JPH0413408B2 - - Google Patents

Info

Publication number
JPH0413408B2
JPH0413408B2 JP17196683A JP17196683A JPH0413408B2 JP H0413408 B2 JPH0413408 B2 JP H0413408B2 JP 17196683 A JP17196683 A JP 17196683A JP 17196683 A JP17196683 A JP 17196683A JP H0413408 B2 JPH0413408 B2 JP H0413408B2
Authority
JP
Japan
Prior art keywords
slag
dust
water
alkali metal
kcl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17196683A
Other languages
Japanese (ja)
Other versions
JPS6063329A (en
Inventor
Toshiharu Furukawa
Susumu Shimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP58171966A priority Critical patent/JPS6063329A/en
Publication of JPS6063329A publication Critical patent/JPS6063329A/en
Publication of JPH0413408B2 publication Critical patent/JPH0413408B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はダストの処理方法に関するものであ
る。更に詳しくは、廃棄物焼却炉例えば都市ゴミ
焼却炉から発生するダストからアルカリ金属塩を
分離回収するダストの処理方法に係わるものであ
る。 都市ゴミ、下水汚泥、鉱山や工場などから排出
される廃水の処理物等の各種廃棄物は焼却炉によ
り焼却され、生じた焼却灰は従来埋立などにより
処理されていた。しかし埋立用地の確保の困難性
の問題、含有される有害重金属類が地中に溶出し
埋立用地周辺を汚染して二次公害を引起す恐れが
あることなどから、最近では、例えばベースメタ
ルを用いた電気アーク炉や直接通電式溶融処理炉
などにより溶融処理して固化する方法が提案され
ている。上記焼却炉により廃棄物を焼却する場
合、発生する粉塵(ダスト)は大気を汚染するの
で、湿式集塵機、電気集塵機、バツグフイルター
その他の各種型式の集塵装置で捕捉されるが、例
えば、都市ゴミ焼却炉に設置された電気集塵機で
捕捉したダスト中にはNaCl、KCl、のような水
溶性の塩類とCaO、SiO2、Al2O3、Fe2O3のよう
な水に不溶性の酸化物、及びAs、Cr、Zn、Cd、
Pb、Hgのような重金属類が含まれており、この
重金属類は一般にハロゲン化物または硫酸塩とい
つた水に可溶性の形態のものが多い。従つてこの
ダストをそのまま埋立地に埋めたのでは重金属類
が地中へ溶出する恐れがあるので、やはり焼却灰
と同様、溶融処理して固化する方法が取られる。
本発明者等は焼却炉による廃棄物の焼却中に発生
するダストの溶融処理につき種々検討したとこ
ろ、ダストを直接通電式溶融処理炉により溶融処
理する際、生成する溶滓は上層と下層とが組成を
異にしており、別個に出滓することによりそれぞ
れの特性に応じた有効利用が可能でしかも重金属
類は無害化されることを見い出し先に特許出願を
行なつた(特願昭56−128637)。 このような分別出滓において、上層の組成は
NaCl、KClのようなアルカリ金属塩を主体とす
る成分であり、下層の組成はCaO、SiO2
Al2O3、Fe2O3のような酸化物を主体とする成分
よりなるが、無毒化された重金属類がそれぞれの
溶滓中に微量に混在することは避けられない。し
かして、下層の溶滓は固化されて砂などの細骨材
に再生されるので、無毒化された重金属類の混在
は問題とならないが、上層の溶滓はそれに含まれ
るNaCl、KClといつた成分をNaOH製造用原料、
カリ肥料用原料、起寒剤、凍結防止剤等として再
生利用するに当つては障害となる。本発明者等は
廃棄物焼却炉から発生するダストから、重金属類
の除去されたNaCl、KClといつた二次産品製造
用として有用なアルカリ金属塩を分離回収するダ
ストの処理方法につき、検討の結果、上記二層に
分別した溶滓のうち、上層の溶滓水溶液をPH調
整、キレート処理し重金属類を沈降または吸着除
去して溶解度差を利用して、高濃度でアルカリ金
属塩を分離回収できるとの知見を得た。 即ち本発明は、廃棄物焼却炉から発生するダス
トを上下二段に溶滓排出口を備えた直接通電式溶
融処理炉で処理し、生成した溶滓を水に可溶性の
アルカリ金属塩を主体とする上層の溶滓と水に難
溶性の酸化物を主体とする下層の溶滓とに分別出
滓し、前記上層の溶滓の水溶液をPH9〜12に調整
し、キレート処理して含有される重金属類を除去
後、冷却して析出するアルカリ金属塩を分離回収
することを特徴とするダストの処理方法を要旨と
するものである。 以下、本発明を本発明の適用される装置の一例
を示す図面に基づいて説明する。 第1図は直接通電式溶融処理炉の断面略図で、
炉本体は例えばZrO2の含有量の多いSiO2−
Al2O3−ZrO2系の耐火材料1により密閉構築され
ており、これには廃棄物の焼却時に発生したダス
トの投入口2、排気管3、投入したダストの初期
溶融のための加熱装置例えば燃料ガス噴射ノズル
4、水平方向に出没自在な電極5,5、上段の溶
滓排出口6、下段の溶滓排出口7などが設けられ
ている。なおこの2つの排出口6,7は炉体構造
の許容範囲でなるべく落差をつけて設けられる。
上記電極5,5は電圧調整用電源トランス8を通
して交流電流が流され、ダストの投入口2から投
入されたダストが前記燃料ガス噴射ノズル4から
のガス加熱により溶融して、生成した溶滓9自体
が導体となり、これにジユール熱を発生させ、内
部加熱により溶融状態を保持させる機能をなすも
のである。その材料の代表例としてはモリブテン
電極が、また他の例として黒鉛、鉄、酸化スズ、
タングステン電極などが挙げられる。 しかして、本発明では、廃棄物例えば都市ゴ
ミ、下水汚泥、鉱山や工場廃水の処理物等の焼却
の際、発生するダスト、特に塩類を多く含む廃棄
物焼却炉から発生するダストを上記直接通電式溶
融処理炉のような無酸化溶融の可能な処理炉を用
いて溶融した場合、生成する溶滓はその上層部の
組成はダスト中のNaCl、KClのような水に可溶
性のアルカリ金属塩が主体で比重は1.9〜2.1あ
り、また下層部はCaO、SiO2、Al2O3、Fe2O3
ような水に難溶性成分が主体で比重は2.5〜2.7あ
るという知見に基づき、それぞれを上下二段に設
けた炉本体の排出口から別個に出滓し、これによ
り後記する出滓後の有効利用のための処理をやり
易くするものである。 第1図の直接通電式溶融処理炉を用い廃棄物焼
却炉で発生したダストを処理するには、該ダスト
をダスト投入口2より炉本体へ入れて、初期溶融
用の燃料ガス噴射ノズル4よりガス加熱して、溶
融状態とし、溶滓9を形成させる。この場合の溶
滓9の温度は投入したダストの種類にもよるが、
およそ1200〜1350℃の範囲である。その際、炉本
体に取り付けてある電極5,5を予め溶滓中に没
入させて交流電流を通し、これを導体として発生
するジユール熱により溶融状態を維持させる。こ
のときの電流は投入したダストの性質にもよる
が、およそ700〜1200KW/t(被処理物)の範囲
である。なお10は順次投入されるダストの未溶
融状態のカバリング層である。 次に生成した溶滓9の上層部を炉本体に設けら
れた2つの排出口のうち、高い位置に設けられた
排出口6から出滓させ、水を満したピツトに放出
する。これにより、主成分のNaCl、KClといつ
たアルカリ金属塩は水に溶出する。また溶滓9の
CaO、Al2O3、SiO2、Fe2O3などの水に難溶性成
分を主体とする下層部を炉本体に設けられた2つ
の排出口のうち、低い位置に設けられる溶滓排出
口7から出滓させ、無害化された重金属類と共に
搬送固化させる。 次に第2図は第1図に示す直接通電式溶融処理
炉により分別出滓された上層の溶滓から、その主
成分であるNaCl、KCl等のアルカリ金属塩を分
離回収するフローを示す図である。 第1図の直接通電式溶融処理炉の上段の排出口
6から出滓された溶滓は、ライン11を経て、例
えば廃棄物焼却炉から発生する廃熱等で80〜90℃
に熱した温水12を満したピツト13に投入溶解
される。そして、これに、ライン14から
NaOHのようなアルカリを加えてPHを9〜12に
調整し、またライン15からはキレート剤を加え
て該溶滓溶液中に微量に含まれる重金属類を水酸
化物の形およびキレート結合物の形で沈降させ
る。重金属沈降物を含む溶滓溶液はポンプ16に
よりライン17経由濾過器18に移送して濾過
し、重金属類を除去し濾過母液は例えば冷水また
はブライン冷却配管を備えた冷却槽19に送ら
れ、約20℃以下に冷却される。濾過母液中に含ま
れるNaClおよびKClのうち、KClの方がこの温
度ではNaClよりも溶解度が小さく、析出するの
で、分離機20例えば遠心分離機よりNaCl、
KClの飽和濾過母液と分離し、約90%の純度を有
する重金属類を含まないKCl結晶21を回収す
る。また重金属類を含まないNaCl、KClの飽和
濾過母液はライン22を経てポンプ23により移
送し、加熱器24で加熱し、ピツト13に再循環
される。また枝管22aより抜き出して、例えば
廃棄物処理炉から発生する廃熱を利用して蒸発
し、KClを含むNaClリツチな結晶を回収する。
以上の分離操作で用いられるキレート剤としては
例えばミヨシ油脂製、商品名「エポフロツクL−
1」が挙げられる。尚、ライン15からキレート
剤を加える代りに、濾過器18内にキレートイオ
ン樹脂濾過層を設けて溶滓溶融中の重金属類を吸
着濾過するようにしてもよい。キレート樹脂層と
しては例えば住友化学製、商品名「スミキレート
MC−30」が挙げられる。 本発明は以上述べたように、廃棄物焼却炉から
発生するダストを上下二段に溶滓排出口を備えた
直接通電式溶融処理炉で処理して、生成溶滓を水
に可溶性のアルカリ金属塩主体の上層溶滓と、難
溶性の酸化物主体の下層溶滓とに分別出滓し、前
記上層溶滓の水溶液をキレート処理することによ
つて重金属類を除去し、肥料製造用、電解苛性ソ
ーダ製造用起寒剤等の原料として有用なNaCl、
KClといつたアルカリ金属塩類を高純度で分離回
収するダストの処理方法であり、廃棄物処理およ
び再生事業に寄与するところ大なるものがある。 実施例 1 都市ゴミ焼却炉から発生する粉塵を電気集塵機
で捕捉し、第1表に示す組成からなるダストを得
た。
The present invention relates to a dust processing method. More specifically, the present invention relates to a dust processing method for separating and recovering alkali metal salts from dust generated from a waste incinerator, such as a municipal garbage incinerator. Various wastes such as municipal garbage, sewage sludge, and treated wastewater discharged from mines and factories are incinerated in incinerators, and the resulting incinerated ash has conventionally been disposed of in landfills. However, due to problems such as the difficulty in securing land for landfills and the fear that the harmful heavy metals contained in them may leach into the ground and contaminate the area around the landfill site, causing secondary pollution, for example, base metals have been A method of melting and solidifying using an electric arc furnace or a direct current melting furnace has been proposed. When waste is incinerated in the above-mentioned incinerator, the generated dust pollutes the atmosphere, so it is captured by various types of dust collectors such as wet dust collectors, electric dust collectors, bag filters, etc. The dust captured by the electrostatic precipitator installed in the incinerator contains water-soluble salts such as NaCl, KCl, and water-insoluble oxides such as CaO, SiO 2 , Al 2 O 3 , and Fe 2 O 3 , and As, Cr, Zn, Cd,
It contains heavy metals such as Pb and Hg, which are generally in water-soluble forms such as halides or sulfates. Therefore, if this dust is buried in a landfill as it is, there is a risk that heavy metals will be leached into the ground, so the method of melting and solidifying it, similar to incineration ash, is taken.
The present inventors conducted various studies on the melting process of dust generated during the incineration of waste in an incinerator, and found that when dust is melted in a direct current melting furnace, the slag generated has an upper layer and a lower layer. They discovered that they had different compositions, and that by extracting them separately, they could be used effectively according to their characteristics, and that heavy metals could be rendered harmless. 128637). In such sorted waste, the composition of the upper layer is
The main component is alkali metal salts such as NaCl and KCl, and the composition of the lower layer is CaO, SiO 2 ,
The slag is mainly composed of oxides such as Al 2 O 3 and Fe 2 O 3 , but it is inevitable that a small amount of detoxified heavy metals will be present in each slag. However, since the slag in the lower layer is solidified and recycled into fine aggregate such as sand, the presence of detoxified heavy metals is not a problem, but the slag in the upper layer is mixed with the NaCl and KCl contained in it. The ingredients are used as raw materials for NaOH production,
This poses an obstacle to recycling as a raw material for potash fertilizer, a freezing agent, an antifreeze agent, etc. The present inventors have investigated a dust processing method for separating and recovering alkali metal salts useful for manufacturing secondary products, such as NaCl and KCl from which heavy metals have been removed, from the dust generated from waste incinerators. As a result, of the slag separated into the two layers above, the pH of the slag aqueous solution in the upper layer is adjusted, chelation treatment is performed to sediment or adsorb and remove heavy metals, and the solubility difference is utilized to separate and recover alkali metal salts at high concentrations. I learned that it is possible. That is, the present invention processes dust generated from a waste incinerator in a direct current melting furnace equipped with upper and lower slag discharge ports, and processes the generated slag mainly consisting of water-soluble alkali metal salts. The slag is separated into the upper layer slag and the lower layer slag mainly composed of oxides that are poorly soluble in water, and the aqueous solution of the upper layer slag is adjusted to pH 9 to 12 and chelated to be contained. The gist of the present invention is a method for treating dust, which is characterized in that after heavy metals are removed, the alkali metal salts precipitated by cooling are separated and recovered. DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on drawings showing an example of an apparatus to which the present invention is applied. Figure 1 is a schematic cross-sectional view of a direct current melting furnace.
The furnace body is made of, for example, SiO2− with a high content of ZrO2 .
It is hermetically constructed with Al 2 O 3 -ZrO 2 based refractory material 1, and includes an inlet 2 for dust generated during waste incineration, an exhaust pipe 3, and a heating device for initial melting of the input dust. For example, a fuel gas injection nozzle 4, horizontally retractable electrodes 5, 5, an upper slag discharge port 6, a lower slag discharge port 7, etc. are provided. Note that these two discharge ports 6 and 7 are provided with a head difference as much as possible within the allowable range of the furnace structure.
An alternating current is passed through the voltage regulating power transformer 8 to the electrodes 5, 5, and the dust injected from the dust inlet 2 is melted by gas heating from the fuel gas injection nozzle 4, resulting in molten slag 9. The material itself becomes a conductor, generates Joule heat, and maintains a molten state through internal heating. Typical examples of such materials are molybdenum electrodes, while other examples include graphite, iron, tin oxide,
Examples include tungsten electrodes. Therefore, in the present invention, when incinerating waste such as municipal garbage, sewage sludge, mine and industrial wastewater, etc., the dust generated from the waste incinerator, especially the dust generated from the salt-rich waste incinerator, is directly energized as described above. When melting is performed using a processing furnace capable of non-oxidizing melting such as a type melting processing furnace, the composition of the upper layer of the generated slag is that water-soluble alkali metal salts such as NaCl and KCl in the dust are used. Based on the knowledge that the main layer has a specific gravity of 1.9 to 2.1, and the lower layer mainly contains poorly water-soluble components such as CaO, SiO 2 , Al 2 O 3 , and Fe 2 O 3 and has a specific gravity of 2.5 to 2.7. The slag is discharged separately from the discharge ports of the furnace main body, which is provided in upper and lower stages, thereby facilitating the processing for effective utilization of the slag after it is discharged, which will be described later. To treat dust generated in a waste incinerator using the direct current melting furnace shown in Fig. 1, the dust is introduced into the furnace body through the dust inlet 2, and then through the fuel gas injection nozzle 4 for initial melting. Gas is heated to bring it into a molten state and form slag 9. The temperature of the slag 9 in this case depends on the type of dust introduced, but
The temperature ranges from approximately 1200 to 1350°C. At this time, the electrodes 5, 5 attached to the furnace body are immersed in the slag in advance and an alternating current is passed through it, and the slag is maintained in a molten state by the generated Joule heat using this as a conductor. The current at this time is in the range of approximately 700 to 1200 KW/t (material to be treated), although it depends on the nature of the applied dust. Note that 10 is a covering layer of unmelted dust which is successively introduced. Next, the upper layer of the generated slag 9 is discharged from the discharge port 6, which is located at a higher position of the two discharge ports provided in the furnace body, and is discharged into a pit filled with water. As a result, the main components, alkali metal salts such as NaCl and KCl, are eluted into the water. Also, slag 9
The slag discharge port is located at the lower position of the two discharge ports provided in the furnace main body, and the lower layer mainly contains components that are poorly soluble in water such as CaO, Al 2 O 3 , SiO 2 , and Fe 2 O 3 . The slag is extracted from 7 and transported and solidified together with detoxified heavy metals. Next, Figure 2 is a diagram showing the flow of separating and recovering alkali metal salts such as NaCl and KCl, which are the main components, from the upper layer of slag separated and extracted by the direct current melting furnace shown in Figure 1. It is. The slag discharged from the upper discharge port 6 of the direct current melting furnace shown in Fig. 1 passes through the line 11 and reaches a temperature of 80 to 90°C due to waste heat generated from a waste incinerator, for example.
The mixture is poured into a pit 13 filled with hot water 12 heated to 200 mL and dissolved. And to this, from line 14
Add an alkali such as NaOH to adjust the pH to 9 to 12, and add a chelating agent from line 15 to remove traces of heavy metals contained in the slag solution in the form of hydroxides and chelate bonds. Precipitate in shape. The slag solution containing heavy metal precipitates is transferred by a pump 16 via a line 17 to a filter 18 for filtration to remove heavy metals, and the filtration mother liquor is sent to a cooling tank 19 equipped with, for example, cold water or brine cooling piping, where approximately Cooled to below 20℃. Of NaCl and KCl contained in the filtration mother liquor, KCl has a lower solubility than NaCl at this temperature and precipitates, so the separator 20, for example, a centrifuge,
KCl is separated from the saturated filtration mother liquor to recover KCl crystals 21 having a purity of about 90% and containing no heavy metals. Further, the saturated filtered mother liquor of NaCl and KCl, which does not contain heavy metals, is transferred through a line 22 by a pump 23, heated by a heater 24, and recycled to the pit 13. It is also extracted from the branch pipe 22a and evaporated using waste heat generated from a waste treatment furnace, for example, to recover NaCl-rich crystals containing KCl.
As the chelating agent used in the above separation operation, for example, Miyoshi Yushi Co., Ltd., product name "Epofrock L-
1" is mentioned. Incidentally, instead of adding the chelating agent through the line 15, a chelate ion resin filtration layer may be provided in the filter 18 to adsorb and filter heavy metals in the molten slag. For example, the chelate resin layer may be manufactured by Sumitomo Chemical under the trade name "Sumikylate".
MC-30''. As described above, the present invention processes dust generated from a waste incinerator in a directly energized melting furnace equipped with upper and lower slag discharge ports, and converts the generated sludge into water-soluble alkali metals. The slag is separated into an upper slag consisting of salt and a lower slag consisting of hardly soluble oxides, and the aqueous solution of the upper slag is chelated to remove heavy metals and used for fertilizer production, electrolysis, etc. NaCl, which is useful as a raw material for cryogens used in the production of caustic soda, etc.
This is a dust processing method that separates and recovers alkali metal salts such as KCl with high purity, and has a great potential to contribute to waste treatment and recycling projects. Example 1 Dust generated from a municipal waste incinerator was captured with an electric dust collector to obtain dust having the composition shown in Table 1.

【表】 号によつた。
次に第1表のうち、試料1を第1図に示す直接
通電式溶融処理炉により、溶融処理し、上段の溶
滓排出口6から出滓した上層の溶滓Aおよび下段
の溶滓排出口7から出滓した下層の溶滓Bについ
てそれぞれの組成を調査した結果を第2表に示
す。
[Table] According to issue.
Next, Sample 1 in Table 1 was melted in the direct current melting furnace shown in Figure 1, and the upper layer slag A discharged from the upper slag discharge port 6 and the lower layer slag discharged. Table 2 shows the results of investigating the composition of the lower layer slag B discharged from outlet 7.

【表】 以上の結果から上層の溶滓は水に可溶性の成分
(NaCl、KCl)が主体であるのに対し、下層の溶
滓は水に難性の成分(CaO、Al2O3、SiO2
Fe2O3など)が主体であることが明らかである。
また試料ダスト中の重金属類は溶滓中では大幅に
減少したことが分る。 次に、第2表における上層の溶滓A120Kgを第
2図に示すフロー図のとおり90℃に加熱した温水
200を満したピツト13中に放出溶解し、ライ
ン14よりNaOHを加えて液体のPHを9〜12に
調整し、ライン15よりキレート処理剤エポフロ
ツクL−1を加えた。生成した重金属類の沈澱を
含む処理液をポンプ16によりライン17を経て
濾過器18に移送して濾過し、濾過母液を冷却層
19に移送して約25℃まで冷却し、KCl結晶を析
出させた。析出したKCl21を分離器20で分離
し、NaClとKClとの飽和された濾過母液はライ
ン22を経て、ポンプ23で移送し加熱器24で
加熱してピツト13に循環する。また一部は枝管
22aを経て図示しない蒸発器で水分を蒸発させ
NaCl主体の結晶を得た。得られたKCl、NaClに
ついて調査した結果を第3表に示す。尚、比較の
ために、第2図に示すフロー図において、
NaOHおよびキレート剤の添加を行なわないピ
ツト13の溶滓溶液を直接冷却器19に移送(点
線で示す)して析出させたKCl結晶、および回収
NaCl結晶について調査した結果を併記する。
[Table] From the above results, the slag in the upper layer is mainly composed of components that are soluble in water (NaCl, KCl), whereas the slag in the lower layer is mainly composed of components that are resistant to water (CaO, Al 2 O 3 , SiO 2 ,
It is clear that the main component is Fe 2 O 3 etc.).
It is also seen that the heavy metals in the sample dust were significantly reduced in the slag. Next, 120 kg of slag A in the upper layer in Table 2 was heated to 90℃ as shown in the flow diagram in Figure 2.
The solution was discharged and dissolved into a pit 13 filled with 200 ml of water, NaOH was added through line 14 to adjust the pH of the liquid to 9 to 12, and chelating agent Epofloc L-1 was added through line 15. The treatment solution containing the generated heavy metal precipitate is transferred to the filter 18 via the line 17 by the pump 16 and filtered, and the filtration mother liquor is transferred to the cooling layer 19 and cooled to about 25° C. to precipitate KCl crystals. Ta. The precipitated KCl 21 is separated by a separator 20, and the filtered mother liquor saturated with NaCl and KCl is transferred through a line 22 by a pump 23, heated by a heater 24, and circulated to the pit 13. In addition, some water is evaporated in an evaporator (not shown) through the branch pipe 22a.
Crystals consisting mainly of NaCl were obtained. Table 3 shows the results of investigating the obtained KCl and NaCl. For comparison, in the flow diagram shown in Figure 2,
KCl crystals precipitated by directly transferring the slag solution in the pit 13 without addition of NaOH and chelating agent to the cooler 19 (indicated by the dotted line), and recovery
The results of the investigation on NaCl crystals are also listed.

【表】【table】

【表】 第3表の結果から明らかなとおり、キレート処
理した溶滓溶液より回収したKCl、NaClといつ
たアルカリ金属塩は重金属類の含有量がほとんど
認められず、KCl肥料用、電解NaOH製造用とし
て充分利用できるものであつた。
[Table] As is clear from the results in Table 3, the alkali metal salts such as KCl and NaCl recovered from the chelate-treated slag solution have almost no heavy metal content, and are used for KCl fertilizer and electrolytic NaOH production. It was fully usable for various purposes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の適用される直接通電式溶
融処理炉の一例を示す断面略図、第2図は本発明
方法における上層の溶滓からアルカリ金属塩を回
収分離するフロー図である。 1……耐火材料、2……ダストの投入口、3…
…換気管、4……燃料ガス噴射ノズル、5……電
極、6,7……溶滓排出口、8……電圧調整用電
源トランス、9……溶滓、10……カバリング
層、11……ライン、12……温水、13……ピ
ツト、14,15……ライン、16……ポンプ、
17……ライン、18……濾過器、19……冷却
槽、20……分離器、21……KCl結晶、22…
…ライン、23……ポンプ、24……加熱器。
FIG. 1 is a schematic cross-sectional view showing an example of a direct current melting furnace to which the method of the present invention is applied, and FIG. 2 is a flow diagram for recovering and separating alkali metal salts from the upper layer of slag in the method of the present invention. 1... Fireproof material, 2... Dust inlet, 3...
... Ventilation pipe, 4... Fuel gas injection nozzle, 5... Electrode, 6, 7... Slag discharge port, 8... Power supply transformer for voltage adjustment, 9... Slag, 10... Covering layer, 11... ... line, 12 ... hot water, 13 ... pit, 14, 15 ... line, 16 ... pump,
17...Line, 18...Filter, 19...Cooling tank, 20...Separator, 21...KCl crystal, 22...
...Line, 23...Pump, 24...Heater.

Claims (1)

【特許請求の範囲】 1 廃棄物焼却炉から発生するダストを上下二段
に溶滓排出口を備えた直接通電式溶融処理炉で処
理し、生成した溶滓を水に可溶性のアルカリ金属
塩を主体とする上層の溶滓と水に難溶性の酸化物
を主体とする下層の溶滓とに分別出滓し、前記上
層の溶滓の水溶液をPH9〜12に調整し、キレート
処理して含有される重金属類を除去後、冷却して
析出するアルカリ金属塩を分離回収することを特
徴とするダストの処理方法。 2 上層の溶滓が、NaClまたはKClを主体とす
る水に可溶性のアルカリ金属塩よりなり下層の溶
滓がCaO、Al2O3、Fe2O3、SiO2を主体とする水
に難溶性の酸化物よりなる特許請求の範囲第1項
記載のダストの処理方法。 3 キレート処理がキレート剤の添加による沈降
分離または、キレートイオン樹脂層への吸着分離
のいずれかである特許請求の範囲第1項又は第2
項記載のダストの処理方法。
[Claims] 1. Dust generated from a waste incinerator is treated in a direct current melting furnace equipped with upper and lower slag discharge ports, and the generated slag is treated with a water-soluble alkali metal salt. The slag is separated into the upper layer containing slag and the lower layer containing oxides that are poorly soluble in water, and the aqueous solution of the upper layer slag is adjusted to pH 9 to 12 and chelated to contain the slag. A method for treating dust, which comprises removing heavy metals, followed by cooling and separating and recovering precipitated alkali metal salts. 2 The upper layer slag is made of water-soluble alkali metal salts mainly composed of NaCl or KCl, and the lower layer slag is poorly soluble in water mainly composed of CaO, Al 2 O 3 , Fe 2 O 3 , and SiO 2 The method for treating dust according to claim 1, which comprises an oxide of. 3. Claim 1 or 2, wherein the chelation treatment is either sedimentation separation by adding a chelating agent or adsorption separation on a chelate ion resin layer.
How to dispose of dust as described in section.
JP58171966A 1983-09-16 1983-09-16 Treatment of dust Granted JPS6063329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58171966A JPS6063329A (en) 1983-09-16 1983-09-16 Treatment of dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58171966A JPS6063329A (en) 1983-09-16 1983-09-16 Treatment of dust

Publications (2)

Publication Number Publication Date
JPS6063329A JPS6063329A (en) 1985-04-11
JPH0413408B2 true JPH0413408B2 (en) 1992-03-09

Family

ID=15933055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58171966A Granted JPS6063329A (en) 1983-09-16 1983-09-16 Treatment of dust

Country Status (1)

Country Link
JP (1) JPS6063329A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4969872B2 (en) * 2006-02-28 2012-07-04 三井造船株式会社 Sodium chloride production system
JP5032784B2 (en) * 2006-03-31 2012-09-26 三井造船株式会社 Sodium chloride production system
JP6775361B2 (en) 2016-09-07 2020-10-28 Joyson Safety Systems Japan株式会社 Pretensioner, retractor and seatbelt device

Also Published As

Publication number Publication date
JPS6063329A (en) 1985-04-11

Similar Documents

Publication Publication Date Title
KR20080063797A (en) Method for removing metals from waste water and apparatus for removing metals from waste water
JP4549579B2 (en) Waste treatment method with high chlorine and lead content
JPH02229725A (en) Method for operating glass melting furnace
JPH09505854A (en) Method for treating solid residues from a refuse incineration plant and apparatus for implementing this method
CA1160059A (en) Method and installation for scrubbing the flues for recovering the salts in a process for the production of secondary aluminum
JPH07501851A (en) Method for removing salt from aluminum slag
JP5293007B2 (en) Method and apparatus for recovering thallium and potassium nitrate
JPH0413408B2 (en)
JP3568569B2 (en) Recycling of heavy metals by detoxifying incinerated ash or fly ash
JPH0424118B2 (en)
JPS6351755B2 (en)
JP6374267B2 (en) Treatment method for radioactive cesium contaminants
RU2351665C2 (en) Method of phosphorus recovery
JPH0327262B2 (en)
JP3276074B2 (en) How to treat fly ash from incinerators
JP2972524B2 (en) Separation and recovery of lead and zinc from incinerated ash
JPH10109077A (en) Method for recovering heavy metal from molten fry ash
JPH1059722A (en) Production of high purity diarsenic trioxide from arsenic-containing waste
JP3633840B2 (en) Processing method of molten fly ash
JPS60232235A (en) Treatment of exhaust gas
JP3546108B2 (en) Exhaust gas treatment method and apparatus in ash melting furnace
JP3619069B2 (en) Fly ash recycling process
JP3704351B2 (en) Improvements in the process for heat treatment of residues from cleanup of fumes and industrial processes that emit fumes.
JPH0424119B2 (en)
JP2005046714A (en) System for processing molten flyash from melting furnace and method for processing molten flyash