JPS58115816A - Vapor growing device for compound semiconductor - Google Patents
Vapor growing device for compound semiconductorInfo
- Publication number
- JPS58115816A JPS58115816A JP21097581A JP21097581A JPS58115816A JP S58115816 A JPS58115816 A JP S58115816A JP 21097581 A JP21097581 A JP 21097581A JP 21097581 A JP21097581 A JP 21097581A JP S58115816 A JPS58115816 A JP S58115816A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- hydrogen
- compound
- group
- tmg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/14—Feed and outlet means for the gases; Modifying the flow of the reactive gases
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
Abstract
Description
【発明の詳細な説明】
発明の技術分野
この発明は■族元素の有機化合物の内の少くとも一種と
V族元素化合物の内の少くとも一種との熱分解を利用し
た化金物半導体気相成長を行う際に使用される気相成長
装置に係〕、特にV族元素の水素化合物熱分解を促進し
て一般に毒性の強い水素化金物の排気ガス中成分を減少
させるように改良された化金物半導体気相成長装置に関
する。[Detailed Description of the Invention] Technical Field of the Invention This invention relates to chemical vapor phase growth of a chemical compound semiconductor using thermal decomposition of at least one organic compound of a group I element and at least one compound of a group V element. [Regarding the vapor phase growth apparatus used when carrying out], a metal compound improved to promote the thermal decomposition of hydrogen compounds of group V elements in particular and to reduce the components of highly toxic metal hydrides in the exhaust gas. The present invention relates to a semiconductor vapor phase growth apparatus.
発明の技術的背景
■族元素の有機化合物の内の少(とも一種とV族元素の
水素化合物の内の少くとも一種との熱分解を利用し良熱
分解法と称される化合物半導体気相成長法は、気相成長
装置科を総てガス状で反応容器内に送り込めることと、
単一の成長温度領域しか必要としないなどの点で、■族
元素固体とV族元素の塩素化合物との不均等化反応を利
用しハロゲン輸送法と称されている気相成長法に比較し
て優れた特徴があ夛、最近化合物半導体の気相成長に多
用されている。Technical Background of the Invention A compound semiconductor vapor phase method known as a good thermal decomposition method utilizes thermal decomposition of at least one type of organic compound of Group I elements and at least one type of hydrogen compound of Group V elements. The growth method is that all the vapor phase growth equipment can be fed into the reaction vessel in a gaseous state.
It is compared to the vapor phase growth method, which utilizes the disproportionation reaction between a solid group I element and a chlorine compound of a group V element and is called a halogen transport method, in that it only requires a single growth temperature range. It has many excellent characteristics and has recently been widely used in the vapor phase growth of compound semiconductors.
熱分解法の一例として砒化ガリウム(Ga1s)気相成
長例に使用した従来装置について以下に説明する。第1
図はこの装置の模式図である。第1図で希釈用水素ガス
は精製装置(101)を通った後、流量針(102)で
所定量に調節され、反応容器(1@)に送られる。■族
の有機化合物の一種であるトリメチルガリウム(TMG
)は常温で液体である為、TMG収納容器(105)内
に所定量の水素ガスを流量針(103)で調節して送り
込み、器(105)内にてこの水素ガスにTMG蒸気と
して含まれて反応容器(109)に送られる。又V族の
水素化合物の一種である砒化水素ガス(ムmu、)は、
高圧容器(106)から直接供給され流量針(104)
で所定量に調節されて反応容器(109)に送られる。As an example of the thermal decomposition method, a conventional apparatus used for vapor phase growth of gallium arsenide (Ga1s) will be described below. 1st
The figure is a schematic diagram of this device. In FIG. 1, hydrogen gas for dilution passes through a purification device (101), is regulated to a predetermined amount by a flow needle (102), and is sent to a reaction vessel (1@). Trimethylgallium (TMG), a type of organic compound of group
) is a liquid at room temperature, a predetermined amount of hydrogen gas is fed into the TMG storage container (105) by adjusting the flow rate needle (103), and the hydrogen gas is contained in the TMG vapor in the container (105). and sent to the reaction vessel (109). Hydrogen arsenide gas (mu), which is a type of hydrogen compound of group V, is
Flow rate needle (104) supplied directly from high pressure vessel (106)
The amount is adjusted to a predetermined amount and sent to the reaction container (109).
これらの原料ガスは、反応容器(109)に到達する餉
に一旦混合器(107)により混合された後、原料ガス
導入口(108)を通して反応容器(109)内に導か
れる。そして高周波コイル(110)により加熱され九
加熱台(112)の付近で加熱分解され、加熱台(11
2)上に載置されたGaAa基板(111)上にGap
s結晶として堆積する。These raw material gases are once mixed by a mixer (107) with the rice that reaches the reaction vessel (109), and then introduced into the reaction vessel (109) through the raw material gas inlet (108). Then, it is heated by a high frequency coil (110) and thermally decomposed near the ninth heating table (112).
2) Gap on the GaAa substrate (111) placed on top
Deposited as s crystals.
このような装置でG畠ム畠気相成長を行う場合GaムS
1 基板(111)の温度は、GaAs成長層表面
の平滑さが保たれるように、通常4!Go℃から750
℃の範囲の任意の一点に選ばれて成長が行われる。とこ
ろがこの成長温度で気相成長を行うと、供給し九ムsH
1の一部のみ分解してGaAs成長相に消費され、残り
は未分解のまま排気ガス中にとソまる。このAsH1ガ
スは毒性が強く大気中へ排出することは危険であるから
、排気口(113)を出たガスを−1有害ガス除去装置
(114)に導き、この中でムIH8を完全に除去した
後大気中に排出することになる。When performing Ga-mu-Hatake vapor phase growth with such an apparatus, Ga-mu S
1. The temperature of the substrate (111) is normally set at 4! to maintain the smoothness of the surface of the GaAs growth layer. Go℃ to 750
Growth is performed by selecting an arbitrary point in the temperature range of ℃. However, when vapor phase growth is performed at this growth temperature, the supply of 9 μsH
Only a portion of 1 is decomposed and consumed in the GaAs growth phase, and the rest remains undecomposed and is dissolved in the exhaust gas. Since this AsH1 gas is highly toxic and dangerous to discharge into the atmosphere, the gas exiting the exhaust port (113) is led to the -1 harmful gas removal device (114), where the AsH1 gas is completely removed. After that, it will be released into the atmosphere.
背景技術の問題点
このように従来装置では未分解五sH3ガスの量が多い
ため有害ガス除去装置の消耗が激しく、例えば水素で1
096に希釈したムsH@ 300117/111m、
’I’MGを801!含む水素ガス30−/―をそれぞ
れ流しながら700℃にて30分の気相成長を行った場
合、20回の気相成長で有害ガス除去装置(114)の
能力低下が起こり、この点がこの装置の欠点となる。Problems with the Background Art As described above, in the conventional equipment, the amount of undecomposed 5sH3 gas is large, so the harmful gas removal equipment is consumed rapidly.
MusH @ 300117/111m diluted to 096,
'I' MG 801! When vapor phase growth is performed at 700°C for 30 minutes while flowing 30 −/− of hydrogen gas containing hydrogen gas, the performance of the harmful gas removal device (114) decreases after 20 times of vapor phase growth, and this point is This is a drawback of the device.
発明の目的
この発明はV族元素の水素化合物をm族元素の有機化合
物と混合する前に予め加熱して分解を進めることにより
、一般に毒性の強い未分解のV原水素化合物の排気ガス
中成分を少くし、有害ガス除去装置の負担を低減させる
ように改良された化合物半導体気相成員装置を提供する
ことを目的とする。Purpose of the Invention This invention decomposes a hydrogen compound of group V element by heating it in advance before mixing it with an organic compound of group m element to decompose it. It is an object of the present invention to provide a compound semiconductor vapor phase member device that is improved so as to reduce the amount of gas and the burden on the harmful gas removal device.
発明の概要
即ちこの発明はm族元素の有機化合物の内の少くとも一
種とV族元素の水素化合物の内の少くとも一種とを反応
室内で熱分解して化合物半導体気相成長を行5mに使用
される化合物半導体気相成員装置に於いて、反応室内に
ある化合物半導体基板表面前方からこの基板表面に向け
て■族の有機化合物を導入する第一ガス導入管と、この
基板表面と第一ガス導入管の開口との間に開口し且つ予
備加熱室を備え昇温させ九V族の水素化合物を導入する
第二ガス導入管とを具備する化合物半導体気相成長装置
にある。Summary of the Invention Namely, this invention involves thermally decomposing at least one type of organic compound of M group elements and at least one type of hydrogen compound of V group elements in a reaction chamber to perform compound semiconductor vapor phase growth in a row of 5 meters. In the compound semiconductor vapor phase deposition apparatus used, there is a first gas introduction pipe for introducing a group (III) organic compound from the front of the surface of the compound semiconductor substrate in the reaction chamber toward the surface of the substrate, and a The compound semiconductor vapor phase growth apparatus is provided with a second gas introduction pipe which is opened between the opening of the gas introduction pipe and has a preheating chamber for raising the temperature and introducing a group 9V hydrogen compound.
仁の装置で第二ガス導入管は反応室内を加熱体に沿い極
大Kll長されて加熱され予備加熱室を形成してV原水
素化合物を昇温させてよい。In the apparatus described above, the second gas inlet pipe is heated to a maximum length along the heating body in the reaction chamber to form a preheating chamber to raise the temperature of the V raw hydrogen compound.
発明の実施例
以下この発明の実施例について図面を用iて説ス導入管
(20B)から反応容」賛に導かれる。この備加熱室(
210) K導かれる。ここをム@H1が通過する際に
一部が加熱分解される。このガスを第二ガス導入管(2
09)から吹き出させ、第一ガス導入管(20g)から
流入したTMGと混合して再び加熱させ、支持体(21
3)で保持された砒化ガリウム(Gaム協)基板(21
1)上にGaps結晶として堆積させる。Gaps成長
に寄与した残りのガスを、排気口(215)を通して有
害ガス除去装置(216)Kllき、排気ガス中のムs
H3成分を完全に除去して大気に排出する仁とにする。Embodiments of the Invention The embodiments of the present invention will be explained below with reference to the drawings from the introduction tube (20B) to the reaction chamber. This heating room (
210) K is guided. When Mu@H1 passes through here, a part of it is thermally decomposed. This gas is transferred to the second gas introduction pipe (2
09), mixed with TMG flowing in from the first gas introduction pipe (20g) and heated again.
3) Gallium arsenide (Ga Mukyo) substrate (21
1) Deposit as a Gaps crystal on top. The remaining gas that has contributed to the gap growth is passed through the exhaust port (215) to the harmful gas removal device (216), and the gas in the exhaust gas is removed.
The H3 component is completely removed and the kernels are released into the atmosphere.
−
この装置を用い水素ガスで1onK希釈したムsH1を
それぞれ流しながら成長温度700℃にて30分の気相
成長を行うと、従来の成長装置では前記のように20回
の成長で有害ガス除去装置が能力低下し交換する必要が
6つ九のに対して、この装置では30回の成長を行うこ
とができ、有害ガス除去装置の機能を長期維持させるこ
とが認められる。尚この実施例では横型の気相成長装置
について実施しであるが、縦型についても適用できる。- Using this equipment, when vapor phase growth is performed for 30 minutes at a growth temperature of 700°C while flowing MusH1 diluted by 1 onK with hydrogen gas, harmful gases can be removed in 20 growths as described above with a conventional growth equipment. Compared to the 6-9 times when the equipment needs to be replaced due to a decrease in its capacity, this equipment can perform growth 30 times, and it is recognized that the functionality of the noxious gas removal equipment can be maintained for a long period of time. In this embodiment, a horizontal type vapor phase growth apparatus is used, but the present invention can also be applied to a vertical type.
又−ム2のみでな(他のm−v族を構成元素とする化合
物半導体の成長にも適用してよろしい。Furthermore, this method is not limited to Group 2 (it may also be applied to the growth of compound semiconductors having other m-v group elements as constituent elements).
発明の効果
以上述べたようにこの発明の装置によると、V族元素の
水素化合物を予備加熱室を経て予じめ昇温させることに
より、■族元素の有機化合物とV族元素の水素化合物と
の熱分解で、有害なV族元素の水素化合物成分を排気ガ
ス中から減少させることができ、化合物半導体の気相成
長に好適な気1 相成長装置を提供できる。Effects of the Invention As described above, according to the apparatus of the present invention, by heating the hydrogen compound of group V element in advance through the preheating chamber, the organic compound of group V element and the hydrogen compound of group V element can be combined. By thermal decomposition, harmful hydrogen compound components of group V elements can be reduced from the exhaust gas, and a single-phase vapor growth apparatus suitable for vapor-phase growth of compound semiconductors can be provided.
第1図は従来の化合物半導体気相成長装置の一体気相成
長装置の一例を示す模式図である。
第1図で
(101)・・・水素ガス精製装置、(102)〜(1
04)・・・流量針、(105)−T M G収納容器
、 (106) ・・・ムsH1ガス−わ4(107)
・・・混合器、 (IO2)・・・原料ガス導
入口、(109)・・・反応容器、 (110)
−・・高周波コイル、(111)・・・G麿ムl基板、
(112)・・・加熱台、(113) −・・
排気口、 (114)・・・有害ガス除去装置
、第2図で
(201)−・・水素ガス精製装置、(202) 〜(
204) ・・・流量針、(205) ・’r M G
収納容器、 (206) −、AsH1ガス、1ll−
(207) −・・混合器、 (208)−
・・第iガス導入口、(209)・・・第1ガス導入口
、 (210)・・・予備加熱室、(211) =−G
aAs基板、 (212) −・・反応容器、(
213) −・・支持体、 (214)・・・
加熱体、(215)・・・排気口、 (216
)・・・有害ガス除去装置代理人 弁理士 井 上
−男FIG. 1 is a schematic diagram showing an example of an integrated vapor phase growth apparatus of a conventional compound semiconductor vapor phase growth apparatus. In Fig. 1, (101)...hydrogen gas purification equipment, (102) to (1
04)...Flow rate needle, (105)-TMG storage container, (106)...MusH1 gas-W4 (107)
... Mixer, (IO2) ... Raw material gas inlet, (109) ... Reaction vessel, (110)
-...High frequency coil, (111)...Gmarim board,
(112)...Heating table, (113) -...
Exhaust port, (114)...Harmful gas removal device, (201) in Figure 2...Hydrogen gas purification device, (202) ~(
204) ...Flow rate needle, (205) ・'r MG
Storage container, (206) -, AsH1 gas, 1ll-
(207) ---Mixer, (208)-
...i-th gas inlet, (209)...first gas inlet, (210)...preheating chamber, (211) =-G
aAs substrate, (212) ---reaction vessel, (
213) -...Support, (214)...
Heating body, (215)...exhaust port, (216
)...Hazardous gas removal device agent Patent attorney Inoue
-man
Claims (1)
水素化合物の内の少くとも一種とを反応室内で熱分解し
て化合物半導体気相成長を行う際に使用される化合物半
導体気相成長装置に於いて、反応室内にある化合物半導
体基板表面前方から基板表面に向けてこの反応室内に■
族の有機化合物を導入する第一ガス導入管と、基板表面
と第一ガス導入管の開口との間に開口し且つ予備加熱室
を備え昇温させたV族の水素化合物を導入する第二ガス
導入管とを具備することを特徴とする化合物半導体気相
成長装置■Compound semiconductor vapor phase used when performing compound semiconductor vapor phase growth by thermally decomposing at least one organic compound of Group V elements and at least one hydrogen compound of Group V elements in a reaction chamber. In the growth apparatus, a
a first gas introduction pipe for introducing a group V organic compound; and a second gas introduction pipe, which is opened between the substrate surface and the opening of the first gas introduction pipe and has a preheating chamber, and introduces a heated group V hydrogen compound. A compound semiconductor vapor phase growth apparatus characterized by comprising a gas introduction pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21097581A JPS58115816A (en) | 1981-12-28 | 1981-12-28 | Vapor growing device for compound semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21097581A JPS58115816A (en) | 1981-12-28 | 1981-12-28 | Vapor growing device for compound semiconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58115816A true JPS58115816A (en) | 1983-07-09 |
Family
ID=16598222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21097581A Pending JPS58115816A (en) | 1981-12-28 | 1981-12-28 | Vapor growing device for compound semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58115816A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6167221A (en) * | 1984-09-10 | 1986-04-07 | Matsushita Electric Ind Co Ltd | Organometal vapor phase epitaxial growth device |
-
1981
- 1981-12-28 JP JP21097581A patent/JPS58115816A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6167221A (en) * | 1984-09-10 | 1986-04-07 | Matsushita Electric Ind Co Ltd | Organometal vapor phase epitaxial growth device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58115816A (en) | Vapor growing device for compound semiconductor | |
JPS59223294A (en) | Vapor phase growth device | |
JPH04318920A (en) | Vapor crystal growth device | |
JPS63500757A (en) | Method and apparatus for chemical vapor deposition of 3-5 type semiconductor using organometallic source and elemental pnictide source | |
JP3221318B2 (en) | Vapor phase growth method of III-V compound semiconductor | |
JP2003268551A (en) | Raw material feeding apparatus for cvd system | |
JP2002313731A (en) | Organic metal vapor growth equipment | |
JPH0412525A (en) | Chemical vapor growth device for organic metal | |
JPS60131968A (en) | Vapor growth deposition device | |
JPH0323624A (en) | Method and apparatus for vapor growth | |
JPH02230722A (en) | Vapor growth method of compound semiconductor | |
JPS5934628A (en) | Manufacture of semiconductor thin-film | |
JPH0364465A (en) | Vapor growth method of organometallic compound | |
JPS6373617A (en) | Method for vapor growth of compound semiconductor | |
JPH0368131A (en) | Organic metal vapor growth method | |
JP2018135235A (en) | Vapor phase growth device and vapor phase growth method | |
JPH03119721A (en) | Crystal growth | |
JPH01103996A (en) | Vapor growth method for compound semiconductor | |
JPH01297817A (en) | Iii-v compound semiconductor vapor growth method | |
JPS62219917A (en) | Manufacture of hydride | |
JPS6341017A (en) | Vapor growth method | |
JPH01301585A (en) | Apparatus for growing semiconductor crystal | |
JPS6389491A (en) | Vapor growth device | |
JPS62119919A (en) | Device for crystal growth of compound semiconductor | |
JPH04364720A (en) | Method and apparatus for metal organic chemical vapor deposition |