JP3619069B2 - Fly ash recycling process - Google Patents

Fly ash recycling process Download PDF

Info

Publication number
JP3619069B2
JP3619069B2 JP22530799A JP22530799A JP3619069B2 JP 3619069 B2 JP3619069 B2 JP 3619069B2 JP 22530799 A JP22530799 A JP 22530799A JP 22530799 A JP22530799 A JP 22530799A JP 3619069 B2 JP3619069 B2 JP 3619069B2
Authority
JP
Japan
Prior art keywords
zinc
lead
filtrate
insolubilized
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22530799A
Other languages
Japanese (ja)
Other versions
JP2001047001A (en
Inventor
松太郎 長澤
卓 井上
猛 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP22530799A priority Critical patent/JP3619069B2/en
Publication of JP2001047001A publication Critical patent/JP2001047001A/en
Application granted granted Critical
Publication of JP3619069B2 publication Critical patent/JP3619069B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
本発明は、都市ごみなどの廃棄物を焼却又は溶融することによって、排ガスとともに排出される飛灰の再資源化処理法に関するものである。
【0002】
【従来の技術】
従来、飛灰の再資源化処理法として、例えば、特開平6−170354号公報には、飛灰に鉱酸を添加して鉛以外の重金属を溶出せしめ、固液分離して鉛残渣として鉛を回収し、濾液はアルカリ剤を添加して亜鉛を主とする水酸化物として亜鉛を回収する方法が示されている。
【0003】
【発明が解決しようとする課題】
しかしながら、この方法では、排水、残渣が副生し、無害に処理してから廃棄する必要があり、また、回収物の純度および収率も低いといった問題があった。本発明は、飛灰に含まれる鉛および亜鉛を効率的に回収するとともに、鉛、亜鉛以外の有価物も高収率、高純度で回収し、廃棄物を排出しない飛灰の再資源化処理法を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
本発明は、このような課題を解決するものであって、本発明の主旨は、次の5つの工程からなることを特徴とする廃棄物の焼却施設または溶融施設から排出される飛灰の再資源化方法である。
(a)飛灰に硫酸を加えて亜鉛を抽出したのち固液分離し、得られた亜鉛抽出濾液にpH調整剤および硫化薬剤を加えて亜鉛を不溶化したのち固液分離して亜鉛不溶化残渣として亜鉛を回収する工程。
(b)上記(a)工程で得られる亜鉛不溶化濾液中の不純物を凝集沈殿、キレート樹脂および活性炭を用いて除去したのち、蒸発濃縮して固形塩として塩類を回収するとともに、蒸発水を濃縮して水を回収する工程。
(c)上記(a)工程で得られる硫酸を含む亜鉛抽出残渣にチオ硫酸アルカリ塩を加えて鉛を抽出したのち固液分離し、得られた鉛抽出濾液に硫化薬剤を加えて鉛を不溶化したのち固液分離して鉛不溶化物として鉛を回収する工程。
(d)上記(c)工程で得られる鉛不溶化濾液中の不純物を除去してチオ硫酸アルカリ液を回収する工程。
(e)上記(b)工程で得られる亜鉛不溶化濾液不純物、上記(c)工程で得られる鉛抽出残渣および上記(d)工程で得られる鉛不溶化濾液不純物の汚泥を乾燥後、溶融スラグとして回収する工程。
【0005】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明においては、まず、飛灰に硫酸を加えて亜鉛を抽出したのち固液分離し、亜鉛抽出濾液にpH調整剤および硫化薬剤を加えて亜鉛を不溶化したのち固液分離して亜鉛不溶化残渣として亜鉛を回収する((a)工程)。一方、亜鉛不溶化濾液は、凝集沈殿、キレート樹脂および活性炭を用いて不純物を除去したのち蒸発濃縮することによって塩類および凝縮水を回収する((b)工程)。
次いで、硫酸を含む亜鉛抽出残渣にチオ硫酸アルカリ塩を加えて鉛を抽出したのち固液分離し、鉛抽出濾液に硫化薬剤を加えて鉛を不溶化したのち固液分離して鉛不溶化残渣として鉛を回収する((c)工程)。一方、鉛不溶化濾液は凝集沈殿等により、不純物を除去してチオ硫酸アルカリ液を回収する((d)工程)。
さらに、鉛不溶化残渣、塩類およびチオ硫酸アルカリ液を回収する際に排出する汚泥は、乾燥した後溶融固化して溶融スラグを回収する((e)工程)。
【0006】
本発明に用いる硫酸注入量は、飛灰と硫酸の混合液pHが2以下にするのが好ましく、該混合液pHが3を超えると亜鉛の抽出性能が低下して好ましくない。
【0007】
本発明の(b)工程および(d)工程で濾液中の不純物を除去する際に用いるアルカリ性薬剤としては、カセイソーダ、カセイカリ、消石灰などのアルカリ金属水酸化物、アルカリ土類水酸化物が挙げられる。注入量は、亜鉛不溶化濾液および鉛不溶化濾液のpHが5〜12にするのが好ましい。pHが5未満および12以上の場合は、重金属類などの不純物除去率が低下して好ましくない。
【0008】
本発明に用いるpH調整剤としては、カセイソーダ、カセイカリ、消石灰などのアルカリ金属水酸化物、アルカリ土類水酸化物が挙げられる。注入量は、亜鉛抽出後の固液分離した水のpHが2〜8にするのが好ましい。pHが2未満の場合は亜鉛の不溶化性能が低下し、pHが8を越える場合はランニングコストが高くなり、いずれも好ましくない。
【0009】
本発明の(b)工程に用いる酸性薬剤としては、硫酸、塩酸などの鉱酸が挙げられる。注入量は亜鉛不溶化濾液の凝集沈殿上澄水のpHが4〜7にするのが好ましい。pHが4未満および7以上の場合は、後工程のキレート樹脂吸着性能が低下して好ましくない。
【0010】
本発明に用いる硫化薬剤としては、硫化ソーダ、水硫化ソーダ、硫化カリ、水硫化カリ、硫化カルシウムなどのアルカリ金属硫化物、アルカリ土類硫化物などが挙げられる。注入量は、飛灰中に含む亜鉛または鉛1当量に対して、硫化薬剤中の硫黄(S)1〜10当量、特に1〜3当量が好ましい。1当量未満である場合は亜鉛または鉛の不溶化性能が低下し、10当量を超える場合はランニングコストが高くなり、いずれも好ましくない。
【0011】
本発明に用いるチオ硫酸アルカリ塩としては、チオ硫酸ナトリウム、チオ硫酸カリウム、チオ硫酸リチウム、チオ硫酸アンモニウム、チオ硫酸マグネシウム、チオ硫酸カルシウムなどが挙げられる。注入量は水溶液として用い、飛灰中に含む鉛1当量に対して、チオ硫酸アルカリ塩中のチオ硫酸基(S 2−)として1〜1000当量、特に5〜200当量が好ましい。チオ硫酸アルカリ塩の添加量が1当量未満の場合は、鉛の抽出性能が低下し、1000当量を超える場合はランニングコストが高くなり、いずれも好ましくない。
本発明に用いる凝集剤としては、従来から知られている通常のもの、例えばノニオン系高分子凝集剤やアニオン系高分子凝集剤が好ましく用いられる。
【0012】
本発明における固液分離の方法としては、通常、脱水、沈殿、濾過などを行う。
【0013】
以下、図面を参考にしつつ、本発明をさらに詳細に説明する。図1は、本発明の飛灰の再資源化処理法の一例を示す概略フロー図である。
図1において、飛灰1は、亜鉛回収処理設備2で処理され[第1抽出槽3(硫酸4注入)、第1脱水機5(高分子凝集剤6注入)、第1不溶化槽7(pH調整剤8および硫化薬剤9注入)、第2脱水機10(高分子凝集剤11注入)]、亜鉛抽出残渣30と回収亜鉛12が得られる。
【0014】
亜鉛不溶化濾液13は、第1不純物除去設備14[第1凝集沈殿槽15(アルカリ性薬剤16および高分子凝集剤17注入)、第1pH調整槽18(酸性薬剤19注入)、第1濾過塔20、キレート樹脂塔21、活性炭塔22]で不純物が除去される。
【0015】
亜鉛不溶化濾液13の不純物が除去された処理水23は、塩回収処理設備24[晶析缶25、第3脱水機26]で回収塩27が得られ、脱水濾液28は晶析缶25へ返送される。また、蒸発水を冷却して得た回収凝縮水29は、冷却用水として再利用される。
【0016】
硫酸を含む亜鉛抽出残渣30は鉛回収処理設備31[第2抽出槽32(チオ硫酸アルカリ塩33注入)、第4脱水機34(高分子凝集剤35注入)、第2不溶化槽36(硫化薬剤37注入)、第5脱水機38(高分子凝集剤39注入)]で処理され、その残渣は回収鉛40となる。
【0017】
鉛不溶化濾液41は、第2不純物除去設備42[第2凝集沈殿槽43(アルカリ性薬剤44および高分子凝集剤45注入)、第2濾過塔46]で不純物が除去され、回収チオ硫酸アルカリ液47となる。
【0018】
鉛抽出残渣48、第1凝集沈殿槽の汚泥49および第2凝集沈殿槽の汚泥50は、溶融固化処理設備51[乾燥機52、溶融炉53、冷却水槽54]で溶融固化され回収溶融スラグ55となる。
【0019】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0020】
実施例1
廃棄物焼却施設より排出されたPb1.26%、Zn4.55%、Cu0.26%、およびKCl、NaCl、CaClなどの可溶性塩類23.7%を含む飛灰1を10kg、亜鉛回収処理設備2の第1抽出槽3でpHが0.5になるまで5%硫酸100Lを注入して亜鉛を抽出したのち、そのスラリーに0.1%ノニオン系高分子凝集剤6を1L注入して懸濁粒子を凝集させ、第1脱水機5で固液分離して、その脱水濾液は第1不溶化槽7でpHが2.0になるまでpH調整剤8として22%カセイソーダを注入してpH調整し、硫化薬剤9として20%水硫化ソーダ5.1L(3当量)を注入して亜鉛を不溶化したのち、そのスラリーに0.1%ノニオン系高分子凝集剤11を0.15L注入して亜鉛不溶化粒子を凝集させ、第2脱水機10で水洗浄しながら固液分離して、その残渣は回収亜鉛12となる。
【0021】
一方、亜鉛不溶化濾液13は、第1不純物除去処理設備14の第1凝集沈殿槽15でpHが10になるまでアルカリ性薬剤16として22%カセイソーダを注入してpH調整し、そのスラリーに0.1%アニオン系高分子凝集剤17を0.65L注入して懸濁粒子を凝集沈殿させる。その上澄水はpH調整槽18でpHが6になるまで酸性薬剤19として10%塩酸を注入してpH調整し、砂を充填した第1濾過塔20に線速度LV=5m/hで通液して懸濁物を完全に除去したのち、アミノカルボン酸型キレート樹脂を充填したキレート樹脂塔21に空間速度SV=5h−1で通液して残存した重金属を完全に除去し、さらにヤシガラ系活性炭を充填した活性炭塔22に線速度LV=5m/hで通液して脱色する。
【0022】
活性炭処理水23は、塩回収処理設備24の晶析缶25で蒸発濃縮し、第3脱水機26で固液分離して、その残渣は回収塩27となり、脱水濾液28は晶析缶へ返送する。また蒸発水を冷却して得た回収凝縮水29は、冷却用水として再利用する。
【0023】
硫酸を含む亜鉛抽出残渣30は、鉛回収処理設備31の第2抽出槽32でチオ硫酸アルカリ塩33として7%チオ硫酸ナトリウム50L(36.5当量)を注入して鉛を抽出したのち、そのスラリーに0.1%アニオン系高分子凝集剤35を0.8L注入して懸濁粒子を凝集させて第4脱水機34で固液分離して、その脱水濾液は第2不溶化槽36で硫化薬剤37として20%水硫化ソーダ450mL(3当量)を注入して鉛を不溶化したのち、そのスラリーに0.1%アニオン系高分子凝集剤39を0.1L注入して鉛不溶化粒子を凝集させて第5脱水機38で水洗浄しながら固液分離して、その残渣は回収鉛40となる。
【0024】
鉛不溶化濾液41は、第2不純物除去処理設備42の第2凝集沈殿槽43でpHが7になるまでアルカリ性薬剤44として22%カセイソーダを注入してpH調整し、そのスラリーに0.1%アニオン系高分子凝集剤45を0.5L注入して懸濁粒子を凝集沈殿させる。その上澄水は砂を充填した第2濾過塔46に線速度LV=5m/hで通液して懸濁物を完全に除去し、回収チオ硫酸ナトリウム液47として再利用する。
【0025】
鉛抽出残渣48、第1凝集沈殿槽の汚泥49、第2凝集沈殿槽の汚泥50は、溶融固化処理設備51の乾燥機52で水分率20%まで乾燥したのち、溶融炉53で温度1400℃にて溶融し、冷却水槽54で水砕して回収スラグ55となる。
【0026】
このようにして得られた回収亜鉛、回収塩、回収凝縮水、回収鉛、回収チオ硫酸ナトリウム液、回収スラグの組成分析結果および回収率を表1に示す。
【0027】
【表1】

Figure 0003619069
【0028】
この結果より、回収亜鉛は乾量として0.71kgを得てその純度は57.88%および収率は90.7%、回収塩は乾量として2.46kgを得てその純度は98.4%および収率は102%、回収凝縮水は42.7kgを得、回収鉛は乾量として0.19kgを得てその純度は62.75%および収率は94.4%、チオ硫酸ナトリウム液は10.2kgを得、回収スラグは6.16kgを得て環境庁告示第46号法による溶出試験値がPb0.01mg/L以下、Cd0.005mg/L以下であった。
【0029】
このように、焼却飛灰中に含有していた亜鉛および鉛は高純度、高収率で回収でき、さらに塩類、チオ硫酸ナトリウム液、溶融スラグも高純度、高収率で回収でき、環境汚染もない。
【0030】
【発明の効果】
以上のように、本発明によれば、飛灰に硫酸を加えて亜鉛を抽出したのち固液分離し、亜鉛抽出濾液にpH調整剤と硫化薬剤を加えて亜鉛を不溶化したのち固液分離して、亜鉛不溶化残渣から亜鉛が回収でき、亜鉛不溶化濾液は、凝集沈殿、キレート樹脂および活性炭を用いて不純物除去したのち塩類と凝縮水が回収できる。
【0031】
また、硫酸を含む亜鉛抽出残渣は、チオ硫酸アルカリ塩を加えて鉛を抽出した後固液分離し、鉛抽出濾液に硫化薬剤を加えて鉛を不溶化したのち固液分離して鉛不溶化残渣から鉛が回収でき、鉛不溶化濾液は、不純物除去したのちチオ硫酸アルカリ液が回収できる。
【0032】
さらに、鉛抽出残渣および各不純物除去時の汚泥は、乾燥したのち溶融固化して溶融スラグが回収できる。
これら回収された亜鉛と鉛は製錬原料に、塩類は化学工業原料に、凝縮水は工程内の冷却用水に、チオ硫酸アルカリ液はチオ硫酸アルカリ塩の希釈液に、溶融スラグは路盤材等に、それぞれ再利用できる。なお、溶融スラグは重金属類が溶出しないなど環境汚染の心配がない。すなわち、廃棄物ゼロの資源循環型飛灰再資源化処理を可能とする方法である。
【図面の簡単な説明】
【図1】本発明の飛灰の再資源化処理方法の一例を示す概略フロー図である。
【符号の説明】
1 飛灰
2 亜鉛回収処理設備
3 第1抽出槽
4 硫酸
5 第1脱水機
6 高分子凝集剤
7 第1不溶化槽
8 pH調整剤
9 硫化薬剤
10 第2脱水機
11 高分子凝集剤
12 回収亜鉛
13 亜鉛不溶化濾液
14 第1不純物除去処理設備
15 第1凝集沈殿槽
16 アルカリ性薬剤
17 高分子凝集剤
18 第1pH調整槽
19 酸性薬剤
20 第1濾過塔
21 キレート樹脂塔
22 活性炭塔
23 処理水
24 塩回収処理設備
25 晶析缶
26 第3脱水機
27 回収塩
28 脱水濾液
29 回収凝縮水
30 亜鉛抽出残渣
31 鉛回収処理設備
32 第2抽出槽
33 チオ硫酸アルカリ塩
34 第4脱水機
35 高分子凝集剤
36 第2不溶化槽
37 硫化薬剤
38 第5脱水機
39 高分子凝集剤
40 回収鉛
41 鉛不溶化濾液
42 第2不純物除去処理設備
43 第2凝集沈殿槽
44 アルカリ性薬剤
45 高分子凝集剤
46 第2濾過塔
47 回収チオ硫酸アルカリ液
48 鉛抽出残渣
49 第1凝集沈殿槽の汚泥
50 第2凝集沈殿槽の汚泥
51 溶融固化処理設備
52 乾燥機
53 溶融炉
54 冷却水槽
55 回収溶融スラグ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for recycling fly ash discharged together with exhaust gas by incinerating or melting waste such as municipal waste.
[0002]
[Prior art]
Conventionally, as a method for recycling fly ash, for example, in JP-A-6-170354, a mineral acid is added to fly ash to elute heavy metals other than lead, followed by solid-liquid separation and lead as a lead residue. A method is shown in which zinc is recovered as a hydroxide mainly composed of zinc by adding an alkali agent to the filtrate.
[0003]
[Problems to be solved by the invention]
However, this method has a problem in that wastewater and residue are by-produced and need to be disposed of after being treated harmlessly, and the purity and yield of the recovered product are low. The present invention efficiently recovers lead and zinc contained in fly ash, recovers valuable materials other than lead and zinc in high yield and high purity, and recycles fly ash without discharging waste It is intended to provide a law.
[0004]
[Means for Solving the Problems]
The present invention solves such problems, and the gist of the present invention is to recycle fly ash discharged from a waste incineration facility or melting facility characterized by the following five steps. This is a resource recycling method.
(A) Add sulfuric acid to fly ash to extract zinc and then separate into solid and liquid, add pH adjuster and sulfurizing agent to the obtained zinc extract filtrate to insolubilize zinc, then separate into solid and liquid to obtain zinc insolubilized residue The process of recovering zinc.
(B) After removing impurities in the zinc insolubilized filtrate obtained in the step (a) using coagulation precipitation, chelating resin and activated carbon , the solution is evaporated and concentrated to recover the salt as a solid salt, and the evaporated water is concentrated. Recovering water.
(C) Extracting lead by adding alkali thiosulfate to the zinc extraction residue containing sulfuric acid obtained in step (a) above, followed by solid-liquid separation, and adding lead sulfide filtrate to insolubilize lead Then, the process of solid-liquid separation and recovery of lead as lead insolubilized material.
(D) A step of removing the impurities in the lead-insolubilized filtrate obtained in the step (c) to recover an alkali thiosulfate solution.
(E) The zinc insolubilized filtrate impurities obtained in the step (b), the lead extraction residue obtained in the step (c) and the sludge of the lead insolubilized filtrate impurities obtained in the step (d) are recovered as molten slag after drying. Process.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In the present invention, first, sulfuric acid is added to fly ash to extract zinc, followed by solid-liquid separation, a pH adjuster and a sulfurizing agent are added to the zinc extraction filtrate to insolubilize zinc, and then solid-liquid separation is performed to obtain a zinc insolubilized residue. To recover zinc (step (a)). On the other hand, the zinc insolubilized filtrate recovers salts and condensed water by evaporating and concentrating after removing impurities using coagulation precipitation, chelating resin and activated carbon (step (b)).
Then, lead thiosulfate is added to the zinc extraction residue containing sulfuric acid, lead is extracted and then separated into solid and liquid, and then the lead extraction filtrate is added with a sulfurizing agent to insolubilize lead and then separated into solid and liquid to lead as a lead insolubilized residue. Is recovered (step (c)). On the other hand, the lead-insolubilized filtrate removes impurities by agglomeration precipitation or the like and collects the alkali thiosulfate solution (step (d)).
Furthermore, the sludge discharged when collecting the lead-insolubilized residue, salts, and alkali thiosulfate solution is dried and then melted and solidified to recover molten slag (step (e)).
[0006]
The sulfuric acid injection amount used in the present invention is preferably such that the mixed solution pH of fly ash and sulfuric acid is 2 or less, and if the mixed solution pH exceeds 3, the extraction performance of zinc is lowered, which is not preferable.
[0007]
Examples of the alkaline agent used when removing impurities in the filtrate in the steps (b) and (d) of the present invention include alkali metal hydroxides such as caustic soda, caustic potash, slaked lime, and alkaline earth hydroxides. . The amount of injection is preferably such that the pH of the zinc insolubilized filtrate and lead insolubilized filtrate is 5-12. When the pH is less than 5 or 12 or more, the removal rate of impurities such as heavy metals decreases, which is not preferable.
[0008]
Examples of the pH adjusting agent used in the present invention include alkali metal hydroxides such as caustic soda, caustic potash and slaked lime, and alkaline earth hydroxides. The injection amount is preferably set to a pH of 2 to 8 for the solid-liquid separated water after zinc extraction. When the pH is less than 2, the insolubilization performance of zinc is lowered, and when the pH exceeds 8, the running cost is increased, which is not preferable.
[0009]
Examples of the acidic agent used in the step (b) of the present invention include mineral acids such as sulfuric acid and hydrochloric acid. The injection amount is preferably 4 to 7 so that the pH of the coagulated sediment supernatant of the zinc insolubilized filtrate is 4-7. When the pH is less than 4 or 7 or more, the chelate resin adsorption performance in the subsequent step is lowered, which is not preferable.
[0010]
Examples of the sulfurizing agent used in the present invention include sodium sulfide, sodium hydrosulfide, potassium sulfide, potassium hydrosulfide, calcium sulfide, and other alkali metal sulfides, alkaline earth sulfides, and the like. The amount of injection is preferably 1 to 10 equivalents, particularly 1 to 3 equivalents of sulfur (S) in the sulfurized chemical with respect to 1 equivalent of zinc or lead contained in the fly ash. When the amount is less than 1 equivalent, the insolubilization performance of zinc or lead is lowered, and when it exceeds 10 equivalents, the running cost is increased.
[0011]
Examples of the alkali thiosulfate used in the present invention include sodium thiosulfate, potassium thiosulfate, lithium thiosulfate, ammonium thiosulfate, magnesium thiosulfate, and calcium thiosulfate. The injection amount is used as an aqueous solution, and preferably 1 to 1000 equivalents, particularly 5 to 200 equivalents, as the thiosulfate group (S 2 O 3 2− ) in the alkali thiosulfate salt with respect to 1 equivalent of lead contained in the fly ash. When the amount of alkali thiosulfate added is less than 1 equivalent, the lead extraction performance is reduced, and when it exceeds 1000 equivalents, the running cost increases, which is not preferable.
As the flocculant used in the present invention, a conventionally known ordinary one, for example, a nonionic polymer flocculant or an anionic polymer flocculant is preferably used.
[0012]
As the solid-liquid separation method in the present invention, dehydration, precipitation, filtration and the like are usually performed.
[0013]
Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 is a schematic flow diagram showing an example of the fly ash recycling method of the present invention.
In FIG. 1, fly ash 1 is processed by a zinc recovery treatment facility 2 [first extraction tank 3 (sulfuric acid 4 injection), first dehydrator 5 (polymer flocculant 6 injection), and first insolubilization tank 7 (pH Conditioner 8 and sulfurizing agent 9 injection), second dehydrator 10 (polymer flocculant 11 injection)], zinc extraction residue 30 and recovered zinc 12 are obtained.
[0014]
The zinc insolubilized filtrate 13 includes a first impurity removal facility 14 [first coagulation sedimentation tank 15 (injection of alkaline agent 16 and polymer coagulant 17), first pH adjustment tank 18 (injection of acidic agent 19), first filtration tower 20, Impurities are removed by the chelate resin tower 21 and the activated carbon tower 22].
[0015]
The treated water 23 from which the impurities of the zinc insolubilized filtrate 13 have been removed has recovered salt 27 obtained by the salt recovery treatment facility 24 [crystallization can 25, third dehydrator 26], and the dehydrated filtrate 28 is returned to the crystallization can 25. Is done. The recovered condensed water 29 obtained by cooling the evaporated water is reused as cooling water.
[0016]
The zinc extraction residue 30 containing sulfuric acid is separated into lead recovery treatment equipment 31 [second extraction tank 32 (injected alkali thiosulfate 33), fourth dehydrator 34 (injection of polymer flocculant 35), and second insolubilization tank 36 (sulfurizing agent). 37), a fifth dehydrator 38 (polymer flocculant 39 injection)], and the residue becomes recovered lead 40.
[0017]
In the lead insolubilized filtrate 41, impurities are removed by the second impurity removal equipment 42 [second coagulation sedimentation tank 43 (injection of alkaline agent 44 and polymer coagulant 45), second filtration tower 46], and recovered alkali thiosulfate 47 It becomes.
[0018]
The lead extraction residue 48, the sludge 49 of the first coagulation sedimentation tank, and the sludge 50 of the second coagulation sedimentation tank are melted and solidified by the melt solidification processing equipment 51 [dryer 52, melting furnace 53, cooling water tank 54] and recovered molten slag 55. It becomes.
[0019]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.
[0020]
Example 1
10 kg of fly ash 1 containing 1.26% Pb, 4.55% Zn, 0.26% Cu, and 23.7% soluble salts such as KCl, NaCl, CaCl 2 discharged from the waste incineration facility, zinc recovery treatment facility In the first extraction tank 2, 100 L of 5% sulfuric acid was injected until the pH reached 0.5 to extract zinc, and then 1 L of 0.1% nonionic polymer flocculant 6 was injected into the slurry. The turbid particles are agglomerated and separated into solid and liquid by the first dehydrator 5, and the dehydrated filtrate is adjusted to pH by injecting 22% caustic soda as a pH adjuster 8 until the pH becomes 2.0 in the first insolubilization tank 7. Then, 5.1 L (3 equivalents) of 20% sodium hydrosulfide was injected as the sulfide chemical 9 to insolubilize zinc, and then 0.15 L of 0.1% nonionic polymer flocculant 11 was injected into the slurry. Agglomerate insolubilized particles and second dehydration Solid-liquid separation is performed while washing with water in the machine 10, and the residue becomes recovered zinc 12.
[0021]
On the other hand, the zinc insolubilized filtrate 13 is adjusted to pH by injecting 22% caustic soda as an alkaline agent 16 in the first coagulation sedimentation tank 15 of the first impurity removal treatment equipment 14 until the pH becomes 10, and 0.1% is added to the slurry. 0.65 L of% anionic polymer flocculant 17 is injected to agglomerate and precipitate suspended particles. The supernatant water is pH adjusted by injecting 10% hydrochloric acid as an acidic agent 19 in the pH adjusting tank 18 until the pH reaches 6, and is passed through the first filtration tower 20 filled with sand at a linear velocity LV = 5 m / h. After the suspension is completely removed, the remaining heavy metal is completely removed by passing the solution through the chelate resin tower 21 filled with the aminocarboxylic acid type chelate resin at a space velocity SV = 5 h −1. The activated carbon tower 22 filled with activated carbon is passed through the activated carbon tower 22 at a linear velocity LV = 5 m / h for decolorization.
[0022]
The activated carbon-treated water 23 is evaporated and concentrated in a crystallization can 25 of a salt recovery treatment facility 24, and is solid-liquid separated by a third dehydrator 26. The residue becomes recovered salt 27, and the dehydrated filtrate 28 is returned to the crystallization can. To do. The recovered condensed water 29 obtained by cooling the evaporated water is reused as cooling water.
[0023]
The zinc extraction residue 30 containing sulfuric acid was extracted by injecting 50 L (36.5 equivalents) of 7% sodium thiosulfate as the alkali thiosulfate salt 33 in the second extraction tank 32 of the lead recovery treatment facility 31 and then extracting the lead. 0.8 L of 0.1% anionic polymer flocculant 35 is injected into the slurry to agglomerate the suspended particles, and solid-liquid separation is performed by the fourth dehydrator 34. The dehydrated filtrate is sulfided by the second insolubilization tank 36. After injecting 450 mL (3 equivalents) of 20% sodium hydrosulfide as the drug 37 to insolubilize lead, 0.1 L of 0.1% anionic polymer flocculant 39 is injected into the slurry to agglomerate lead insolubilized particles. The fifth dehydrator 38 performs solid-liquid separation while washing with water, and the residue becomes recovered lead 40.
[0024]
The lead insolubilized filtrate 41 was adjusted to pH by injecting 22% caustic soda as an alkaline agent 44 in the second coagulation sedimentation tank 43 of the second impurity removal treatment equipment 42 until the pH reached 7, and 0.1% anion was added to the slurry. 0.5 L of the polymer flocculant 45 is injected to agglomerate and precipitate the suspended particles. The supernatant water is passed through a second filtration tower 46 filled with sand at a linear velocity LV = 5 m / h to completely remove the suspension, and is reused as a recovered sodium thiosulfate solution 47.
[0025]
The lead extraction residue 48, the sludge 49 in the first coagulation sedimentation tank, and the sludge 50 in the second coagulation sedimentation tank are dried to a moisture content of 20% by the dryer 52 of the melt solidification processing equipment 51, and then the temperature is 1400 ° C. in the melting furnace 53. And is crushed in a cooling water tank 54 to form a recovered slag 55.
[0026]
Table 1 shows the composition analysis results and the recovery rates of the recovered zinc, recovered salt, recovered condensed water, recovered lead, recovered sodium thiosulfate solution, and recovered slag thus obtained.
[0027]
[Table 1]
Figure 0003619069
[0028]
As a result, the recovered zinc obtained 0.71 kg as a dry amount with a purity of 57.88% and a yield of 90.7%, and the recovered salt obtained a dry amount of 2.46 kg with a purity of 98.4. % And yield is 102%, recovered condensed water is 42.7 kg, recovered lead is 0.19 kg as dry weight, its purity is 62.75%, yield is 94.4%, sodium thiosulfate solution Was 10.2 kg, the recovered slag was 6.16 kg, and the dissolution test values by the Environmental Agency Notification No. 46 method were Pb 0.01 mg / L or less and Cd 0.005 mg / L or less.
[0029]
In this way, zinc and lead contained in incineration fly ash can be recovered with high purity and high yield, and salts, sodium thiosulfate solution and molten slag can also be recovered with high purity and high yield, and environmental pollution Nor.
[0030]
【The invention's effect】
As described above, according to the present invention, sulfuric acid is added to fly ash to extract zinc, followed by solid-liquid separation, and then a pH adjusting agent and a sulfurizing agent are added to the zinc extraction filtrate to insolubilize zinc , followed by solid-liquid separation. Thus, zinc can be recovered from the zinc insolubilized residue, and the zinc insolubilized filtrate can recover salts and condensed water after removing impurities using coagulation precipitation, chelating resin and activated carbon .
[0031]
In addition, zinc extraction residue containing sulfuric acid is extracted from lead by adding alkali thiosulfate and then separated into solid and liquid, then sulfurized chemicals are added to the lead extraction filtrate to insolubilize lead, and then solid and liquid are separated from the lead insolubilized residue. Lead can be recovered, and the lead insolubilized filtrate can recover the alkali thiosulfate solution after removing impurities.
[0032]
Furthermore, the lead extraction residue and sludge at the time of removal of each impurity can be dried and then melted and solidified to recover molten slag.
These recovered zinc and lead are used as smelting raw materials, salts are used as chemical industrial raw materials, condensed water is used as cooling water in the process, alkali thiosulfate is used as a diluted solution of alkali thiosulfate, molten slag is used as roadbed materials, etc. Each can be reused. Note that the molten slag does not cause environmental pollution such as heavy metals do not elute. In other words, this is a method that enables resource-recycling fly ash recycling with zero waste.
[Brief description of the drawings]
FIG. 1 is a schematic flowchart showing an example of a method for recycling fly ash according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fly ash 2 Zinc recovery processing equipment 3 1st extraction tank 4 Sulfuric acid 5 1st dehydrator 6 Polymer flocculant 7 1st insolubilizer 8 pH adjuster 9 Sulfide chemical | medical agent 10 2nd dehydrator 11 Polymer flocculant 12 Collected zinc 13 Zinc insolubilized filtrate 14 First impurity removal treatment facility 15 First coagulation sedimentation tank 16 Alkaline chemical 17 Polymer coagulant 18 First pH adjustment tank 19 Acidic chemical 20 First filtration tower 21 Chelate resin tower 22 Activated carbon tower 23 Treated water 24 Salt Recovery treatment facility 25 Crystallization can 26 Third dehydrator 27 Recovered salt 28 Dehydrated filtrate 29 Recovered condensed water 30 Zinc extraction residue 31 Lead recovery treatment facility 32 Second extraction tank 33 Alkali thiosulfate 34 Fourth dehydrator 35 Polymer aggregation Agent 36 Second Insolubilization Tank 37 Sulfide Agent 38 Fifth Dehydrator 39 Polymer Coagulant 40 Recovered Lead 41 Lead Insolubilized Filtrate 42 Second Impurity Removal Treatment Equipment 43 Second Coagulation Precipitation Tank 44 Lucariic agent 45 Polymer flocculant 46 Second filtration tower 47 Recovery alkali thiosulfate 48 Lead extraction residue 49 Sludge in first coagulation sedimentation tank 50 Sludge in second coagulation sedimentation tank 51 Melting and solidification treatment equipment 52 Dryer 53 Melting furnace 54 Cooling water tank 55 Recovery molten slag

Claims (1)

次の5つの工程からなることを特徴とする廃棄物の焼却施設または溶融施設から排出される飛灰の再資源化処理法。
(a)飛灰に硫酸を加えて亜鉛を抽出したのち固液分離し、得られた亜鉛抽出濾液にpH調整剤および硫化薬剤を加えて亜鉛を不溶化したのち固液分離して亜鉛不溶化残渣として亜鉛を回収する工程。
(b)上記(a)工程で得られる亜鉛不溶化濾液中の不純物を凝集沈殿、キレート樹脂および活性炭を用いて除去したのち、蒸発濃縮して固形塩として塩類を回収するとともに、蒸発水を濃縮して水を回収する工程。
(c)上記(a)工程で得られる硫酸を含む亜鉛抽出残渣にチオ硫酸アルカリ塩を加えて鉛を抽出したのち固液分離し、得られた鉛抽出濾液に硫化薬剤を加えて鉛を不溶化したのち固液分離して鉛不溶化物として鉛を回収する工程。
(d)上記(c)工程で得られる鉛不溶化濾液中の不純物を除去してチオ硫酸アルカリ液を回収する工程。
(e)上記(b)工程で得られる亜鉛不溶化濾液不純物、上記(c)工程で得られる鉛抽出残渣および上記(d)工程で得られる鉛不溶化濾液不純物の汚泥を乾燥後、溶融スラグとして回収する工程。
A recycling method for fly ash discharged from a waste incineration facility or melting facility characterized by the following five steps.
(A) Add sulfuric acid to fly ash to extract zinc and then separate into solid and liquid, add pH adjuster and sulfurizing agent to the obtained zinc extract filtrate to insolubilize zinc, then separate into solid and liquid to obtain zinc insolubilized residue The process of recovering zinc.
(B) After removing impurities in the zinc insolubilized filtrate obtained in the step (a) using coagulation precipitation, chelating resin and activated carbon , the solution is evaporated and concentrated to recover the salt as a solid salt, and the evaporated water is concentrated. Recovering water.
(C) Extracting lead by adding alkali thiosulfate to the zinc extraction residue containing sulfuric acid obtained in step (a) above, followed by solid-liquid separation, and adding lead sulfide filtrate to insolubilize lead Then, the process of solid-liquid separation and recovery of lead as lead insolubilized material.
(D) A step of removing the impurities in the lead-insolubilized filtrate obtained in the step (c) to recover an alkali thiosulfate solution.
(E) The zinc insolubilized filtrate impurities obtained in the step (b), the lead extraction residue obtained in the step (c) and the sludge of the lead insolubilized filtrate impurities obtained in the step (d) are recovered as molten slag after drying. Process.
JP22530799A 1999-08-09 1999-08-09 Fly ash recycling process Expired - Lifetime JP3619069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22530799A JP3619069B2 (en) 1999-08-09 1999-08-09 Fly ash recycling process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22530799A JP3619069B2 (en) 1999-08-09 1999-08-09 Fly ash recycling process

Publications (2)

Publication Number Publication Date
JP2001047001A JP2001047001A (en) 2001-02-20
JP3619069B2 true JP3619069B2 (en) 2005-02-09

Family

ID=16827307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22530799A Expired - Lifetime JP3619069B2 (en) 1999-08-09 1999-08-09 Fly ash recycling process

Country Status (1)

Country Link
JP (1) JP3619069B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049360A (en) * 1999-08-12 2001-02-20 Unitika Ltd Process for recovering lead in fly ash
US7059046B2 (en) * 2002-06-24 2006-06-13 Delaware Capital Formation, Inc. Method for producing a captive wired test fixture and fixture therefor
KR101464182B1 (en) * 2012-11-23 2014-12-04 문상우 method for producing aqueous mixed mineral and metallic lead from wastes containing iron, zinc, manganese, magnesium, calcium and cobalt
CN111876610B (en) * 2020-08-05 2022-07-19 浙江巨江电源制造有限公司 Lead slag reducing agent and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10109077A (en) * 1996-10-03 1998-04-28 Nkk Corp Method for recovering heavy metal from molten fry ash
JPH10192820A (en) * 1997-01-13 1998-07-28 Ebara Corp Treatment of ash in waste disposal by gasification fusion
JPH10204552A (en) * 1997-01-13 1998-08-04 Unitika Ltd Method for recovering lead in flying ash
JP3532741B2 (en) * 1997-08-28 2004-05-31 ユニチカ株式会社 Heavy metal recovery method in fly ash
JPH11199227A (en) * 1998-01-16 1999-07-27 Toshiba Plant Kensetsu Co Ltd Method for recovering chemical raw material from fly ash

Also Published As

Publication number Publication date
JP2001047001A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
KR101291831B1 (en) Method and equipment for the disposal of chlorine-containing waste
US4031184A (en) Process for reclaiming cement kiln dust and recovering chemical values therefrom
CN108220626B (en) Reduction smelting treatment method for arsenic alkali slag
JP2792444B2 (en) Recovery method of heavy metals from fly ash
JP4017456B2 (en) Method for recovering chloride from aqueous solution
JP3625270B2 (en) Waste disposal method
JP3737459B2 (en) Waste recycling method
JP3306471B2 (en) Treatment method of exhaust gas from cement kiln
JP3619069B2 (en) Fly ash recycling process
JPH08323321A (en) Treatment of fly ash
JP4465496B2 (en) Fly ash treatment method
RU2363654C2 (en) Method for elemental sulphur recovery from waste of hydrometallurgical processes
JPH09187752A (en) Method for treating waste incineration ash and molten fly ash
JP2003236497A (en) Waste treatment method
JP2000119761A (en) Recycling method of fly ash
JP2003138321A (en) Method for recovering valuable material from fused fly ash
JP3766908B2 (en) Waste disposal method
JP4044068B2 (en) Method for treating substances containing heavy metals
RU2351665C2 (en) Method of phosphorus recovery
JP3794260B2 (en) Waste disposal method
JP2005068535A (en) Method of treating gas or flying ash containing lead and zinc
JP2002167218A (en) Refining method for alkaline metal chloride and manufacturing method for alkaline metal hydroxide
US4704260A (en) Lead removal method
JP2001049360A (en) Process for recovering lead in fly ash
JPH10204552A (en) Method for recovering lead in flying ash

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041111

R150 Certificate of patent or registration of utility model

Ref document number: 3619069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term