a hydrogen atmosphere. By the heat treatment, the methyl groups of the organometallic adduct, that is, the CH 3 groups, are dissociated from the adduct and react with hydrogen to produce methane gas CH 4 or methyl groups react with each other to produce ethane gas, which is discharged from the system. After that, a thin film of GaAs will remain.

このように、本発明の方法は、従来の通常の有
機金属化合物を用いる気相成長法に比べ、装置が
簡単で安価であり、短時間に大面積の基板上に薄
膜を形成できるという大きな利点のあることは明
らかである。
As described above, the method of the present invention has the major advantages that the equipment is simple and inexpensive, and thin films can be formed on large-area substrates in a short time, compared to conventional vapor phase growth methods using ordinary organometallic compounds. It is clear that there is.

以下に、本発明を実施例につき、装置を示す図
面を参照して説明する。
In the following, the invention will be explained by way of example and with reference to the drawings showing the apparatus.

実施例 1 第2図は、本実施例における半導体薄膜製造用
の装置の概略説明図である。
Example 1 FIG. 2 is a schematic explanatory diagram of an apparatus for manufacturing a semiconductor thin film in this example.

第2図において、符号1は反応管、2は基板、
3は窒素ガスなどの不活性ガスボンベ、4は有機
金属付加物の入つたボンベ、5は水素ボンベ、6
は有機金属付加物塗布用のスプレー、7は基板支
持用サセプタ、8は基板加熱用ヒータ、50は水
素純化装置である。
In FIG. 2, numeral 1 is a reaction tube, 2 is a substrate,
3 is an inert gas cylinder such as nitrogen gas, 4 is a cylinder containing an organic metal adduct, 5 is a hydrogen cylinder, 6
1 is a spray for applying an organic metal additive, 7 is a susceptor for supporting a substrate, 8 is a heater for heating the substrate, and 50 is a hydrogen purification device.

この装置を用い、GaAs基板上に族半導体
であるGaAs薄膜を成長させた。その操作は下記
の通りである。
Using this equipment, we grew a GaAs thin film, which is a group semiconductor, on a GaAs substrate. The operation is as follows.

まず、基板2上に、スプレー6により、有機金
属付加物(CH33Ga・As(CH33を塗布した。
First, an organometallic adduct (CH 3 ) 3 Ga·As(CH 3 ) 3 was applied onto the substrate 2 using the spray 6 .

次に、水素を流しながら、基板2を450℃に加
熱した。この加熱により、塗布された有機金属付
加物は分解し、GaAsの族半導体薄膜が形成
された。
Next, substrate 2 was heated to 450° C. while flowing hydrogen. This heating decomposed the applied organometallic adduct and formed a GaAs group semiconductor thin film.

上記における基板を、ガラス基板に換えて、全
く同様の処理操作を行い、ガラス基板上にGaAs
の半導体薄膜を形成することができた。
The substrate in the above was replaced with a glass substrate, and the same process was performed to deposit GaAs on the glass substrate.
We were able to form a semiconductor thin film.

実施例 2 実施例1における有機金属付加物を換えた以外
は、全く同一の処理操作を行つた。
Example 2 The same process as in Example 1 was carried out except that the organometallic adduct was changed.

この場合、有機金属付加物に(CH32ClGa・
As(CH33を用いた。その結果、GaAs基板上、
およびガラス基板上に、それぞれ、GaAsの半導
体薄膜を形成することができた。
In this case, the organometallic adduct contains (CH 3 ) 2 ClGa・
As( CH3 ) 3 was used. As a result, on the GaAs substrate,
GaAs semiconductor thin films could be formed on the and glass substrates, respectively.

実施例 3 この実施例は、族半導体薄膜製造の例であ
る。
Example 3 This example is an example of group semiconductor thin film production.

実施例1におけるGaAs基板をZnS基板に換え、
有機金属付加物を(CH32Zn・S(CH32に換え
た以外は、全く同一の処理操作を行つた。
The GaAs substrate in Example 1 was replaced with a ZnS substrate,
Exactly the same treatment operation was performed except that the organometallic adduct was changed to (CH 3 ) 2 Zn.S(CH 3 ) 2 .

その結果、ZnSおよびガラス基板上に、それぞ
れ、ZnS半導体薄膜を形成することができた。
As a result, ZnS semiconductor thin films could be formed on ZnS and glass substrates, respectively.

実施例 4 この実施例は、実施例3と同様、族半導体
薄膜の製造例である。
Example 4 This example, like Example 3, is an example of manufacturing a group semiconductor thin film.

実施例3におけるZnS基板をCdS基板に換え、
有機金属付加物を(CH32Cd・S(CH32に換え
た以外は、実施例3と同様の処理操作を行つた。
The ZnS substrate in Example 3 was replaced with a CdS substrate,
The same treatment operation as in Example 3 was performed except that the organometallic adduct was changed to (CH 3 ) 2 Cd·S(CH 3 ) 2 .

その結果、CdSおよびガラス基板上に、それぞ
れCdS半導体薄膜を形成することができた。
As a result, we were able to form CdS semiconductor thin films on CdS and glass substrates, respectively.

以上説明したように、本発明は、室温で蒸気圧
の低い液体の有機金属付加物を用い、それを基板
上に塗布し、水素雰囲気中で加熱処理することに
よるものであり、従来の有機金属化合物を用いる
気相成長法に比べ、安全かつ安価な装置を用い、
容易な操作により、大面積に半導体薄膜を形成で
きるという大きな利点がある。
As explained above, the present invention uses a liquid organometallic adduct with a low vapor pressure at room temperature, coats it on a substrate, and heat-treats it in a hydrogen atmosphere. Compared to the vapor phase growth method using compounds, it uses safer and cheaper equipment,
This method has the great advantage of being able to form a semiconductor thin film over a large area with easy operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の有機金属化合物を用いる気相エ
ピタキシヤル成長装置の概略説明図である。第2
図は本発明実施例の半導体薄膜製造用の装置の概
略説明図である。 1……反応管、2……基板、3……窒素ガスな
どの不活性ガスボンベ、4……有機金属付加物の
入つたボンベ、5……水素ボンベ、6……スプレ
ー、7……サセプタ、8……ヒータ、50……水
素純化装置。
FIG. 1 is a schematic explanatory diagram of a conventional vapor phase epitaxial growth apparatus using an organometallic compound. Second
The figure is a schematic explanatory diagram of an apparatus for manufacturing a semiconductor thin film according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Reaction tube, 2...Substrate, 3...Inert gas cylinder such as nitrogen gas, 4...Cylinder containing organometallic adduct, 5...Hydrogen cylinder, 6...Spray, 7...Susceptor, 8... Heater, 50... Hydrogen purification device.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体薄膜の製造において、原料化合物とし
て、族有機金属化合物と族有機金属化合物と
の付加物、あるいは、族有機金属化合物と族
有機金属化合物との付加物を用い、前記の有機金
属付加物を基板に塗布し、水素雰囲気中で加熱処
理して、基板上に族化合物、あるいは族
化合物の半導体薄膜を形成することを特徴とする
半導体薄膜製造法。
1. In the production of a semiconductor thin film, an adduct of a group organometallic compound and a group organometallic compound, or an adduct of a group organometallic compound and a group organometallic compound is used as a raw material compound, and the above-mentioned organometallic adduct is used. 1. A method for producing a semiconductor thin film, which comprises applying the compound to a substrate and heat-treating it in a hydrogen atmosphere to form a group compound or a semiconductor thin film of the group compound on the substrate.
JP14465082A 1982-08-23 1982-08-23 Manufacture of semiconductor thin-film Granted JPS5934628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14465082A JPS5934628A (en) 1982-08-23 1982-08-23 Manufacture of semiconductor thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14465082A JPS5934628A (en) 1982-08-23 1982-08-23 Manufacture of semiconductor thin-film

Publications (2)

Publication Number Publication Date
JPS5934628A JPS5934628A (en) 1984-02-25
JPS639742B2 true JPS639742B2 (en) 1988-03-01

Family

ID=15367010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14465082A Granted JPS5934628A (en) 1982-08-23 1982-08-23 Manufacture of semiconductor thin-film

Country Status (1)

Country Link
JP (1) JPS5934628A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198219A (en) * 1987-10-09 1989-04-17 Matsushita Electric Works Ltd Manufacture of compound semiconductor thin-film
JPH0445065A (en) * 1990-06-08 1992-02-14 Teijin Seiki Co Ltd Winding method for cross winding cop

Also Published As

Publication number Publication date
JPS5934628A (en) 1984-02-25

Similar Documents

Publication Publication Date Title
JPS639742B2 (en)
JPS59223294A (en) Vapor phase growth device
JPH04202091A (en) Vapor growth device of compound semiconductor
SU1074161A1 (en) Device for gas epitaxy of semiconductor connections
JPS61220416A (en) Chemical vapor growth
JPH0532360B2 (en)
JPS62142316A (en) Manufacture of compound semiconductor thin film
JPS61150323A (en) Manufacture of semiconductor material
JPS6251212A (en) Metal-organic chemical vapor deposition
JPS63119521A (en) Apparatus for vapor phase growth of organic metal
JPH04276076A (en) Chemical vapor growth method
JPS6390833A (en) Manufacture of compound thin film of group ii and vi elements
JPS6389491A (en) Vapor growth device
JPS61155291A (en) Vapor growth process
JPS62119919A (en) Device for crystal growth of compound semiconductor
JPS6131393A (en) Vapor phase growth device
JPH02273917A (en) Method of growing crystal of carbon doped iii-v compound semiconductor
JPH01214114A (en) Organic metal vapor phase growth apparatus
JPH03196524A (en) Formation of silicon nitride film
JPH02219246A (en) Vapor epitaxial growth method
JPS62213253A (en) Crystal growth
JPS58115816A (en) Vapor growing device for compound semiconductor
JPS6233421A (en) Formation of indium phosphide thin film
JPH0394421A (en) Metal organic chemical vapor desposition using catalytically decomposed hydrogen
JPH06172085A (en) Vapor-phase growth method