JPS639742B2 - - Google Patents
Info
- Publication number
- JPS639742B2 JPS639742B2 JP14465082A JP14465082A JPS639742B2 JP S639742 B2 JPS639742 B2 JP S639742B2 JP 14465082 A JP14465082 A JP 14465082A JP 14465082 A JP14465082 A JP 14465082A JP S639742 B2 JPS639742 B2 JP S639742B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- semiconductor thin
- organometallic
- thin film
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000758 substrate Substances 0.000 claims description 29
- 239000010409 thin film Substances 0.000 claims description 25
- 239000004065 semiconductor Substances 0.000 claims description 23
- 150000002902 organometallic compounds Chemical class 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 13
- 125000002524 organometallic group Chemical group 0.000 claims description 13
- 239000002994 raw material Substances 0.000 claims description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 10
- 239000001257 hydrogen Substances 0.000 claims description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- 238000000034 method Methods 0.000 description 13
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 12
- 239000011521 glass Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- HTDIUWINAKAPER-UHFFFAOYSA-N trimethylarsine Chemical compound C[As](C)C HTDIUWINAKAPER-UHFFFAOYSA-N 0.000 description 4
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 150000004678 hydrides Chemical class 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 3
- 238000001947 vapour-phase growth Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- -1 arsine AsH 3 is low Chemical class 0.000 description 1
- OWQWEJKPOUNPPG-UHFFFAOYSA-M chloro(dimethyl)gallane Chemical compound C[Ga](C)Cl OWQWEJKPOUNPPG-UHFFFAOYSA-M 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003852 thin film production method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02422—Non-crystalline insulating materials, e.g. glass, polymers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/301—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/02546—Arsenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Recrystallisation Techniques (AREA)
Description
【発明の詳細な説明】
本発明は、有機金属化合物を原料として用いる
半導体薄膜製造法に関するものにして、特に、簡
単な装置で、容易な操作で、安全に、短時間に、
大面積の半導体薄膜を製造する方法に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing semiconductor thin films using organometallic compounds as raw materials, and in particular, the present invention relates to a method for producing a semiconductor thin film using an organometallic compound as a raw material, and in particular, a method for producing a semiconductor thin film using a simple device, easy operation, safely, and in a short time.
The present invention relates to a method for manufacturing large-area semiconductor thin films.
従来、有機金属化合物を用いる半導体薄膜製造
法は気相成長によるものであつた。GaAs基板上
にGaAsを成長させる場合を例にとつて説明する
と次の通りである。 Conventionally, semiconductor thin film manufacturing methods using organometallic compounds have been based on vapor phase growth. An example of growing GaAs on a GaAs substrate will be explained as follows.
従来の気相エピタキシヤル成長装置の構成を第
1図に示す。第1図を参照して、加熱用RFコイ
ル10、基板支持用サセプタ11を備えた反応管
1中に原料化合物等を導入するための導入管12
を設け、この導入管12に水素化物用ボンベ1
3、原料化合物用ボンベ14を、それぞれ、バル
ブ30,40を介して接続するとともに、原料化
合物を搬送するためのキヤリアガスボンベ15を
キヤリアガス純化装置50および水素化物用ボン
ベ13、原料化合物用ボンベ14よりのそれぞれ
のガスを反応管1へ搬送するように、マスフロー
コントローラ31,41を介して導入管12に接
続してある。GaAsを成長させる場合、アルシン
AsH3の入つているボンベ13およびトリメチル
ガリウムGa(CH3)3の入つているボンベ14の、
それぞれのバルブ30,40を開き、導入管12
を介して原料ガスをRFコイル10により加熱さ
れた基板支持用サセプタ11の入つた反応管1に
導入する。 The configuration of a conventional vapor phase epitaxial growth apparatus is shown in FIG. Referring to FIG. 1, an introduction pipe 12 for introducing raw material compounds etc. into a reaction tube 1 equipped with a heating RF coil 10 and a substrate supporting susceptor 11.
A hydride cylinder 1 is installed in this introduction pipe 12.
3. The raw material compound cylinders 14 are connected via valves 30 and 40, respectively, and the carrier gas cylinder 15 for transporting the raw material compounds is connected to the carrier gas purification device 50, the hydride cylinder 13, and the raw material compound cylinder 14. are connected to the introduction tube 12 via mass flow controllers 31 and 41 so as to convey the respective gases to the reaction tube 1. When growing GaAs, arsine
a cylinder 13 containing AsH 3 and a cylinder 14 containing trimethylgallium Ga (CH 3 ) 3 ;
Open each valve 30, 40 and open the inlet pipe 12.
The raw material gas is introduced into the reaction tube 1 containing the substrate supporting susceptor 11 heated by the RF coil 10.
この方法は、原料供給系が複雑であり、装置が
高価であること、用いる有機金属化合物の蒸気圧
が高く、引火性が強いこと、アルシンAsH3など
の族水素化物の許容濃度が低く、毒性が著しく
強いため、装置の取り扱い保守に細心の注意が必
要であることなど、大量生産用としては欠点が多
い方法であつた。 This method requires a complicated raw material supply system and expensive equipment, the organometallic compound used has a high vapor pressure and is highly flammable, the permissible concentration of group hydrides such as arsine AsH 3 is low, and it is toxic. This method has many drawbacks for mass production, such as the fact that it requires extreme care when handling and maintaining the equipment because it is extremely strong.
本発明の目的は、上記の従来技術におけるよう
な欠点のない半導体薄膜製造法を提供することに
ある。さらに詳細には、簡単な装置で、容易な操
作で、安全に、短時間に大面積の薄膜を製造する
方法を提供することにある。 An object of the present invention is to provide a method for manufacturing semiconductor thin films that does not have the drawbacks of the prior art described above. More specifically, it is an object of the present invention to provide a method for safely producing a large-area thin film in a short time using a simple device, easy operation, and safety.
上記の目的の本発明の半導体薄膜製造法の特徴
とするところは、半導体薄膜の製造において、原
料化合物として、族有機金属化合物と族有機
金属化合物との付加物、あるいは、族有機金属
化合物と族有機金属化合物との付加物を用い、
前記の有機金属付加物を基板に塗布し、水素雰囲
気中で加熱処理して、基板上に族化合物、あ
るいは族化合物の半導体薄膜を形成すること
にある。 The feature of the semiconductor thin film production method of the present invention for the above purpose is that in the production of semiconductor thin films, adducts of group organometallic compounds and group organometallic compounds, or group organometallic compounds and group organometallic compounds are used as raw material compounds. Using adducts with organometallic compounds,
The method involves applying the organometallic adduct to a substrate and heat-treating it in a hydrogen atmosphere to form a group compound or a semiconductor thin film of the group compound on the substrate.
本発明を、さらに具体的に、GaAsの場合を例
にとつて説明すれば、次の通りである。 The present invention will be explained in more detail by taking the case of GaAs as an example.
原料化合物として、トリメチルガリウム
(CH3)3Gaと、トリメチルアルシン(CH3)3Asと
の付加物である(CH3)3Ga・As(CH3)3、また
は、ジメチルガリウムクロライド(CH3)2ClGa
とトリメチルアルシン(CH3)3Asとの付加物で
ある(CH3)2ClGa・As(CH3)3などを用いる。こ
れらの有機金属付加物は、分子が大きいために、
室温付近で蒸気圧の低い液体であり、従来技術に
おける蒸気圧の高く引火性の強いトリメチルガリ
ウム(CH3)3Gaに比べ引火する危険性は少なく、
取り扱いやすい物質である。また、成長時に、従
来技術におけるような、毒性の著しく強いアルシ
ンAsH3を流す必要もなく、安全性の点でも優れ
ている。 As a raw material compound, ( CH 3 ) 3 Ga·As(CH 3 ) 3 , which is an adduct of trimethylgallium (CH 3 ) 3 Ga and trimethylarsine (CH 3 ) 3 As, or dimethylgallium chloride (CH 3 ) ) 2ClGa
(CH 3 ) 2 ClGa・As(CH 3 ) 3 , which is an adduct of trimethylarsine (CH 3 ) 3 As, is used. Because these organometallic adducts have large molecules,
It is a liquid with a low vapor pressure near room temperature, and has less risk of ignition than trimethylgallium (CH 3 ) 3 Ga, which has a high vapor pressure and is highly flammable in conventional technology.
It is an easy-to-handle substance. In addition, there is no need to flush highly toxic arsine AsH 3 during growth, unlike in conventional techniques, and the method is superior in terms of safety.
本発明においては、これらの有機金属付加物を
GaAs単結晶基板、ガラス基板上に、スプレーな
どによつて塗布し、次に、水素雰囲気中で加熱処
理する。加熱処理によつて、有機金属付加物のメ
チル基、すなわちCH3基は付加物から解離し、水
素と反応してメタンガスCH4、もしくはメチル基
どうし反応してエタンガスとなり系外に排出され
る。そのあとに、GaAsの薄膜が残ることにな
る。 In the present invention, these organometallic adducts are
It is applied onto a GaAs single crystal substrate or a glass substrate by spraying or the like, and then heat-treated in a hydrogen atmosphere. By the heat treatment, the methyl groups of the organometallic adduct, that is, the CH 3 groups, are dissociated from the adduct and react with hydrogen to produce methane gas CH 4 or methyl groups react with each other to produce ethane gas, which is discharged from the system. After that, a thin film of GaAs will remain.
このように、本発明の方法は、従来の通常の有
機金属化合物を用いる気相成長法に比べ、装置が
簡単で安価であり、短時間に大面積の基板上に薄
膜を形成できるという大きな利点のあることは明
らかである。 As described above, the method of the present invention has the major advantages that the equipment is simple and inexpensive, and thin films can be formed on large-area substrates in a short time, compared to conventional vapor phase growth methods using ordinary organometallic compounds. It is clear that there is.
以下に、本発明を実施例につき、装置を示す図
面を参照して説明する。 In the following, the invention will be explained by way of example and with reference to the drawings showing the apparatus.
実施例 1
第2図は、本実施例における半導体薄膜製造用
の装置の概略説明図である。Example 1 FIG. 2 is a schematic explanatory diagram of an apparatus for manufacturing a semiconductor thin film in this example.
第2図において、符号1は反応管、2は基板、
3は窒素ガスなどの不活性ガスボンベ、4は有機
金属付加物の入つたボンベ、5は水素ボンベ、6
は有機金属付加物塗布用のスプレー、7は基板支
持用サセプタ、8は基板加熱用ヒータ、50は水
素純化装置である。 In FIG. 2, numeral 1 is a reaction tube, 2 is a substrate,
3 is an inert gas cylinder such as nitrogen gas, 4 is a cylinder containing an organic metal adduct, 5 is a hydrogen cylinder, 6
1 is a spray for applying an organic metal additive, 7 is a susceptor for supporting a substrate, 8 is a heater for heating the substrate, and 50 is a hydrogen purification device.
この装置を用い、GaAs基板上に族半導体
であるGaAs薄膜を成長させた。その操作は下記
の通りである。 Using this equipment, we grew a GaAs thin film, which is a group semiconductor, on a GaAs substrate. The operation is as follows.
まず、基板2上に、スプレー6により、有機金
属付加物(CH3)3Ga・As(CH3)3を塗布した。 First, an organometallic adduct (CH 3 ) 3 Ga·As(CH 3 ) 3 was applied onto the substrate 2 using the spray 6 .
次に、水素を流しながら、基板2を450℃に加
熱した。この加熱により、塗布された有機金属付
加物は分解し、GaAsの族半導体薄膜が形成
された。 Next, substrate 2 was heated to 450° C. while flowing hydrogen. This heating decomposed the applied organometallic adduct and formed a GaAs group semiconductor thin film.
上記における基板を、ガラス基板に換えて、全
く同様の処理操作を行い、ガラス基板上にGaAs
の半導体薄膜を形成することができた。 The substrate in the above was replaced with a glass substrate, and the same process was performed to deposit GaAs on the glass substrate.
We were able to form a semiconductor thin film.
実施例 2
実施例1における有機金属付加物を換えた以外
は、全く同一の処理操作を行つた。Example 2 The same process as in Example 1 was carried out except that the organometallic adduct was changed.
この場合、有機金属付加物に(CH3)2ClGa・
As(CH3)3を用いた。その結果、GaAs基板上、
およびガラス基板上に、それぞれ、GaAsの半導
体薄膜を形成することができた。 In this case, the organometallic adduct contains (CH 3 ) 2 ClGa・
As( CH3 ) 3 was used. As a result, on the GaAs substrate,
GaAs semiconductor thin films could be formed on the and glass substrates, respectively.
実施例 3
この実施例は、族半導体薄膜製造の例であ
る。Example 3 This example is an example of group semiconductor thin film production.
実施例1におけるGaAs基板をZnS基板に換え、
有機金属付加物を(CH3)2Zn・S(CH3)2に換え
た以外は、全く同一の処理操作を行つた。 The GaAs substrate in Example 1 was replaced with a ZnS substrate,
Exactly the same treatment operation was performed except that the organometallic adduct was changed to (CH 3 ) 2 Zn.S(CH 3 ) 2 .
その結果、ZnSおよびガラス基板上に、それぞ
れ、ZnS半導体薄膜を形成することができた。 As a result, ZnS semiconductor thin films could be formed on ZnS and glass substrates, respectively.
実施例 4
この実施例は、実施例3と同様、族半導体
薄膜の製造例である。Example 4 This example, like Example 3, is an example of manufacturing a group semiconductor thin film.
実施例3におけるZnS基板をCdS基板に換え、
有機金属付加物を(CH3)2Cd・S(CH3)2に換え
た以外は、実施例3と同様の処理操作を行つた。 The ZnS substrate in Example 3 was replaced with a CdS substrate,
The same treatment operation as in Example 3 was performed except that the organometallic adduct was changed to (CH 3 ) 2 Cd·S(CH 3 ) 2 .
その結果、CdSおよびガラス基板上に、それぞ
れCdS半導体薄膜を形成することができた。 As a result, we were able to form CdS semiconductor thin films on CdS and glass substrates, respectively.
以上説明したように、本発明は、室温で蒸気圧
の低い液体の有機金属付加物を用い、それを基板
上に塗布し、水素雰囲気中で加熱処理することに
よるものであり、従来の有機金属化合物を用いる
気相成長法に比べ、安全かつ安価な装置を用い、
容易な操作により、大面積に半導体薄膜を形成で
きるという大きな利点がある。 As explained above, the present invention uses a liquid organometallic adduct with a low vapor pressure at room temperature, coats it on a substrate, and heat-treats it in a hydrogen atmosphere. Compared to the vapor phase growth method using compounds, it uses safer and cheaper equipment,
This method has the great advantage of being able to form a semiconductor thin film over a large area with easy operation.
第1図は従来の有機金属化合物を用いる気相エ
ピタキシヤル成長装置の概略説明図である。第2
図は本発明実施例の半導体薄膜製造用の装置の概
略説明図である。
1……反応管、2……基板、3……窒素ガスな
どの不活性ガスボンベ、4……有機金属付加物の
入つたボンベ、5……水素ボンベ、6……スプレ
ー、7……サセプタ、8……ヒータ、50……水
素純化装置。
FIG. 1 is a schematic explanatory diagram of a conventional vapor phase epitaxial growth apparatus using an organometallic compound. Second
The figure is a schematic explanatory diagram of an apparatus for manufacturing a semiconductor thin film according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Reaction tube, 2...Substrate, 3...Inert gas cylinder such as nitrogen gas, 4...Cylinder containing organometallic adduct, 5...Hydrogen cylinder, 6...Spray, 7...Susceptor, 8... Heater, 50... Hydrogen purification device.
Claims (1)
て、族有機金属化合物と族有機金属化合物と
の付加物、あるいは、族有機金属化合物と族
有機金属化合物との付加物を用い、前記の有機金
属付加物を基板に塗布し、水素雰囲気中で加熱処
理して、基板上に族化合物、あるいは族
化合物の半導体薄膜を形成することを特徴とする
半導体薄膜製造法。1. In the production of a semiconductor thin film, an adduct of a group organometallic compound and a group organometallic compound, or an adduct of a group organometallic compound and a group organometallic compound is used as a raw material compound, and the above-mentioned organometallic adduct is used. 1. A method for producing a semiconductor thin film, which comprises applying the compound to a substrate and heat-treating it in a hydrogen atmosphere to form a group compound or a semiconductor thin film of the group compound on the substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14465082A JPS5934628A (en) | 1982-08-23 | 1982-08-23 | Manufacture of semiconductor thin-film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14465082A JPS5934628A (en) | 1982-08-23 | 1982-08-23 | Manufacture of semiconductor thin-film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5934628A JPS5934628A (en) | 1984-02-25 |
JPS639742B2 true JPS639742B2 (en) | 1988-03-01 |
Family
ID=15367010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14465082A Granted JPS5934628A (en) | 1982-08-23 | 1982-08-23 | Manufacture of semiconductor thin-film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5934628A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0198219A (en) * | 1987-10-09 | 1989-04-17 | Matsushita Electric Works Ltd | Manufacture of compound semiconductor thin-film |
JPH0445065A (en) * | 1990-06-08 | 1992-02-14 | Teijin Seiki Co Ltd | Winding method for cross winding cop |
-
1982
- 1982-08-23 JP JP14465082A patent/JPS5934628A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5934628A (en) | 1984-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS639742B2 (en) | ||
JPS59223294A (en) | Vapor phase growth device | |
JPH04202091A (en) | Vapor growth device of compound semiconductor | |
SU1074161A1 (en) | Device for gas epitaxy of semiconductor connections | |
JPS61220416A (en) | Chemical vapor growth | |
JPH0532360B2 (en) | ||
JPS62142316A (en) | Manufacture of compound semiconductor thin film | |
JPS61150323A (en) | Manufacture of semiconductor material | |
JPS6251212A (en) | Metal-organic chemical vapor deposition | |
JPS63119521A (en) | Apparatus for vapor phase growth of organic metal | |
JPH04276076A (en) | Chemical vapor growth method | |
JPS6390833A (en) | Manufacture of compound thin film of group ii and vi elements | |
JPS6389491A (en) | Vapor growth device | |
JPS61155291A (en) | Vapor growth process | |
JPS62119919A (en) | Device for crystal growth of compound semiconductor | |
JPS6131393A (en) | Vapor phase growth device | |
JPH02273917A (en) | Method of growing crystal of carbon doped iii-v compound semiconductor | |
JPH01214114A (en) | Organic metal vapor phase growth apparatus | |
JPH03196524A (en) | Formation of silicon nitride film | |
JPH02219246A (en) | Vapor epitaxial growth method | |
JPS62213253A (en) | Crystal growth | |
JPS58115816A (en) | Vapor growing device for compound semiconductor | |
JPS6233421A (en) | Formation of indium phosphide thin film | |
JPH0394421A (en) | Metal organic chemical vapor desposition using catalytically decomposed hydrogen | |
JPH06172085A (en) | Vapor-phase growth method |