JPH1059722A - Production of high purity diarsenic trioxide from arsenic-containing waste - Google Patents
Production of high purity diarsenic trioxide from arsenic-containing wasteInfo
- Publication number
- JPH1059722A JPH1059722A JP21629296A JP21629296A JPH1059722A JP H1059722 A JPH1059722 A JP H1059722A JP 21629296 A JP21629296 A JP 21629296A JP 21629296 A JP21629296 A JP 21629296A JP H1059722 A JPH1059722 A JP H1059722A
- Authority
- JP
- Japan
- Prior art keywords
- arsenic
- diarsenic trioxide
- waste
- trioxide
- sublimated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、砒素を含有する廃
棄物、例えば金属砒素製造時に生ずる砒素を主成分とす
る廃棄物、砒化ガリウムからガリウムを真空熱分解法に
よって回収したときに生ずる砒素を主成分とする廃棄
物、あるいは砒化ガリウム合成時の砒素系残湯等の砒素
を主成分とする廃棄物等を燃焼酸化することにより、砒
素を高純度の三酸化二砒素として回収する砒素含有廃棄
物からの高純度三酸化二砒素の製造方法に関する。The present invention relates to arsenic-containing waste, for example, arsenic-containing waste produced during the production of metal arsenic, and arsenic produced when gallium is recovered from gallium arsenide by vacuum pyrolysis. Arsenic-containing waste, which recovers arsenic as high-purity diarsenic trioxide by burning and oxidizing arsenic-based waste such as arsenic-based residual hot water such as arsenic-based residual hot water during gallium arsenide synthesis The present invention relates to a method for producing high-purity diarsenic trioxide from materials.
【0002】[0002]
【従来の技術】砒素を含有する廃棄物である砒化ガリウ
ムスクラップを処理する方法として、砒化ガリウムスク
ラップを1100°C〜1150°Cで真空熱分解し、
砒素を昇華除去し、得られたガリウムを精製するもの
(特開昭57−101625号参照)、砒化ガリウムス
クラップを600°C〜1100°Cで酸化焙焼し、砒
素は酸化物として昇華除去し、得られた酸化ガリウムを
アルカリまたは酸に溶解させて電解採取するもの(特開
昭64−4433号参照)、砒化ガリウムスクラップを
酸化剤の存在下で酸またはアルカリで溶解し、pH調整
を行ってガリウムを水酸化物として溶液から沈殿分離
し、これを電解し金属ガリムウを得るもの(特公昭56
−38661号参照)等がある。2. Description of the Related Art As a method for treating gallium arsenide scrap, which is waste containing arsenic, gallium arsenide scrap is thermally decomposed in vacuum at 1100 ° C. to 1150 ° C.
A method for purifying the obtained gallium by sublimating and removing arsenic (see Japanese Patent Application Laid-Open No. 57-101625). Gallium arsenide scrap is oxidized and roasted at 600 ° C. to 1100 ° C., and arsenic is sublimated and removed as oxide. Dissolving the obtained gallium oxide in an alkali or acid and subjecting it to electrowinning (see JP-A-64-4433), dissolving gallium arsenide scrap with an acid or alkali in the presence of an oxidizing agent, and adjusting the pH. Gallium as a hydroxide to precipitate out of solution and electrolyze it to obtain metallic gallium (JP-B-56
-38661).
【0003】しかし、砒化ガリウムスクラップを110
0°C〜1150°Cで真空熱分解し、砒素を昇華除去
し、得られたガリウムを精製するものは、有価物である
ガリウムの回収を目的としており、有害物である砒素は
最初から廃棄することが前提となっていて、砒素は利用
価値のない廃棄物となる。[0003] However, gallium arsenide scrap has been reduced to 110.
Vacuum pyrolysis at 0 ° C to 1150 ° C, sublimation and removal of arsenic, and purification of the resulting gallium are intended to recover valuable gallium, and harmful arsenic is discarded from the beginning. Arsenic is a waste of no value.
【0004】また、砒化ガリウムスクラップを600°
C〜1100°Cで酸化焙焼し、砒素は酸化物として昇
華除去し、得られた酸化ガリウムをアルカリまたは酸に
溶解させて電解採取するものは、砒素含有量約50%の
砒化ガリウムを対象としており、砒素を主成分とする廃
棄物を対象とした場合には、三酸化二砒素ばかりでな
く、600°Cにおいて78kPaの高い蒸気圧を有す
る砒素も同時に昇華する。その結果回収物中には未反応
の砒素が金属砒素として混在し純度の高い三酸化二砒素
は得られない。[0004] Further, gallium arsenide scrap is reduced to 600 °.
Oxidation and roasting at C to 1100 ° C, sublimation removal of arsenic as an oxide, and dissolution of the obtained gallium oxide in an alkali or an acid for electrowinning are intended for gallium arsenide having an arsenic content of about 50%. In the case of waste containing arsenic as a main component, not only diarsenic trioxide but also arsenic having a high vapor pressure of 78 kPa at 600 ° C. is sublimated at the same time. As a result, unreacted arsenic is mixed as metal arsenic in the recovered product, and high-purity diarsenic trioxide cannot be obtained.
【0005】砒化ガリウムスクラップを酸化剤の存在下
で酸またはアルカリで溶解し、pH調整を行ってガリウ
ムを水酸化物として溶液から沈殿分離し、これを電解し
金属ガリムウを得るものは、再度pH調整して溶液のイ
オンを沈殿させるので、分離される砒素は低品位のスラ
ッジとなる。[0005] Gallium arsenide scrap is dissolved with an acid or alkali in the presence of an oxidizing agent, pH is adjusted and gallium is precipitated and separated from a solution as a hydroxide. The arsenic to be separated becomes low-grade sludge because it is adjusted to precipitate ions in the solution.
【0006】上記の砒化ガリウムスクラップの例にみら
れるように、従来の砒素含有廃棄物からの砒素の分離
は、対象とする有価物を回収するために行われ、有害物
である砒素は廃棄処分することを前提としていたので、
得られた砒素分は有害廃棄物となり、一時保管や安定化
処理後埋立処分されているのが現状である。[0006] As seen in the above example of gallium arsenide scrap, the conventional separation of arsenic from arsenic-containing waste is carried out in order to recover valuable materials of interest, and harmful arsenic is disposed of. Because it was assumed that
The resulting arsenic is now a hazardous waste, and is currently being landfilled after temporary storage and stabilization.
【0007】ところが、近年地球環境保護の立場から砒
素系廃棄物を埋立処分することは困難になりつつあり、
その対策が切望されている。有害物である砒素も有効利
用可能な形で分離、回収すれば砒素系廃棄物を大幅に減
少させることができる。有効利用可能な砒素の回収形態
としては、純度の高い三酸化二砒素とすることがあげら
れる。However, in recent years, it has become difficult to landfill arsenic waste from the standpoint of global environmental protection.
The measures are eagerly awaited. Arsenic, which is a harmful substance, can be separated and recovered in a form that can be used effectively, and arsenic waste can be greatly reduced. As a form of arsenic recovery that can be effectively used, high-purity diarsenic trioxide can be mentioned.
【0008】従来の三酸化二砒素の製造方法としては、
砒素の酸化物、硫化物を焙焼し、得られた粗酸化砒素を
更に反射炉で精製する方法がある。[0008] Conventional methods for producing diarsenic trioxide include:
There is a method in which arsenic oxides and sulfides are roasted, and the obtained crude arsenic oxide is further purified in a reverberatory furnace.
【0009】[0009]
【発明が解決しようとする課題】しかし、砒素の酸化
物、硫化物を焙焼し、得られた粗酸化砒素を更に反射炉
で精製する方法では、得られる三酸化二砒素は純度が9
9.5%程度であるので、高純度金属砒素の原料として
は利用できず、その他の鉱工業用原料の三酸化二砒素と
しても不十分である。However, in the method in which arsenic oxides and sulfides are roasted and the obtained crude arsenic oxide is further refined in a reverberatory furnace, the obtained diarsenic trioxide has a purity of 9%.
Since it is about 9.5%, it cannot be used as a raw material for high-purity metal arsenic, and is insufficient as diarsenic trioxide as another raw material for industrial use.
【0010】本発明は、砒素含有廃棄物の処理における
かかる問題を解決するものであって、砒素を含有する廃
棄物から高純度金属砒素の原料や鉱工業用原料として利
用可能な99.99%以上の高純度の三酸化二砒素を容
易に得ることができ、砒素系廃棄物を減少させることの
できる砒素含有廃棄物からの高純度三酸化二砒素の製造
方法を提供することを目的とする。The present invention solves such a problem in the treatment of arsenic-containing waste, and more than 99.99% of arsenic-containing waste can be used as a raw material of high-purity metal arsenic or a raw material for mining and industry. It is an object of the present invention to provide a method of producing high-purity diarsenic trioxide from arsenic-containing waste, which can easily obtain high-purity diarsenic trioxide and reduce arsenic waste.
【0011】[0011]
【課題を解決するための手段】本発明の砒素含有廃棄物
からの高純度三酸化二砒素の製造方法は、砒素を含有す
る廃棄物をあらかじめ酸素雰囲気とした後にこの酸素雰
囲気中において加熱し400°C以上600°C未満の
温度範囲で燃焼させることにより、砒素分を三酸化二砒
素として昇華させて砒素以外の酸化物から分離した後、
昇華した三酸化二砒素を凝固させて回収するものであ
る。SUMMARY OF THE INVENTION According to the method of the present invention for producing high-purity diarsenic trioxide from arsenic-containing waste, the arsenic-containing waste is preliminarily converted into an oxygen atmosphere and then heated in this oxygen atmosphere. By burning in a temperature range of not less than 600 ° C. or more and subliming arsenic as diarsenic trioxide and separating it from oxides other than arsenic,
The sublimated diarsenic trioxide is coagulated and collected.
【0012】燃焼を行う温度範囲を400°C以上60
0°C未満とすることで、金属砒素を含まない99.9
9%以上の高純度の三酸化二砒素を得ることができる。
回収される三酸化二砒素は99.99%以上の高純度で
あるので、そのまま金属砒素製造用の原料として利用が
可能であり、その他の鉱工業用原料としても利用でき
る。The temperature range in which combustion takes place is 400 ° C. or more and 60 ° C.
When the temperature is lower than 0 ° C., 99.9 containing no metal arsenic is contained.
High-purity diarsenic trioxide of 9% or more can be obtained.
Since the recovered diarsenic trioxide has a high purity of 99.99% or more, it can be used as it is as a raw material for producing metal arsenic, and can also be used as another raw material for mining and industry.
【0013】[0013]
【発明の実施の形態】図1は、この発明の砒素含有廃棄
物からの高純度三酸化二砒素の製造方法の実施の一形態
において使用される燃焼酸化装置の縦断面である。FIG. 1 is a longitudinal sectional view of a combustion oxidizer used in an embodiment of the method for producing high-purity diarsenic trioxide from arsenic-containing waste according to the present invention.
【0014】ここで、水平に配置された反応管1の周囲
には、加熱用のコイル5を備えた加熱部2が設けられて
おり、反応管1の所定位置の下方には、ウォータージャ
ケット6を備えた水冷コンデンサ3と捕集部4とが連設
されている。Here, a heating section 2 having a heating coil 5 is provided around the horizontally arranged reaction tube 1, and a water jacket 6 is provided below a predetermined position of the reaction tube 1. The water-cooled condenser 3 provided with the collector and the collection unit 4 are connected to each other.
【0015】この反応管1内に砒素含有廃棄物を装入
し、内部を酸素雰囲気とした後、コイル5に通電するこ
とにより加熱して、400°C以上600°C未満の温
度範囲において燃焼させ、砒素分を三酸化二砒素として
昇華させて砒素以外の酸化物から分離する。昇華した三
酸化二砒素は水冷コンデンサ3で冷却することにより凝
固させ、捕集部4で回収する。An arsenic-containing waste is charged into the reaction tube 1 and the inside thereof is made to be in an oxygen atmosphere, and then heated by energizing the coil 5 to burn in a temperature range of 400 ° C. or more and less than 600 ° C. Then, the arsenic component is sublimated as diarsenic trioxide and separated from oxides other than arsenic. The sublimated diarsenic trioxide is solidified by being cooled by the water-cooled condenser 3 and collected by the collection unit 4.
【0016】砒素は、400°C〜600°Cの温度範
囲で蒸気圧0.8kPa〜78kPaを示すが、砒素を
主成分とする廃棄物では、350°C〜400°Cの温
度で燃焼を開始し、三酸化二砒素が生成する。また一旦
燃焼を開始すると自己燃焼反応が起こり燃焼を継続す
る。このとき、酸素の供給が不十分であると燃焼が不完
全となり、一部未反応の砒素が昇華し金属砒素として回
収三酸化二砒素中に混入する。Arsenic exhibits a vapor pressure of 0.8 kPa to 78 kPa in the temperature range of 400 ° C. to 600 ° C., but arsenic wastes combusted at a temperature of 350 ° C. to 400 ° C. Starting, diarsenic trioxide is produced. Further, once the combustion is started, a self-combustion reaction occurs to continue the combustion. At this time, if the supply of oxygen is insufficient, combustion becomes incomplete, and arsenic that is partially unreacted sublimates and enters the recovered diarsenic trioxide as metal arsenic.
【0017】400°C未満の燃焼温度でも三酸化二砒
素は生成するが、400°C未満の低い燃焼温度では、
反応管1には、ガラス状亜砒酸が生成する約258°C
以上約300°C以下の温度範囲の部分が多く存在する
ことになるので、反応管1内に固着して回収が困難にな
り、回収率が低下する。Although diarsenic trioxide is produced at combustion temperatures below 400 ° C., at low combustion temperatures below 400 ° C.,
The reaction tube 1 contains approximately 258 ° C. at which glassy arsenous acid is generated.
Since there are many parts in the temperature range of about 300 ° C. or less, the solidified substance is fixed in the reaction tube 1 and the recovery becomes difficult, and the recovery rate decreases.
【0018】600°C以上の燃焼温度では、砒素の昇
華点615°C付近となるので砒素蒸気の発生が激しく
酸化が不十分となり、回収三酸化二砒素中に不純物とな
る金属砒素が混入する。このとき、600°C以上の燃
焼温度で砒素の全てが三酸化二砒素となるだけの酸素を
供給した場合には、爆発的に反応が起こるので、装置の
破損等のおそれがある。At a combustion temperature of 600 ° C. or higher, the sublimation point of arsenic is around 615 ° C., so that arsenic vapor is generated intensely and oxidation is insufficient, and metal arsenic, which is an impurity, is mixed in the recovered diarsenic trioxide. . At this time, if oxygen is supplied so that all of the arsenic becomes diarsenic trioxide at a combustion temperature of 600 ° C. or more, a reaction occurs explosively, and there is a risk of damage to the device.
【0019】そこで、400°C以上600°C未満、
好ましくは450°C以上550°C以下の温度範囲の
酸素雰囲気内で燃焼させることにより、高純度の三酸化
二砒素を得ることができる。Therefore, 400 ° C. or more and less than 600 ° C.
Preferably, high-purity diarsenic trioxide can be obtained by burning in an oxygen atmosphere in a temperature range of 450 ° C. or more and 550 ° C. or less.
【0020】[0020]
〔実施例1〕砒化ガリウム合成時の残湯である廃棄物5
000gを図1に示す燃焼酸化装置の反応管1に装入
し、酸素雰囲気中で550°Cに保ち、5時間燃焼させ
た。この廃棄物は砒素を主成分とし、鉄500ppm、
珪素800ppm、亜鉛100ppm、ガリウム800
ppm以上の不純物を含有していた。廃棄物の分析値を
表1に示す。[Example 1] Waste 5 as residual hot water from the synthesis of gallium arsenide
000 g was charged into the reaction tube 1 of the combustion oxidizer shown in FIG. 1, and kept at 550 ° C. in an oxygen atmosphere and burned for 5 hours. This waste is mainly composed of arsenic, 500 ppm of iron,
800 ppm silicon, 100 ppm zinc, 800 gallium
It contained impurities of not less than ppm. The analytical values of the waste are shown in Table 1.
【0021】[0021]
【表1】 [Table 1]
【0022】昇華した三酸化二砒素は水冷コンデンサ3
で凝固し、捕集部4で6300g回収され、焼却残渣5
gが反応管1に残った。回収率は96%である。捕集部
4で得られた三酸化二砒素は白色の粉末結晶で、不純物
は珪素が0.5ppm、ガリウムが3ppm程度の極め
て高純度のものであった。製品の分析値を表2に示す。The sublimated diarsenic trioxide is supplied to the water-cooled condenser 3
And solidified in the collecting section 4 to collect 6,300 g
g remained in the reaction tube 1. The recovery is 96%. The diarsenic trioxide obtained in the collecting part 4 was a white powder crystal, and the impurities were extremely high purity of about 0.5 ppm for silicon and about 3 ppm for gallium. The analytical values of the products are shown in Table 2.
【0023】[0023]
【表2】 [Table 2]
【0024】〔実施例2〕砒化ガリウムスクラップを真
空熱分解法で砒素とガリウムに分離したときに回収され
た砒素を主成分とする廃棄物1000gを図1に示す燃
焼酸化装置の反応管1に装入し、酸素雰囲気中で450
°Cに保ち、5時間燃焼させた。この廃棄物は砒素を主
成分とし、インジウム200〜300ppm、ほう素2
00〜300ppm、亜鉛100ppm、ガリウム50
0ppm以上の不純物を含有していた。廃棄物の分析値
を表3に示す。Example 2 1000 g of arsenic-based waste collected when gallium arsenide scrap was separated into arsenic and gallium by a vacuum pyrolysis method was placed in a reaction tube 1 of a combustion oxidation apparatus shown in FIG. Charge, 450 in oxygen atmosphere
C. and kept burning for 5 hours. This waste is mainly composed of arsenic, 200 to 300 ppm of indium, and 2 parts of boron.
00 to 300 ppm, zinc 100 ppm, gallium 50
It contained impurities of 0 ppm or more. Table 3 shows the analytical values of the waste.
【0025】[0025]
【表3】 [Table 3]
【0026】昇華した三酸化二砒素は水冷コンデンサ3
で凝固し、捕集部4で1200g回収され、焼却残渣9
0gが反応管1に残った。回収率は91%である。捕集
部4で得られた三酸化二砒素は白色の粉末結晶で、不純
物は珪素が0.1ppm、ほう素が5ppm程度の極め
て高純度のものであった。製品の分析値を表4に示す。The sublimated diarsenic trioxide is supplied to the water-cooled condenser 3
Solidified in the collecting section 4 and collected in an incineration residue 9
0 g remained in the reaction tube 1. The recovery is 91%. The diarsenic trioxide obtained in the trapping section 4 was a white powder crystal, and the impurities were of a very high purity of about 0.1 ppm for silicon and about 5 ppm for boron. Table 4 shows the analysis values of the products.
【0027】[0027]
【表4】 [Table 4]
【0028】〔比較例1〕実施例1と同様の原料を用
い、実施例1と同様の方法で燃焼酸化を行った。ただ
し、燃焼温度は600°Cとした。Comparative Example 1 Combustion oxidation was carried out in the same manner as in Example 1 using the same raw materials as in Example 1. However, the combustion temperature was 600 ° C.
【0029】その結果、捕集部4で得られた酸化砒素は
白色とならず、灰色のものであった。これは、600°
Cでは砒素の蒸気圧が78kPaと高く発生砒素蒸気量
が多いために、反応しきれない砒素蒸気が同時に混在
し、凝固の際に三酸化二砒素中に金属砒素として混入し
たためである。この金属砒素が混入した三酸化二砒素
は、到底高純度金属砒素の原料とはなり得ず、鉱工業用
原料としても不十分なものである。As a result, the arsenic oxide obtained in the collecting section 4 was not white, but gray. This is 600 °
In C, the vapor pressure of arsenic was as high as 78 kPa, and the amount of arsenic vapor generated was large. Therefore, unreacted arsenic vapors were simultaneously mixed and mixed as metal arsenic in diarsenic trioxide during coagulation. Diarsenic trioxide mixed with metal arsenic cannot be used as a raw material for high-purity metal arsenic at all, and is insufficient as a raw material for mining and industrial use.
【0030】[0030]
【発明の効果】本発明によれば、砒素を含有する廃棄物
から99.99%以上の高純度の三酸化二砒素を容易に
得ることができ、得られた三酸化二砒素を高純度金属砒
素の原料やその他の鉱工業用原料として利用することが
できる。According to the present invention, high purity diarsenic trioxide of 99.99% or more can be easily obtained from arsenic-containing waste, and the obtained diarsenic trioxide is converted to high-purity metal. It can be used as a raw material for arsenic and other industrial materials.
【0031】このように、廃棄物から分離した砒素分を
有効利用できるので、有害廃棄物とされてきた砒素系廃
棄物を減少させることができ、環境保護に貢献すること
ができる。As described above, the arsenic separated from the waste can be effectively used, so that arsenic waste which has been regarded as hazardous waste can be reduced, thereby contributing to environmental protection.
【図1】砒素含有廃棄物からの高純度三酸化二砒素の製
造方法で使用される燃焼酸化装置の縦断面である。FIG. 1 is a longitudinal section of a combustion oxidizer used in a method for producing high-purity diarsenic trioxide from arsenic-containing waste.
1 反応管 2 加熱部 3 水冷コンデンサー 4 捕集部 5 コイル 6 ウォータージャケット DESCRIPTION OF SYMBOLS 1 Reaction tube 2 Heating part 3 Water-cooled condenser 4 Collection part 5 Coil 6 Water jacket
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小長谷 保平 福島県いわき市好間町上好間字小館20番地 古河機械金属株式会社いわき工場内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yasuhei Konagaya 20th Kamiyoshima Odate, Yoshima-cho, Iwaki-shi, Fukushima Furukawa Machinery & Metal Co., Ltd.
Claims (1)
雰囲気とした後に該酸素雰囲気中において加熱し400
°C以上600°C未満の温度範囲で燃焼させることに
より、砒素分を三酸化二砒素として昇華させて砒素以外
の酸化物から分離した後、昇華した三酸化二砒素を凝固
させて回収する砒素含有廃棄物からの高純度三酸化二砒
素の製造方法。1. An arsenic-containing waste is preliminarily converted into an oxygen atmosphere and then heated in the oxygen atmosphere.
The arsenic component is sublimated as diarsenic trioxide by being burned in a temperature range of not less than 600 ° C. to arsenic to separate from oxides other than arsenic, and then the sublimated arsenic trioxide is coagulated and recovered. A method for producing high-purity diarsenic trioxide from contained waste.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21629296A JPH1059722A (en) | 1996-08-16 | 1996-08-16 | Production of high purity diarsenic trioxide from arsenic-containing waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21629296A JPH1059722A (en) | 1996-08-16 | 1996-08-16 | Production of high purity diarsenic trioxide from arsenic-containing waste |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1059722A true JPH1059722A (en) | 1998-03-03 |
Family
ID=16686257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21629296A Pending JPH1059722A (en) | 1996-08-16 | 1996-08-16 | Production of high purity diarsenic trioxide from arsenic-containing waste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1059722A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103290237A (en) * | 2013-05-23 | 2013-09-11 | 扬州高能新材料有限公司 | Arsenic lead alloy synthesis and sublimation integral furnace used for producing high-purity arsenic |
CN106591599A (en) * | 2017-02-08 | 2017-04-26 | 磐石创新(北京)电子装备有限公司 | Gallium arsenide waste material separating and recycling device and method |
WO2018120406A1 (en) * | 2016-12-30 | 2018-07-05 | 焱鑫环保科技有限公司 | Precisely controlled arsenic trioxide sublimating purification furnace using low-melting point alloy as floatation body |
CN109022801A (en) * | 2018-08-31 | 2018-12-18 | 兰州有色冶金设计研究院有限公司 | A kind of device and method of harmless treatment arsenic sulfide slag |
CN111118307A (en) * | 2020-01-16 | 2020-05-08 | 湖南有色金属研究院 | Method for treating arsenic-containing waste residue by using industrial waste acid |
CN111377478A (en) * | 2018-12-29 | 2020-07-07 | 东泰高科装备科技有限公司 | Purification method of arsenic trioxide |
CN113526548A (en) * | 2021-07-13 | 2021-10-22 | 广西凯玺有色金属有限公司 | Process method for clean disposal of high-arsenic hazardous waste |
-
1996
- 1996-08-16 JP JP21629296A patent/JPH1059722A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103290237A (en) * | 2013-05-23 | 2013-09-11 | 扬州高能新材料有限公司 | Arsenic lead alloy synthesis and sublimation integral furnace used for producing high-purity arsenic |
WO2018120406A1 (en) * | 2016-12-30 | 2018-07-05 | 焱鑫环保科技有限公司 | Precisely controlled arsenic trioxide sublimating purification furnace using low-melting point alloy as floatation body |
CN106591599A (en) * | 2017-02-08 | 2017-04-26 | 磐石创新(北京)电子装备有限公司 | Gallium arsenide waste material separating and recycling device and method |
CN109022801A (en) * | 2018-08-31 | 2018-12-18 | 兰州有色冶金设计研究院有限公司 | A kind of device and method of harmless treatment arsenic sulfide slag |
CN109022801B (en) * | 2018-08-31 | 2023-08-18 | 兰州有色冶金设计研究院有限公司 | Device and method for innocent treatment of arsenic sulfide slag |
CN111377478A (en) * | 2018-12-29 | 2020-07-07 | 东泰高科装备科技有限公司 | Purification method of arsenic trioxide |
CN111118307A (en) * | 2020-01-16 | 2020-05-08 | 湖南有色金属研究院 | Method for treating arsenic-containing waste residue by using industrial waste acid |
CN113526548A (en) * | 2021-07-13 | 2021-10-22 | 广西凯玺有色金属有限公司 | Process method for clean disposal of high-arsenic hazardous waste |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4159310A (en) | Process for recovering aluminum and other metal values from fly ash | |
JP3576550B2 (en) | Recovery of metal valuables from process residues | |
CN106498190B (en) | The method of neodymium iron boron greasy filth waste material in-situ carbon thermocatalytic chlorination recovering rare earth product | |
CN104789786A (en) | Method for harmlessly treating arsenic-containing waste slag and comprehensively recycling valuable metals in arsenic-containing waste slag | |
JP2020532425A (en) | Methods for refining waste materials or industrial by-products containing chlorine | |
CN111235397A (en) | Process for efficiently treating copper smelting smoke dust | |
JPH1059722A (en) | Production of high purity diarsenic trioxide from arsenic-containing waste | |
US6264903B1 (en) | Method for recycling industrial waste streams containing zinc compounds | |
CN1357938A (en) | Comprehensive recovery and utilization method of waste NiCd battery | |
US6517789B1 (en) | Method for reclaiming constituents from an industrial waste stream | |
US6932853B2 (en) | Mechanical separation of volatile metals at high temperatures | |
EP0271845B1 (en) | Process for recovering gallium trichloride from gallium-containing waste | |
JPH1150162A (en) | Recovery of valuable metal from heavy oil ash | |
US5728854A (en) | Method for separating iron from nickel and/or cadmium from a waste containing the same | |
JPH1059723A (en) | Production of diarsenic trioxide from gallium arsenide | |
US4137292A (en) | Purification of titanium trichloride | |
JPH07126013A (en) | Treatment of chlorides in crude zinc oxide | |
RU2020175C1 (en) | Process for recovering tungsten, scandium, iron and manganese from tungsten-containing raw material | |
KR920009864B1 (en) | Making process for zinc chloride from the dust of electric furnace | |
JP2000016844A (en) | Pyrolysis of dioxin and device therefor | |
RU2025519C1 (en) | Method to reprocess wastes of hard alloy | |
JP3205273B2 (en) | Waste incineration ash treatment method | |
JP7243749B2 (en) | Valuable metal recovery method and recovery device | |
JP3564625B2 (en) | Method for treating dust in exhaust gas | |
JPH0362774B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060428 |
|
A131 | Notification of reasons for refusal |
Effective date: 20060627 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061024 |