JPS60232235A - Treatment of exhaust gas - Google Patents

Treatment of exhaust gas

Info

Publication number
JPS60232235A
JPS60232235A JP59088643A JP8864384A JPS60232235A JP S60232235 A JPS60232235 A JP S60232235A JP 59088643 A JP59088643 A JP 59088643A JP 8864384 A JP8864384 A JP 8864384A JP S60232235 A JPS60232235 A JP S60232235A
Authority
JP
Japan
Prior art keywords
exhaust gas
heavy metals
dust
low
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59088643A
Other languages
Japanese (ja)
Inventor
Toshiharu Furukawa
俊治 古川
Susumu Shimura
進 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP59088643A priority Critical patent/JPS60232235A/en
Publication of JPS60232235A publication Critical patent/JPS60232235A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To make exhaust gas causing public nuisance innoxious by efficiently collecting and recovering a low b.p. heavy metal such as Hg, by cooling exhaust has generated by treating low b.p. heavy metal-containing waste with a direct current supply type melting treatment furnace in a moisture-containing state. CONSTITUTION:Dust 11 containing low b.p. heavy metals collected at the time of the incineration of urban garbage is moistened by a humidifier 23 while the moistended dust 11 receives melting treatment in a direct current supply type melting treatment furnace 12. The generated exhaust gas 13 is forcibly cooled by a cooler 14 and a mixture 16 of condensed Hg and soot is guided to a mercury refining press 17 to extract and recover metal Hg. The press residue 18 is returned to the melting treatment furnace 12. The exhaust gas 15 issued from the cooler 14 is guided to an adsorbing tower 20 and Hg is adsorbed and removed by Hg adsorbing activated carbon or a chelate resin to discharge the exhaust gas to the open air in a state generating no public nuisance. When moisture is imparted to dust in the humidifier 23, moisture in the exhaust gas becomes high and the dew point of said gas is raised and the precipitation effect of Hg in the cooler 14 increases.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、排ガスの処理方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for treating exhaust gas.

特に詳しくは、低沸点重金属類例えば、水銀を含む都市
ゴミの焼却施設で集塵されたダストや、洗煙排水汚泥と
いった廃棄物を直接通電式溶融処理炉で処理する際に、
発生する排ガスから水銀を捕捉して無公害化する排ガス
の処理方法に係わるものである。
In particular, when processing waste such as low boiling point heavy metals, such as dust collected at municipal waste incineration facilities containing mercury, and wastewater sludge from washing smoke, in a direct current melting furnace,
This relates to an exhaust gas treatment method that captures mercury from the generated exhaust gas and makes it pollution-free.

[従来技術] 都市ゴミ、下水汚泥、鉱山や工場などから排出される廃
水の処理物等の各種廃棄物は焼却炉により焼却され、生
じた焼却灰は従来埋立などにより処理されていた。しか
し埋立用地の確保の困難性−2− の問題、含有される有害重金属類が地中に溶出し埋立用
地周辺を汚染して二次公害を引起す恐れがあることなど
から、最近では、例えばベースメタルを用いた電気アー
ク炉や直接通電式溶融処理炉などにより溶融処理して固
化する方法が提案されている。上記焼却炉により廃棄物
を焼却する場合、発生する粉塵(ダスト)は大気を汚染
するので、湿式集塵機、電気集塵機、バッグフィルター
その他の各種型式の集塵装置で捕捉されるが、例えば、
電気集塵機で捕捉したダスト中にはNa0文、KC立、
のような水溶性の塩類とQa Q、Si 02、Δ文2
0B、Fe2Ogのような水に難溶性の酸化物、及びA
sXCr、 Zn1Cd、pl〕、11gのような重金
属類が含まれており、この重金属類は一般にハロゲン化
物または硫酸塩といった水に可溶性の形態のものが多い
。従ってこのダス1へをそのまま埋立地に埋めたのでは
重金属類が地中へ溶出する恐れがあるので、やはり焼却
灰と同様、溶融処理して固化する方法がとられる。本発
明者等は焼却炉による廃棄物の焼却中に発生するダスー
 3 − トの溶融処理につき種々検討したどころ、ダストを直接
通電式溶all処理炉により溶融処理する際、生成づる
溶滓は上層と下層とが組成を異にしており、別個に出滓
することによりそれぞれの特性に応じた有効利用が可能
でしかも重金属類は無害化されることを見い出し先に特
許出願を行なった(特願昭56−128637>。
[Prior Art] Various wastes such as municipal garbage, sewage sludge, and treated wastewater discharged from mines and factories are incinerated in incinerators, and the resulting incinerated ash has conventionally been disposed of in landfills. However, due to the difficulty of securing land for a landfill -2- and the risk that the harmful heavy metals contained in the landfill may leach into the ground and contaminate the area around the landfill site, causing secondary pollution, for example, Methods have been proposed in which base metals are melted and solidified using an electric arc furnace or a direct current melting furnace. When waste is incinerated in the above-mentioned incinerator, the generated dust pollutes the atmosphere, so it is captured by various types of dust collectors such as wet dust collectors, electric dust collectors, bag filters, etc.
The dust captured by the electrostatic precipitator contains Na0, KC,
Water-soluble salts such as Qa Q, Si 02, ΔFun2
0B, poorly soluble oxides in water such as Fe2Og, and A
Heavy metals such as sXCr, Zn1Cd, pl], and 11g are contained, and these heavy metals are generally in water-soluble forms such as halides or sulfates. Therefore, if this dust 1 is buried in a landfill as it is, there is a risk that heavy metals will be leached into the ground, so the same method as incineration ash is used, in which it is melted and solidified. The present inventors have conducted various studies on the melting treatment of dust generated during the incineration of waste in an incinerator, and found that when dust is melted in a direct energized slag furnace, the slag generated is in the upper layer. They discovered that the slag and the lower layer have different compositions, and that by extracting the slag separately, it is possible to use each slag effectively according to its characteristics, while also rendering heavy metals harmless. Showa 56-128637>.

第5図は焼却炉から発生する粉塵(ダスト)を処理する
ための上記直接通電式溶融処理炉の一例を示す断面略図
である。即ち、炉本体は例えば7rQ2の含有量の多い
SiC2A立zOs−Zro2系の耐火材料1により密
閉構築されており、これには廃棄物の焼却時に発生した
ダストの投入口2、発生するガスの排気管3、水平方向
に出没自在な電極5.5、上段の溶滓排出口6、下段の
溶滓排出ロアなどが設けられている。イして、上記電極
5.5は電圧調整用電源1〜ランス8を通して交流電流
が流され、溶融開始剤にジュール熱を発生させ、内部加
熱により溶融状態を保持させる機能をなすものである。
FIG. 5 is a schematic cross-sectional view showing an example of the above-mentioned directly energized melting furnace for treating dust generated from the incinerator. That is, the furnace body is hermetically constructed of SiC2A, ZOs-Zro2 system refractory material 1 with a high content of 7rQ2, and includes an inlet 2 for dust generated during waste incineration and an exhaust port 2 for gas generated. A pipe 3, a horizontally retractable electrode 5.5, an upper slag discharge port 6, a lower slag discharge lower, etc. are provided. Then, an alternating current is passed through the voltage regulating power source 1 to the lance 8 to generate Joule heat in the melting initiator, and the electrode 5.5 functions to maintain the melted state by internal heating.

その材料の代表例として−4− はモリブデン電極が、また他の例として黒鉛、鉄、酸化
スズ、タングステン電極などが挙げられる。
Typical examples of the material include molybdenum electrodes, and other examples include graphite, iron, tin oxide, and tungsten electrodes.

このような直接通電式溶融処理炉を用い廃棄物焼却炉で
発生したダストを処理するには、該ダストをゲスト投入
口2より炉本体へ入れて、溶融開始剤により形成された
溶融溜りに投入させて溶滓9を形成させる。この場合の
溶滓9の温度は投入したダストの秒類にもよるが、およ
そ1200〜1350℃の範囲である。その際、炉本体
に取り付けである電極5.5を予め溶滓中に没入させ交
流電流を通し、これを導体として発生するジュール熱に
より溶融状態を維持させる。このとぎの電流は投入した
ダスI−の性質にもよるが、およそ700〜1200K
W/l (被処理物)の範囲である。なお10は順次投
入されるダストの未溶融状態のカバリング層である。
In order to treat dust generated in a waste incinerator using such a direct current melting furnace, the dust is introduced into the furnace main body through the guest inlet 2 and into the molten pool formed by the melting initiator. This causes a slag 9 to be formed. The temperature of the slag 9 in this case is in the range of about 1200 to 1350°C, although it depends on the grade of the dust introduced. At that time, an electrode 5.5 attached to the furnace body is immersed in the slag in advance and an alternating current is passed through it, and the molten state is maintained by the Joule heat generated by using this as a conductor. The current at this point is approximately 700 to 1200K, depending on the properties of the Das I- applied.
W/l (workpiece) range. Note that 10 is a covering layer of unmelted dust which is successively introduced.

次に生成した溶滓9の上層部を炉本体に設けられた2つ
の排出口のうち、高い位置に設けられた排出口6から出
滓させ、水を満したピッ1へ(図示せず)に放出する。
Next, the upper layer of the generated slag 9 is discharged from the discharge port 6 which is located at a higher position of the two discharge ports provided in the furnace body, and is discharged into the pit 1 filled with water (not shown). released into the

これにより、主成分のNaC−5− 文、KC立といったアルカリ金属塩は水に溶出する。ま
た溶滓9 ノCa Oz A l 20 s 、S j
 O2、Fe20aなどの水に難溶性成分を主体とする
下層部を炉本体に設けられた2つの排出口のうち、低い
位置に設(プられる溶滓り1出ロアから出滓させ、無害
化された重金属類と共に搬送固化させるものである。
As a result, the main components, alkali metal salts such as NaC-5- and KC-5, are eluted into water. In addition, slag 9 CaOz A l 20 s, S j
The lower layer, which mainly contains components that are poorly soluble in water such as O2 and Fe20a, is installed at the lower position of the two exhaust ports provided in the furnace body (the slag is discharged from the lower part of the first outlet, making it harmless). It is transported and solidified together with the heavy metals.

ところで、廃棄物(捕捉ダス]・、洗煙工排水ユ汚泥等
)中には、通常数十〜数千ppmの濃度で7n 、 C
d 、水銀(以下1−1 ciで示す)等の低沸点重金
属類が含まれており、上記のような直接通電式溶融処理
炉で処理する際、非処理物としての廃棄物は炉への供給
当初は14. O0〜1500℃に加熱された溶滓9上
で未溶融状態のカバリング層10を形成する。そして、
カバリング層10はその厚みを3oom、’m程度に保
つど、溶滓9との境界面から表面にかけて、1200℃
〜100℃の温度勾配を、生じ、炉から発生する排ガス
の排出時温度を100℃前後に押えることが可能となる
By the way, waste (captured dust, smoke washing factory drainage sludge, etc.) usually contains 7N, C at a concentration of several tens to several thousand ppm.
d, mercury (hereinafter referred to as 1-1 ci), and other low-boiling point heavy metals. At the beginning of supply, 14. An unmolten covering layer 10 is formed on the molten slag 9 heated to 00 to 1500°C. and,
The thickness of the covering layer 10 is kept at about 300,000 m, and the temperature from the interface with the slag 9 to the surface is 1200°C.
A temperature gradient of ~100°C is generated, making it possible to suppress the temperature of the exhaust gas generated from the furnace at around 100°C.

lノかして、廃棄物中に含まれる低沸点重金属類、−〇
 − 例えばZn 1Cd 、 1−1(]は一部は蒸気とな
って11ガスと共に排気管3から大気に排出され、一部
は溶滓9中に移行覆る。これら、Zn % Cd % 
1」0といった低沸点重金属類の常圧下におりる沸点、
ならびに排ガスおよび溶滓9側への移行割合()Jバリ
ング層の表面温度を約100℃に制御した場合)は凡そ
次表の通りである。
Therefore, some of the low boiling point heavy metals contained in the waste, such as Zn 1Cd, 1-1 (), are partially turned into steam and are discharged into the atmosphere from the exhaust pipe 3 along with the 11 gases. % migrates into the slag 9.These include Zn%Cd%
The boiling point of low-boiling heavy metals such as 1" 0 under normal pressure,
Also, the transfer rate to the exhaust gas and slag 9 side (when the surface temperature of the J-burring layer is controlled to about 100° C.) is approximately as shown in the following table.

この表からも明らかなように、直接通電式溶融処理炉に
よる処理では、7n 、Cdについては、カバリング層
10にお(Jる各沸点以下の部分で捕捉されて、溶滓9
中へ移行する割合が70〜95%と高いが、11gにつ
いては排ガス温度が平均して100℃程度の濡i条件下
においても、蒸気圧が高く95%ものl−1gが排ガス
側移行する。
As is clear from this table, in the treatment using a direct current melting furnace, 7n and Cd are captured in the covering layer 10 (J) in the parts below their respective boiling points, and the molten slag 9
Although the proportion of l-1 g transferred to the inside is high at 70 to 95%, even under wet conditions where the exhaust gas temperature is about 100° C. on average, the vapor pressure is high and as much as 95% of l-1 g transfers to the exhaust gas side.

−7− [発明が解決しにうとする問題点] 前記直接通電式溶融処理炉にJこる低811点重金属類
を含む廃棄物の処理において、該炉から発生ずる排ガス
中には、低沸点重金属類、特にHO蒸気が含まれ、これ
が大気を汚染し、生活環境に重大な障害をもたらすもの
である故、何等かの手段により捕捉して無公害化する必
要がある。尚、廃棄物からHOのみの除去を目的とする
ものとして、パドル型乾燥器を用い、蒸気を熱源として
廃棄物汚記を加熱し、Hgを蒸気としで追出し捕捉する
方法も知られているが、多量の熱源を必要とし、必ずし
も効率のよい方法とは言えない。
-7- [Problems to be Solved by the Invention] In the treatment of waste containing low-811-point heavy metals that is sent to the direct current melting furnace, the exhaust gas generated from the furnace contains low-boiling-point heavy metals. It contains HO vapor, especially HO vapor, which pollutes the atmosphere and causes serious damage to the living environment, so it is necessary to capture it by some means and make it pollution-free. It is also known that the purpose of removing only HO from waste is to use a paddle dryer to heat the waste using steam as a heat source, and to expel and capture Hg as steam. , which requires a large amount of heat source and is not necessarily an efficient method.

E問題点を解決するための手段コ 本発明は、直接通電式溶融処理炉による低沸点重金属含
有廃棄物処即上の前記問題点を解決するために、炉から
発生する排ガスから同伴する低沸点重金属特にト10蒸
気を捕捉析出させて回収し無公害する方法、更に、被処
理廃棄物を含湿状態で処理し、低沸点重金属類の捕捉を
一層容易にする方法である。本発明方法により、直接通
電式溶融−8− 処理炉へ投入する低沸点重金属含有廃棄物を直接加湿あ
るいは、他の高含水率の廃棄物を混合し、非処理物の含
水率を高めることにより炉から発生する排ガス中の水分
を増大させ、露点を高めて、冷却器内で結露効果を促進
させることができる。
E Means for Solving the Problems The present invention aims to solve the above-mentioned problems in the treatment of low-boiling point heavy metal-containing wastes using a direct energized melting furnace. This method traps and precipitates heavy metals, in particular, 10 vapor, and recovers them in a non-polluting manner.It also treats the waste in a moist state, making it easier to trap low-boiling point heavy metals. By the method of the present invention, the waste containing low boiling point heavy metals to be fed into the direct energization type melting furnace is directly humidified or mixed with other high moisture content waste to increase the moisture content of the untreated material. It is possible to increase the moisture content in the exhaust gas generated from the furnace, raising the dew point and promoting the condensation effect within the cooler.

また、Hg濃度の高い廃棄物を混合処理し、排ガス中の
Hg濃度を高めることによって冷却器内でのH(+の回
収率を高めることができる。即ち、本発明は低沸点重金
属含有廃棄物を直接通電式溶融処理炉に投入処理し、発
生する排ガスを冷却して放出する低沸点重金属を回収し
、無害化する低沸点重金属含有廃棄物の直接通電式溶融
処理炉から発生する排ガスの処理方法を要旨とするもの
である。
In addition, by mixing waste with a high Hg concentration and increasing the Hg concentration in the exhaust gas, it is possible to increase the recovery rate of H(+ in the cooler. In other words, the present invention Processing of waste gas generated from a direct energized melting furnace for waste containing low boiling point heavy metals. The gist is the method.

[作用コ 直接通電式溶融処理炉により低沸点重金属類を含む廃棄
物を処理する際、発生する排ガスを冷却することにより
、同伴して出てくる蒸気状の小金属を析出させ、捕捉回
収して除去する。特に、該廃棄物を含湿状で処理炉に投
入処理すれば、蒸気−〇 − 状の重金属の同伴が一層容易となり、効率的な捕捉回収
が可能である。
[Operation: When waste containing low-boiling point heavy metals is processed in a direct current melting furnace, the generated exhaust gas is cooled to precipitate small vaporized metals that come out along with it, and capture and recover them. and remove it. In particular, if the waste is put into a processing furnace in a moist state, heavy metals in the form of vapor can be more easily entrained, allowing efficient capture and recovery.

[実施例] 以下、本発明を図面に基いて説明する。[Example] Hereinafter, the present invention will be explained based on the drawings.

第1図は、都市ゴミ焼却時に捕集された低沸点重金属類
を含むダストを単独で処理する場合のフロー図である。
FIG. 1 is a flowchart when dust containing low boiling point heavy metals collected during municipal waste incineration is treated alone.

ダスト11を直接通電式溶融処理炉12にて常法にJ:
り溶融処理する。直接通電式溶融処理炉12は例えば第
5図に示されるような構造のものからなっており、溶融
処理により、溶滓9と排ガス13が生成する。ダスト1
1中に含まれるZn 、 Cd 、1−IQなどの低沸
点重金属のうち、7n、cdは溶滓9中に70%〜95
%取込まれるが、H(Iは約95%が排ガス13に同伴
して炉外に排出される。排ガス13は、例えば処理能力
6t/日の直接通電式溶融処理炉の場合、排出量が12
.5耐N/分、排出温度100℃、ト(0濶度は約12
0mo/nfNである。排ガス13は配管により、冷却
器14に至り、そこでブラインにより、出口温度約10
℃まで強制冷却される。
Dust 11 is directly energized in a conventional melting furnace 12.J:
Melt treatment. The direct current type melting furnace 12 has a structure as shown in FIG. 5, for example, and slag 9 and exhaust gas 13 are generated during the melting process. dust 1
Among the low-boiling heavy metals such as Zn, Cd, and 1-IQ contained in 1, 7n and cd account for 70% to 95% in slag 9.
Approximately 95% of H(I) is discharged out of the furnace along with the exhaust gas 13. For example, in the case of a direct current melting furnace with a processing capacity of 6 tons/day, the amount of exhaust gas 13 is 12
.. 5N/min, discharge temperature 100℃,
0mo/nfN. The exhaust gas 13 is led by piping to a cooler 14 where brine brings the outlet temperature to about 10
Forced cooling down to ℃.

= 10 − 冷却後の排ガス15中の飽和HQ淵度は61110/n
fNとなり、冷却器14内には約110m(1/mNの
凝縮HOおj;びスート16が生成する。凝縮した金属
および生成スー1〜の混合物16を通常の水銀製錬用に
用いられるスート処理用プレス17に導き、高純度の金
属Hg19を抽出回収し、プレス残留物18は、Hgが
20〜30%含まれているので、直接通電式溶融処理炉
12へ戻し、ダスト11と共に処理する。冷却器14を
出た排ガス15は、吸着塔20に導ぎ、Hg)IA磨を
0.1111(]/rrrN以下にし、無公害化し大気
中に放散される。
= 10 - The saturation HQ depth in the exhaust gas 15 after cooling is 61110/n
fN, and about 110 m (1/mN) of condensed HO and soot 16 are generated in the cooler 14. The press residue 18 contains 20 to 30% Hg, so it is directly returned to the energized melting furnace 12 and treated together with the dust 11. The exhaust gas 15 exiting the cooler 14 is led to the adsorption tower 20, where the Hg)IA polishing is reduced to 0.1111(]/rrrN or less, and the exhaust gas 15 is made non-polluting and released into the atmosphere.

吸着塔20に充填されるH(+の吸着材としてはHq吸
着用活性炭、H(l吸着用キレート樹脂などが挙げられ
る。尚、前記スート処理用レス17による処理の際、生
成する分離凝縮水21は通常の水処理装置22に導いて
浄化した後、放水させる。
Examples of the H(+ adsorbent filled in the adsorption tower 20 include activated carbon for Hq adsorption, chelate resin for H(l adsorption, etc.). 21 is led to a normal water treatment device 22 for purification, and then water is discharged.

第2図は、本発明の他の例を示すものであり、都市ゴミ
焼却時に捕集された低沸点重金属類を含むダストを予め
加湿して溶融処理する場合のフロー図である。この場合
は、第1図の実施例におけ− 11 − る直接通電式溶融処理炉の前に加湿器23を設置したも
のである。加湿器23としては生蒸気を混入させたり霧
化器(スプレー)ににり水を霧化混入ざぜ処理されるべ
ぎタストに水分を与える結果、前記のように、排ガス中
の水分が高くなるので露点が高まり、冷却器14内での
l−1aの析出効果を増すという利点がある。
FIG. 2 shows another example of the present invention, and is a flowchart in which dust containing low-boiling heavy metals collected during municipal waste incineration is pre-humidified and melted. In this case, a humidifier 23 is installed in front of the direct current type melting furnace in the embodiment shown in FIG. As a humidifier 23, as a result of mixing live steam or atomizing water in an atomizer (spray) to give moisture to the Begitast being processed, the moisture content in the exhaust gas increases as described above. This has the advantage of increasing the dew point and increasing the precipitation effect of l-1a within the cooler 14.

第3図は本発明の更に他の例を示す。即ち、都市ゴミ焼
却時に捕集された低沸点重金属類を含むダストに、同じ
く都市ゴミ焼却時に洗煙した際に生成する排水汚泥11
aを加え、第1図に示すフローに従って溶融処理するも
ので、第2図におけるものとは異なって、加湿器によら
ずして、非処理物それ自体の持つ水分の存在下処理する
もので、処理効果そのものは第2図の場合と何等変るこ
とはない。洗煙排水汚泥中には捕集ダスト中に含まれる
11gの約500 ()itの′a磨のト10が含まれ
ており、ダストと混合処理した場合は、ダスト単独で処
理した場合に較べて直接通電式溶融処理炉から排出され
る排ガス中のHc+1度は約17倍となる。
FIG. 3 shows yet another example of the invention. That is, the wastewater sludge 11 generated when cleaning smoke during municipal waste incineration is added to the dust containing low-boiling point heavy metals collected during municipal waste incineration.
A is added and melted according to the flow shown in Figure 1. Unlike the process shown in Figure 2, the process is carried out in the presence of moisture contained in the untreated material itself, without using a humidifier. , the processing effect itself is no different from the case shown in FIG. Washing smoke wastewater sludge contains 11 g of about 500 () it'a 10, which is contained in the collected dust, and when it is mixed with dust, it is more effective than when it is treated with dust alone. The Hc+1 degree in the exhaust gas discharged from the direct current melting furnace is about 17 times higher.

−12= 従って冷却器14での119の回収率は高くなるという
利点がある。
-12= Therefore, there is an advantage that the recovery rate of 119 in the cooler 14 becomes high.

第4図は本発明の更に他の例を示す。即ち、都市ゴミ焼
却時に捕集された低沸点重金属類を含むダストに、同じ
く都市ゴミ焼却時に洗煙した際に生成する排水汚泥を加
え、第2図に示すフローに従って溶融処理するもので、
第3図におけるものとは異なり、加湿器23を用い、排
水汚泥の持つ水分に更に必要に応じ水分を加える方法で
あり、処理効果そのものは第3図の場合と大差ない。
FIG. 4 shows yet another example of the present invention. That is, wastewater sludge generated when cleaning smoke during municipal waste incineration is added to dust containing low-boiling heavy metals collected during municipal waste incineration, and the mixture is melted according to the flow shown in Figure 2.
Unlike the method shown in FIG. 3, this method uses a humidifier 23 to add water to the water contained in the wastewater sludge as necessary, and the treatment effect itself is not much different from that shown in FIG.

[本発明の効果コ 本発明は以上述べたように、都市ゴミ焼却時の補集ダス
ト及びまたは洗煙排水汚泥を直接通電式溶融処理炉で処
理する際発生する排ガスを強制的に冷却することにより
低沸点重金属類を効率よく捕捉回収し、排ガスの無公害
化をはかり、環境の汚染防止をはかるもので、その工業
的利用性は大なるものがある。
[Effects of the present invention] As described above, the present invention provides forcible cooling of the exhaust gas generated when the collected dust during municipal waste incineration and/or smoke washing wastewater sludge is processed in a direct energized melting furnace. This method efficiently captures and recovers low-boiling point heavy metals, makes exhaust gas pollution-free, and prevents environmental pollution, and has great industrial applicability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は、本発明の一例のフロー図、−13− 第5図は直接通電式溶I41処理炉の断面略図である。 1・・・耐火材料 2・・・投入口 3・・・排気管 5・・・電極 6.7・・・溶滓排出口8・・・電圧調
整用電源1〜ランス 9・・・溶滓 10・・・カバリング層11・・・ダス
ト 12・・・直接通電式溶融処理炉13・・・排ガス
 14・・・冷却器 15・・・排ガス 16・・・凝縮Hg及びスート混合物 17・・・スート処理用プレス 18・・・プレス残留物 19・・・金属HO20・・・吸着塔 21・・・凝縮水 22・・・水処理装置23・・・加
湿器 代理人 弁理士 定立 勉 他1名 −14−
1 to 4 are flowcharts of an example of the present invention, and FIG. 5 is a schematic cross-sectional view of a direct current type melting I41 processing furnace. 1... Fireproof material 2... Inlet 3... Exhaust pipe 5... Electrode 6.7... Slag discharge port 8... Voltage adjustment power supply 1 to lance 9... Slag DESCRIPTION OF SYMBOLS 10... Covering layer 11... Dust 12... Directly energized melting furnace 13... Exhaust gas 14... Cooler 15... Exhaust gas 16... Condensed Hg and soot mixture 17... Soot processing press 18...Press residue 19...Metal HO20...Adsorption tower 21...Condensed water 22...Water treatment equipment 23...Humidifier agent Patent attorney Tsutomu Setate and 1 other person -14-

Claims (1)

【特許請求の範囲】 1 低沸点重金属含有廃棄物を含湿状態で直接通電式溶
融処理炉に投入処理し、発生する排ガスを冷却して析出
J−る低沸点重金属を回収し無害化することを特徴とす
る低沸点重金属含有廃棄物の直接通電式溶融処理炉から
発生する排ガスの処理方法。 2 析出する低沸点重金属を活性炭に吸着さ往るか、ま
たは吸着用キレート樹脂を用いて回収する特許請求の範
囲第1項乃至第2項記載の排ガスの処理方法。 3 析出する低沸点重金属が水銀である特許請求の範囲
第1項乃至第3項のいずれかに記載の排ガスの処理方法
。 4 低沸点重金属含有廃棄物を、直接通電式溶融処理炉
に投入する前に、加湿器に通すが、または、高含水廃棄
物と混合することにより、含湿状−1− 態を得る特許請求の範囲第1項乃至第4項のいずれかに
記載の排ガス処理方法。 5 排ガス冷却の際に冷却器内に堆積づるスート残留物
を低沸点重金属含有廃棄物と共に直接通電式溶融処理炉
に再投入する特許請求の範囲第5項記載の排ガス処理方
法。
[Scope of Claims] 1. Waste containing low-boiling point heavy metals is directly charged into an electrified melting furnace in a moist state, and the generated exhaust gas is cooled to recover the precipitated low-boiling point heavy metals and render them harmless. A method for treating exhaust gas generated from a directly energized melting furnace for waste containing low boiling point heavy metals, characterized by: 2. The exhaust gas treatment method according to claims 1 and 2, wherein the precipitated low-boiling heavy metals are adsorbed on activated carbon or recovered using an adsorption chelate resin. 3. The method for treating exhaust gas according to any one of claims 1 to 3, wherein the precipitated low-boiling heavy metal is mercury. 4. A patent claim for obtaining a moist state by passing waste containing low boiling point heavy metals through a humidifier or mixing it with high water content waste before feeding it into a direct energized melting furnace. The exhaust gas treatment method according to any one of items 1 to 4. 5. The exhaust gas treatment method according to claim 5, wherein the soot residue deposited in the cooler during exhaust gas cooling is directly re-injected into the energized melting furnace together with waste containing low boiling point heavy metals.
JP59088643A 1984-05-01 1984-05-01 Treatment of exhaust gas Pending JPS60232235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59088643A JPS60232235A (en) 1984-05-01 1984-05-01 Treatment of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59088643A JPS60232235A (en) 1984-05-01 1984-05-01 Treatment of exhaust gas

Publications (1)

Publication Number Publication Date
JPS60232235A true JPS60232235A (en) 1985-11-18

Family

ID=13948497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59088643A Pending JPS60232235A (en) 1984-05-01 1984-05-01 Treatment of exhaust gas

Country Status (1)

Country Link
JP (1) JPS60232235A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259001A (en) * 1988-08-24 1990-02-28 Ebara Corp Device for removal of harmful substance from exhaust gas
JP2001252526A (en) * 2000-03-13 2001-09-18 Yoshikazu Kumihigashi Method and apparatus for cleaning waste gas
JP2009226254A (en) * 2008-03-19 2009-10-08 Chiyoda Kako Kensetsu Kk Mercury adsorbent and method of treating gas using the same
JP2015178060A (en) * 2014-03-19 2015-10-08 住友大阪セメント株式会社 Exhaust gas processing method and processing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259001A (en) * 1988-08-24 1990-02-28 Ebara Corp Device for removal of harmful substance from exhaust gas
JP2001252526A (en) * 2000-03-13 2001-09-18 Yoshikazu Kumihigashi Method and apparatus for cleaning waste gas
JP2009226254A (en) * 2008-03-19 2009-10-08 Chiyoda Kako Kensetsu Kk Mercury adsorbent and method of treating gas using the same
US8524186B2 (en) 2008-03-19 2013-09-03 Chiyoda Corporation Carbon-based catalyst for flue gas desulfurization and method of producing the same and use thereof for removing mercury in flue gas
JP2015178060A (en) * 2014-03-19 2015-10-08 住友大阪セメント株式会社 Exhaust gas processing method and processing device

Similar Documents

Publication Publication Date Title
TWI391493B (en) A reduction processing device and a reduction processing method
JP3285692B2 (en) Fly ash treatment device in incinerator
JPS60232235A (en) Treatment of exhaust gas
JP2005068535A (en) Method of treating gas or flying ash containing lead and zinc
JP3704351B2 (en) Improvements in the process for heat treatment of residues from cleanup of fumes and industrial processes that emit fumes.
JP6127113B1 (en) Radioactive contaminant treatment method and radioactive contaminant treatment facility
JP3546108B2 (en) Exhaust gas treatment method and apparatus in ash melting furnace
JPS6351755B2 (en)
CN217912099U (en) Fly ash direct current melting treatment device
JP3205273B2 (en) Waste incineration ash treatment method
JPH11244653A (en) Device for treating waste gas of ash melting furnace
JP2000282154A (en) Method for recovering metal from fused slag of waste material
JPH0481084B2 (en)
JPH0413408B2 (en)
JP3627923B2 (en) Ash processing method
JPS59132931A (en) Treatment of dust
JP3944556B2 (en) Method for treating fly ash containing heavy metals
JPS6061087A (en) Treatment of dust
JP2005103475A (en) Method for cleaning soil contaminated with heavy metal
JPH059688B2 (en)
JPH09267020A (en) Treatment of scrap preheating waste gas
JP3038428U (en) Exhaust gas purification device in incinerator
JPH11281040A (en) Apparatus and method for treating incineration ash
JP2022113150A (en) Method of removing mercury
JP4437204B2 (en) Fly ash treatment method