JP4044068B2 - Method for treating substances containing heavy metals - Google Patents

Method for treating substances containing heavy metals Download PDF

Info

Publication number
JP4044068B2
JP4044068B2 JP2004123056A JP2004123056A JP4044068B2 JP 4044068 B2 JP4044068 B2 JP 4044068B2 JP 2004123056 A JP2004123056 A JP 2004123056A JP 2004123056 A JP2004123056 A JP 2004123056A JP 4044068 B2 JP4044068 B2 JP 4044068B2
Authority
JP
Japan
Prior art keywords
slurry
solid
alkaline
aqueous solution
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004123056A
Other languages
Japanese (ja)
Other versions
JP2005305244A (en
Inventor
規允 西島
剛章 大神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2004123056A priority Critical patent/JP4044068B2/en
Publication of JP2005305244A publication Critical patent/JP2005305244A/en
Application granted granted Critical
Publication of JP4044068B2 publication Critical patent/JP4044068B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、ゴミ焼却設備等で発生する飛灰の如き亜鉛等の重金属類を含有する物質から、亜鉛等の重金属類を除去するための処理方法に関する。   The present invention relates to a treatment method for removing heavy metals such as zinc from a substance containing heavy metals such as zinc such as fly ash generated in garbage incineration facilities.

ゴミ焼却設備で発生する飛灰等の焼却生成物は、ナトリウム、カリウム、塩素分等の水溶性成分の他、亜鉛、鉛等の有害な重金属類を含むため、埋め立て処分等の前にこれら重金属類の溶出を防止する処理や無害化処理を行っている。
飛灰等の焼却生成物を無害化処理する方法の一例として、飛灰等の焼却生成物を水洗処理して、ナトリウム、カリウム、塩素分等の水溶性成分を除去した後、無機酸やアルカリ化剤等の薬剤を用いて重金属類を溶出させ、これら溶出した重金属類を種々の薬剤で固形物化する方法が知られている。
Incineration products such as fly ash generated in garbage incineration facilities contain harmful heavy metals such as zinc and lead in addition to water-soluble components such as sodium, potassium and chlorine. The treatment to prevent the elution of the species and the detoxification treatment.
As an example of a method for detoxifying incineration products such as fly ash, incineration products such as fly ash are washed with water to remove water-soluble components such as sodium, potassium and chlorine, and then inorganic acids and alkalis. There is known a method of eluting heavy metals using a chemical such as an agent and solidifying the eluted heavy metals with various chemicals.

例えば、ゴミ焼却設備から排出される煤塵等の廃棄物に対し、水洗処理して塩素分等を洗浄水中に溶出させた後、固液分離して、固形分である脱塩ケーキを得る工程(水洗工程)と、得られた脱塩ケーキに硫酸を加えて、液中に銅分および亜鉛分を含む酸浸出スラリーを得た後、この酸浸出スラリーを固液分離して、固形分と液分を得る工程(酸浸出工程)と、この酸浸出スラリーの液分に亜鉛粉末を添加して、亜鉛よりもイオン化傾向の小さな銅を析出させ、固液分離した後、得られた濾液に硫化剤を加えて硫化亜鉛を生成させ、更にこの濾液に後述の鉛回収工程で得られる強アルカリ液(pH13前後)を添加してpH8以上に調整し、硫化亜鉛および水酸化亜鉛を含む沈澱物を得る工程(銅および亜鉛回収工程)と、前記酸浸出スラリーの固形分に苛性ソーダ等を加えてスラリー化し、鉛分を液中に溶出させた後、固液分離して、水酸化カルシウムを主体とする固形分と、鉛分を含む濾液を得る工程(アルカリ浸出工程)と、この鉛分を含む濾液に硫化剤を加えた後、固液分離して、固形分である硫化鉛と、濾液である強アルカリ液(pH13前後)を得る工程(鉛回収工程)とを含む廃棄物の処理方法が提案されている(特許文献1)。
特開2002−126693号公報
For example, a process of obtaining a desalted cake that is a solid content by separating the solid waste into waste water such as dust discharged from a garbage incineration facility by rinsing with water and eluting chlorine into the wash water ( In the water washing step), sulfuric acid is added to the obtained desalted cake to obtain an acid leaching slurry containing copper and zinc in the liquid, and then the acid leaching slurry is subjected to solid-liquid separation. After adding the zinc powder to the liquid of the acid leaching slurry and precipitating copper with a smaller ionization tendency than zinc, solid-liquid separation is performed, and then the resulting filtrate is sulfided. A zinc sulfide is formed by adding an agent, and a strong alkaline solution (around pH 13) obtained in the lead recovery step described later is added to the filtrate to adjust the pH to 8 or more, and a precipitate containing zinc sulfide and zinc hydroxide is added. Obtaining step (copper and zinc recovery step) and said acid leaching slurry A step of adding a caustic soda or the like to the solid content of the slurry to elute the lead content into the liquid, followed by solid-liquid separation to obtain a solid content mainly composed of calcium hydroxide and a filtrate containing the lead content (alkali A leaching step), and a step of adding a sulfiding agent to the filtrate containing this lead content, followed by solid-liquid separation to obtain lead sulfide as a solid content and a strong alkaline solution (around pH 13) as a filtrate (lead recovery step) ) Has been proposed (Patent Document 1).
Japanese Patent Laid-Open No. 2002-126693

特許文献1に記載された技術では、銅および亜鉛回収工程において、銅を除去した後の濾液に、水硫化ソーダ等の硫化剤を加えて硫化亜鉛を生成させ、更にこの濾液に、鉛回収工程で得られた強アルカリ液(pH13前後)を添加してpH8以上に調整し、硫化亜鉛および水酸化亜鉛を含む沈澱物を得ている。
ここで、硫化亜鉛を生成させる理由は、水酸化亜鉛のみからなる沈澱物の固液分離性(濾過性)が劣ることから、硫化亜鉛を共存させて固液分離性を高めるためである。
In the technique described in Patent Document 1, in the copper and zinc recovery step, a sulfide such as sodium hydrosulfide is added to the filtrate after removing copper to generate zinc sulfide, and the lead recovery step is further performed in this filtrate. The strong alkaline solution (about pH 13) obtained in (1) was added to adjust the pH to 8 or more to obtain a precipitate containing zinc sulfide and zinc hydroxide.
Here, the reason why zinc sulfide is generated is that the solid-liquid separability (filterability) of the precipitate consisting only of zinc hydroxide is inferior, so that zinc sulfide coexists to improve the solid-liquid separability.

しかし、このように2種の亜鉛化合物を生成させることは、処理工程の複雑化等を招くことになる。また、固液分離に要する時間の短縮化を図るために硫化亜鉛の割合を増大させると、硫化亜鉛の粒度が極めて小さいことから、固形分として回収されずに液分中に残る硫化亜鉛の量が増大し、亜鉛化合物の回収率が低下する。また、硫化亜鉛を共存させたとしても、水分含有率の大きなゲル状の水酸化亜鉛の性状自体が改善されるわけではないので、固液分離性の向上にも限度がある。さらに、ゲル状の水酸化亜鉛に含まれる水分量が大きいことから、このゲル状の水酸化亜鉛を山元還元の工場に運搬する際の輸送上の負荷が大きいという問題がある。
そこで、本発明は、亜鉛等を含む重金属類を含有する飛灰等の物質から、亜鉛等を固形分として回収するに際して、良好な固液分離性を発揮しつつ亜鉛等を含む固形分を得ることができるとともに、この亜鉛等を含む固形分中の水分含有率を大幅に減少させることのできる処理方法を提供することを目的とする。
However, the generation of two kinds of zinc compounds in this way leads to complicated processing steps and the like. In addition, if the proportion of zinc sulfide is increased in order to shorten the time required for solid-liquid separation, the particle size of zinc sulfide is extremely small. Increases and the recovery rate of the zinc compound decreases. Further, even if zinc sulfide is present together, the property itself of the gel-like zinc hydroxide having a large water content is not improved, so there is a limit to the improvement of the solid-liquid separation property. Furthermore, since the amount of water contained in the gel-like zinc hydroxide is large, there is a problem that the load on transportation when the gel-like zinc hydroxide is transported to the Yamamoto reduction factory is large.
Therefore, the present invention obtains a solid content containing zinc or the like while exhibiting good solid-liquid separation properties when recovering zinc or the like as a solid content from a substance such as fly ash containing heavy metals containing zinc or the like. Another object of the present invention is to provide a treatment method capable of significantly reducing the water content in the solid content containing zinc and the like.

本発明者は、上記課題を解決するために鋭意検討した結果、上述の特許文献1に記載された処理方法において、「銅および亜鉛回収工程」中の硫化亜鉛を含む濾液の中に、強アルカリ液を加えるのではなく、逆の操作、すなわち、強アルカリ液の中に、硫化亜鉛を含む濾液を徐々に添加するようにすれば、良好な固液分離性を有しかつ固液分離後の水分含有率の小さな亜鉛を含む沈澱物を生成させることができることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventor, in the above-described treatment method described in Patent Document 1, in the filtrate containing zinc sulfide in the “copper and zinc recovery step”, a strong alkali If the filtrate containing zinc sulfide is gradually added to the strong alkaline liquid instead of adding the liquid, it has good solid-liquid separability and after solid-liquid separation. The inventors have found that a precipitate containing zinc having a low moisture content can be produced, and the present invention has been completed.

すなわち、本発明の重金属類を含有する物質の処理方法は、(A)亜鉛を含む重金属類を含有する物質と、硫酸溶液を混合して酸性スラリーを得た後、該酸性スラリーを固液分離して、固形分と、亜鉛を含む酸性水溶液を得る酸浸出工程と、(B)上記工程(A)で得られた固形分と、アルカリ化剤(例えば、水酸化ナトリウム)と、水とを混合してアルカリ性スラリーを得た後、該アルカリ性スラリーを固液分離して、固形分と、アルカリ性水溶液を得るアルカリ浸出工程と、(C)上記工程(B)で得られたアルカリ性水溶液の中に、上記工程(A)で得られた亜鉛を含む酸性水溶液を、20分間以上の添加時間で徐々に添加して、アルカリ性スラリーを得た後、該アルカリ性スラリーを固液分離して、亜鉛を含む固形分と、液分を得る重金属回収工程とを含むことを特徴とする。 That is, in the method for treating a substance containing heavy metals of the present invention, (A) a substance containing heavy metals including zinc and a sulfuric acid solution are mixed to obtain an acidic slurry, and then the acidic slurry is separated into solid and liquid. Then, an acid leaching step for obtaining a solid content, an acidic aqueous solution containing zinc, (B) the solid content obtained in the step (A), an alkalizing agent (for example, sodium hydroxide), and water. After mixing to obtain an alkaline slurry, the alkaline slurry is subjected to solid-liquid separation to obtain a solid content and an alkaline leaching step to obtain an alkaline aqueous solution, and (C) the alkaline aqueous solution obtained in the step (B) above. The acidic aqueous solution containing zinc obtained in the step (A) is gradually added at an addition time of 20 minutes or more to obtain an alkaline slurry, and then the alkaline slurry is solid-liquid separated to contain zinc. Obtain solids and liquids Characterized in that it comprises a metal recovery process.

本発明の処理方法の好適な実施形態の一例としては、(A)亜鉛および鉛を含む重金属類を含有する物質と、硫酸溶液を混合して酸性スラリーを得た後、該酸性スラリーを固液分離して、鉛(具体的には硫酸鉛)を含む固形分と、亜鉛を含む酸性水溶液を得る酸浸出工程と、(B)上記工程(A)で得られた鉛を含む固形分と、アルカリ化剤(例えば、水酸化ナトリウム)と、水とを混合してアルカリ性スラリーを得た後、該アルカリ性スラリーを固液分離して、固形分と、鉛を含むアルカリ性水溶液を得るアルカリ浸出工程と、(C)上記工程(B)で得られた鉛を含むアルカリ性水溶液の中に、上記工程(A)で得られた亜鉛を含む酸性水溶液を、20分間以上の添加時間で徐々に添加して、アルカリ性スラリーを得た後、該アルカリ性スラリーを固液分離して、亜鉛および鉛を含む固形分と、液分を得る重金属回収工程とを含むものが挙げられる(請求項2)。 As an example of a preferred embodiment of the treatment method of the present invention, (A) a substance containing heavy metals including zinc and lead and a sulfuric acid solution are mixed to obtain an acidic slurry, and then the acidic slurry is solid-liquid. Separately, solid content containing lead (specifically lead sulfate), acid leaching step to obtain an acidic aqueous solution containing zinc, (B) solid content containing lead obtained in the step (A), An alkali leaching step of mixing an alkalinizing agent (for example, sodium hydroxide) and water to obtain an alkaline slurry, and then solid-liquid separating the alkaline slurry to obtain an alkaline aqueous solution containing solids and lead. (C) The acidic aqueous solution containing zinc obtained in the step (A) is gradually added to the alkaline aqueous solution containing lead obtained in the step (B) at an addition time of 20 minutes or more. After obtaining an alkaline slurry, the alkaline And solid-liquid separation of slurry, and solids containing zinc and lead, include those containing a heavy metal recovery process of obtaining a liquid component (claim 2).

本発明の処理方法の好適な実施形態の他の例としては、(A)亜鉛および鉛を含む重金属類を含有する物質と、硫酸溶液を混合して酸性スラリーを得た後、該酸性スラリーを固液分離して、鉛(具体的には硫酸鉛)を含む固形分と、亜鉛を含む酸性水溶液を得る酸浸出工程と、(B)上記工程(A)で得られた鉛を含む固形分と、アルカリ化剤(例えば、水酸化ナトリウム)と、水とを混合してアルカリ性スラリーを得た後、該アルカリ性スラリーを固液分離して、固形分と、鉛を含むアルカリ性水溶液を得るアルカリ浸出工程と、(C)上記工程(B)で得られた鉛を含むアルカリ性水溶液と、硫化剤(例えば、水硫化ソーダ)を混合して、スラリーを得た後、該スラリーを固液分離し、鉛(具体的には硫化鉛)を含む固形分と液分を得るとともに、該液分に、上記工程(A)で得られた亜鉛を含む酸性水溶液を、20分間以上の添加時間で徐々に添加して、アルカリ性スラリーを得た後、該アルカリ性スラリーを固液分離して、亜鉛を含む固形分と、液分を得る重金属回収工程とを含むものが挙げられる(請求項3)。 As another example of a preferred embodiment of the treatment method of the present invention, (A) a substance containing heavy metals including zinc and lead and a sulfuric acid solution are mixed to obtain an acidic slurry. Solid-liquid separation, solid content containing lead (specifically lead sulfate), acid leaching step to obtain an acidic aqueous solution containing zinc, (B) solid content containing lead obtained in the step (A) And alkaline agent (for example, sodium hydroxide) and water are mixed to obtain an alkaline slurry, and then the alkaline slurry is solid-liquid separated to obtain an alkaline aqueous solution containing solids and lead. And (C) an alkaline aqueous solution containing lead obtained in the above step (B) and a sulfurizing agent (for example, sodium hydrosulfide) to obtain a slurry, and then the slurry is solid-liquid separated. Obtain solids and liquids containing lead (specifically lead sulfide) Both the liquid component, an acidic aqueous solution containing zinc obtained in the above step (A), was added slowly with the addition of more than 20 minutes time, after obtaining the alkaline slurry, solid-liquid separating the alkaline slurry Then, what contains the solid content containing zinc and the heavy metal collection | recovery process of obtaining a liquid component is mentioned (Claim 3).

本発明の処理方法の上記工程(C)において、上記工程(B)で得られたアルカリ性水溶液への上記工程(A)で得られた酸性水溶液の添加に要する時間は、上記工程(C)で得られる固形分の水分含有率が75質量%以下になるように定めることが好ましい(請求項4)。
本発明の処理方法の上記工程(C)において、上記工程(B)で得られたアルカリ性水溶液への上記工程(A)で得られた酸性水溶液の添加で生じる混合液の液温は、30℃以上に調整されることが好ましい(請求項5)。
本発明の処理方法の上記工程(C)において、上記アルカリ性スラリーのpHは、8.5〜13に調整されることが好ましい(請求項6)。
In the step (C) of the treatment method of the present invention, the time required for adding the acidic aqueous solution obtained in the step (A) to the alkaline aqueous solution obtained in the step (B) is the same as that in the step (C). It is preferable to determine the moisture content of the solid content to be 75% by mass or less (claim 4).
In the step (C) of the treatment method of the present invention, the liquid temperature of the mixed solution produced by adding the acidic aqueous solution obtained in the step (A) to the alkaline aqueous solution obtained in the step (B) is 30 ° C. It is preferable to adjust to the above (claim 5).
In the step (C) of the treatment method of the present invention, the pH of the alkaline slurry is preferably adjusted to 8.5 to 13. (Claim 6)

本発明の処理方法によれば、工程(C)におけるアルカリ性スラリー中の亜鉛を含む沈澱物の性状が、従来の沈澱物の性状とは異なるため、固液分離を効率的に行うことができ、しかも、固液分離後の固形分中の水分含有率を大幅に減少させることができる。それゆえ、固液分離装置の小型化や、亜鉛等の山元還元先への輸送の負荷の軽減等を図ることができる。
また、本発明の処理方法によれば、工程(C)におけるアルカリ性スラリー中の亜鉛を含む沈澱物を構成する亜鉛化合物として、従来のように硫化亜鉛と水酸化亜鉛の2種を共存させる必要がないため、工程の簡略化や薬剤コストの削減等を図ることができる。
According to the treatment method of the present invention, since the property of the precipitate containing zinc in the alkaline slurry in the step (C) is different from the property of the conventional precipitate, solid-liquid separation can be performed efficiently, Moreover, the water content in the solid content after solid-liquid separation can be greatly reduced. Therefore, it is possible to reduce the size of the solid-liquid separation device, reduce the load of transport of zinc or the like to the Yamamoto reduction destination, and the like.
Further, according to the treatment method of the present invention, it is necessary to coexist two types of zinc sulfide and zinc hydroxide as in the conventional case as the zinc compound constituting the precipitate containing zinc in the alkaline slurry in the step (C). Therefore, simplification of the process and reduction of drug costs can be achieved.

以下、図面を参照しつつ、本発明の重金属類を含有する物質の処理方法を詳しく説明する。図1は、本発明の処理方法の実施形態の一例を示すフロー図、図2は、本発明の処理方法の実施形態の他の例を示すフロー図である。
[前処理工程]
本発明においては、通常、図1および図2に示すように、前処理工程として、本発明の処理対象物である亜鉛を含む重金属類を含有する物質(以下、「重金属含有物質」ともいう。)を水洗した後、固液分離する工程が設けられる。
本工程では、まず、重金属含有物質と水を混合してスラリーとし、重金属含有物質中の水溶性成分(K、Na、Cl等)を液中に溶出させる。
ここで、重金属含有物質としては、例えば、煤塵や、焼却炉の炉底等に焼却残渣として残る焼却灰等が挙げられる。
なお、煤塵としては、例えば、焼却炉から発生する飛灰(焼却飛灰)や、焼却灰等の溶融炉から発生する飛灰(溶融飛灰)や、セメント製造工程から抽気されて捕集される粉末や、エコセメントの製造時に得られるバグフィルターに捕集される粉末等が挙げられる。
Hereinafter, the processing method of the substance containing the heavy metals of this invention is demonstrated in detail, referring drawings. FIG. 1 is a flowchart showing an example of an embodiment of the processing method of the present invention, and FIG. 2 is a flowchart showing another example of the embodiment of the processing method of the present invention.
[Pretreatment process]
In the present invention, as shown in FIG. 1 and FIG. 2, usually, as a pretreatment step, a substance containing heavy metals including zinc, which is the object to be treated of the present invention (hereinafter also referred to as “heavy metal-containing substance”). ) Is washed with water, followed by a step of solid-liquid separation.
In this step, first, a heavy metal-containing substance and water are mixed to form a slurry, and water-soluble components (K, Na, Cl, etc.) in the heavy metal-containing substance are eluted into the liquid.
Here, examples of the heavy metal-containing material include soot dust and incineration ash remaining as an incineration residue on the bottom of the incinerator.
In addition, as dust, for example, fly ash generated from an incinerator (incineration fly ash), fly ash generated from a melting furnace such as incineration ash (molten fly ash), or extracted from a cement manufacturing process and collected. And powder collected on a bag filter obtained during the production of ecocement.

エコセメント製造時に得られるバグフィルターに捕集される粉末の成分組成の一例は、酸化物換算の質量割合で、カルシウム2%、カリウム13%、ナトリウム32%、鉛2%、亜鉛1%、銅2%、塩素38%である。
本発明で処理対象となる重金属含有物質は、各元素毎の含有割合の相違はあるものの、概ね、前記のバグフィルターに捕集される粉末に含まれる元素(Ca、K、Na、Pb、Zn、Cu、Cl)と同様の元素を含むものである。以下、重金属含有物質がこれらの元素を含むものとして説明する。
本工程において、スラリーのpHは、好ましくは8.5〜13、より好ましくは9〜12、特に好ましくは9〜11の範囲内に調整される。
該pHが8.5未満では、pHの低下に伴い、鉛、亜鉛、銅の溶出量が次第に増加する。pHが9〜12であると、鉛、亜鉛、銅のいずれも溶出しなくなる。pHが12を超えると、鉛の溶出量が大きくなる。pHが13を超えると、亜鉛の溶出量が大きくなる。
pHを上記数値範囲内に調整するためのpH調整用薬剤としては、塩酸等の無機酸や、水酸化ナトリウム等のアルカリ化剤が用いられる。
An example of the component composition of the powder collected in the bag filter obtained at the time of eco-cement production is the mass ratio in terms of oxide, 2% calcium, 13% potassium, 32% sodium, 2% lead, 1% zinc, copper 2% and chlorine 38%.
Although the heavy metal-containing material to be treated in the present invention has a difference in the content ratio for each element, the elements (Ca, K, Na, Pb, Zn) contained in the powder collected by the bag filter are generally. , Cu, Cl). Hereinafter, description will be made assuming that the heavy metal-containing substance contains these elements.
In this step, the pH of the slurry is preferably adjusted to the range of 8.5 to 13, more preferably 9 to 12, and particularly preferably 9 to 11.
When the pH is less than 8.5, the amount of elution of lead, zinc, and copper gradually increases as the pH decreases. When the pH is 9 to 12, none of lead, zinc and copper is eluted. When pH exceeds 12, the amount of elution of lead increases. When pH exceeds 13, the elution amount of zinc increases.
As a pH adjusting agent for adjusting the pH within the above numerical range, an inorganic acid such as hydrochloric acid or an alkalizing agent such as sodium hydroxide is used.

スラリーの固液比(溶液1リットル中の飛灰の質量)は、好ましくは100〜600g/リットル、より好ましくは150〜400g/リットルである。該固液比が100g/リットル未満では、スラリーの固液分離に要する時間が増大するなど、処理効率が低下する。該固液比が600g/リットルを超えると、塩素分等を十分に溶出させることができないことがある。
スラリーは、通常、所定時間(例えば、10〜40分間程度)攪拌される。
攪拌後のスラリーは、フィルタープレス等の固液分離手段を用いて、塩素分等が除去された固形分と、液分とに分離される。
このうち、液分は、塩化ナトリウム、塩化カリウム等の塩類を晶析法によって回収する工程等を経た後、系外に排出される。
固形分(脱塩ケーキ)は、亜鉛、鉛、カルシウム等を含むものであり、解砕した後、工程(A)で処理される。
The solid-liquid ratio of the slurry (the mass of fly ash in 1 liter of solution) is preferably 100 to 600 g / liter, more preferably 150 to 400 g / liter. When the solid-liquid ratio is less than 100 g / liter, the processing efficiency decreases, for example, the time required for solid-liquid separation of the slurry increases. If the solid-liquid ratio exceeds 600 g / liter, the chlorine content may not be sufficiently eluted.
The slurry is usually stirred for a predetermined time (for example, about 10 to 40 minutes).
The slurry after stirring is separated into a solid content from which chlorine and the like have been removed and a liquid content using solid-liquid separation means such as a filter press.
Among these, the liquid component is discharged out of the system after passing through a step of recovering salts such as sodium chloride and potassium chloride by a crystallization method.
The solid content (desalted cake) contains zinc, lead, calcium and the like, and is crushed and then processed in step (A).

[(A)酸浸出工程]
本工程は、重金属含有物質(具体的には、前処理工程で得られた固形分の解砕物)と、硫酸溶液を混合して酸性スラリーを得た後、この酸性スラリーを固液分離して、鉛(具体的には硫酸鉛)およびカルシウム(具体的には硫酸カルシウム)を含む固形分と、亜鉛および銅を含む酸性水溶液を得る工程である。
[(A) Acid leaching step]
In this step, a heavy metal-containing substance (specifically, a solid crushed material obtained in the pretreatment step) and a sulfuric acid solution are mixed to obtain an acidic slurry, and then the acidic slurry is subjected to solid-liquid separation. In this step, a solid content containing lead (specifically lead sulfate) and calcium (specifically calcium sulfate) and an acidic aqueous solution containing zinc and copper are obtained.

酸性スラリーは、フィルタープレス等の固液分離手段を用いて、硫酸鉛、硫酸カルシウム(石膏)等を含む固形分と、亜鉛、銅等を含む液分とに分離される。
このうち、亜鉛、銅等を含む液分については、銅を回収するための処理が行われる。具体的には、この液分中に、銅よりもイオン化傾向の大きい亜鉛、鉄等の粉末を添加して、液中の銅を固体として析出させる。中でも、亜鉛は、鉄よりもイオン化傾向が大きく、かつ、液分中に溶存している亜鉛と共に後で回収することができるので、好ましく用いられる。
The acidic slurry is separated into a solid content containing lead sulfate, calcium sulfate (gypsum) and the like and a liquid content containing zinc, copper and the like using solid-liquid separation means such as a filter press.
Among these, about the liquid component containing zinc, copper, etc., the process for collect | recovering copper is performed. Specifically, a powder such as zinc or iron having a higher ionization tendency than copper is added to the liquid to precipitate the copper in the liquid as a solid. Among them, zinc is preferably used because it has a higher ionization tendency than iron and can be recovered later together with zinc dissolved in the liquid.

[(B)アルカリ浸出工程]
本工程は、工程(A)で得られた固形分(硫酸鉛および硫酸カルシウムを含むもの)と、アルカリ化剤と、水とを混合してアルカリ性スラリーを得た後、このアルカリ性スラリーを固液分離して、水酸化カルシウムを含む固形分と、鉛(アルカリ浸出性の重金属)を含むアルカリ性水溶液を得る工程である。
ここで、アルカリ化剤としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物等が用いられる。
[(B) Alkali leaching step]
In this step, the solid content (containing lead sulfate and calcium sulfate) obtained in step (A), an alkalizing agent, and water are mixed to obtain an alkaline slurry, and then the alkaline slurry is solid-liquid. This is a step of separating and obtaining an alkaline aqueous solution containing solids containing calcium hydroxide and lead (alkali leachable heavy metal).
Here, as the alkalizing agent, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide are used.

アルカリ性スラリーの固液分離は、フィルタープレス等の固液分離手段を用いて行われる。固液分離後の固形分は、水酸化カルシウムを含むものであり、セメント原料として用いることができる。一方、固液分離後の液分(鉛を含むアルカリ性水溶液)は、図1に第一の実施形態として示すように、直ちに工程(C)で処理してもよいし、あるいは、図2に第二の実施形態として示すように、鉛の除去処理を行った後に工程(C)で処理してもよい。
このうち、図1に示す第一の実施形態では、本発明の処理方法中で硫化剤を用いる必要がなく、工程の簡略化や薬剤コストの削減を図ることができる。一方、図2に示す第二の実施形態では、鉛と亜鉛を分別して回収することができる。
なお、図2に示す第二の実施形態において、鉛の除去処理の方法としては、例えば、固液分離後の液分(鉛を含むアルカリ性水溶液)に、水硫化ソーダ(NaHS)、硫化ソーダ(NaS)等の硫化剤を添加して、硫化鉛(PbS)を生成させた後、フィルタープレス等で固液分離して、硫化鉛からなる固形分と、鉛を含まないアルカリ性水溶液を得る方法が挙げられる。この場合、硫化剤の添加量は、液中の鉛の量に対して1〜1.5倍当量であることが好ましい。得られた硫化鉛は、精錬原料として利用することができる。
Solid-liquid separation of the alkaline slurry is performed using solid-liquid separation means such as a filter press. The solid content after the solid-liquid separation contains calcium hydroxide and can be used as a cement raw material. On the other hand, the liquid component after solid-liquid separation (alkaline aqueous solution containing lead) may be immediately treated in step (C) as shown in FIG. 1 as the first embodiment, or as shown in FIG. As shown as the second embodiment, after the lead removal process, the process may be performed in the step (C).
Among these, in 1st embodiment shown in FIG. 1, it is not necessary to use a sulfiding agent in the processing method of this invention, and it can aim at simplification of a process and reduction of chemical | medical agent cost. On the other hand, in the second embodiment shown in FIG. 2, lead and zinc can be separated and recovered.
In the second embodiment shown in FIG. 2, as a method for removing lead, for example, sodium hydrosulfide (NaHS) or sodium sulfide (sodium sulfide) may be used as a liquid after solid-liquid separation (an alkaline aqueous solution containing lead). After adding a sulfurizing agent such as Na 2 S) to produce lead sulfide (PbS), solid-liquid separation is performed with a filter press or the like to obtain a solid content composed of lead sulfide and an alkaline aqueous solution containing no lead. A method is mentioned. In this case, the addition amount of the sulfiding agent is preferably 1 to 1.5 times equivalent to the amount of lead in the liquid. The obtained lead sulfide can be used as a refining raw material.

[(C)重金属回収工程]
本工程は、工程(B)で得られたアルカリ性水溶液の中に、工程(A)で得られた亜鉛を含む酸性水溶液を徐々に添加し、かつ、必要に応じてpH調整用薬剤を加えて、アルカリ性スラリーを得た後、このアルカリ性スラリーを固液分離して、亜鉛を含む固形分と、液分を得る工程である。
ここで、アルカリ性水溶液としては、上述のように、鉛を含むもの(図1参照)と鉛を除去したもの(図2参照)のいずれを用いてもよい。
本発明においては、工程(B)で得られたアルカリ性水溶液の中に、工程(A)で得られた亜鉛を含む酸性水溶液を徐々に添加することが必須である。この手順で添加することによって、得られる混合液(アルカリ性スラリー)中の沈澱物が、良好な固液分離性(濾過性)を有しかつ固液分離後の固形分中の水分含有率が例えば70質量%以下になるような独特の性状を有することとなる。
[(C) Heavy metal recovery process]
In this step, the acidic aqueous solution containing zinc obtained in step (A) is gradually added to the alkaline aqueous solution obtained in step (B), and a pH adjusting agent is added as necessary. After obtaining the alkaline slurry, the alkaline slurry is subjected to solid-liquid separation to obtain a solid content containing zinc and a liquid content.
Here, as the alkaline aqueous solution, as described above, either one containing lead (see FIG. 1) or one from which lead has been removed (see FIG. 2) may be used.
In the present invention, it is essential to gradually add the acidic aqueous solution containing zinc obtained in the step (A) to the alkaline aqueous solution obtained in the step (B). By adding in this procedure, the precipitate in the obtained mixed liquid (alkaline slurry) has good solid-liquid separation (filterability), and the water content in the solid content after solid-liquid separation is, for example, It has a unique property of being 70% by mass or less.

これとは逆の手順、すなわち、工程(A)で得られた亜鉛を含む酸性水溶液の中に、工程(B)で得られたアルカリ性水溶液を徐々に添加した場合には、得られる混合液(アルカリ性スラリー)中の沈澱物の性状が、固液分離の困難なゲル状になるとともに、この混合液を固液分離して得られる固形分中の水分含有率が80質量%以上になる。これら2つの水溶液を一時に混ぜ合わせた場合でも同様である。
なお、本明細書中において、「固形分中の水分含有率(質量%)」とは、[(乾燥前の固形分の質量)−(乾燥後の固形分の質量)]÷(乾燥前の固形分の質量)×100で算出される値をいう。
When the alkaline aqueous solution obtained in the step (B) is gradually added to the reverse procedure, that is, the acidic aqueous solution containing zinc obtained in the step (A), the resulting mixed solution ( The property of the precipitate in the alkaline slurry) becomes a gel that is difficult to separate into solid and liquid, and the water content in the solid content obtained by solid-liquid separation of this mixed solution is 80% by mass or more. The same applies when these two aqueous solutions are mixed at one time.
In the present specification, “water content in solid content (mass%)” means [(mass of solid content before drying) − (mass of solid content after drying)] ÷ (mass before drying). The mass calculated by (mass of solid content) × 100.

工程(B)のアルカリ性水溶液中への工程(A)の酸性水溶液の添加に要する時間は、これら2つの水溶液の混合液(アルカリ性スラリー)を固液分離した後の固形分中の水分含有率が一定値以下(例えば、75質量%以下)になるように適宜定めることができる。
具体的な添加時間は、2つの水溶液の液量や液温等の条件によっても異なるが、好ましくは20分間以上、より好ましくは30分間以上である。添加時間が10分間程度であると、前記固形分中の水分含有率が75質量%程度になり、本発明の効果を十分に得ることができない。なお、添加時間が60分間を超えると、前記固形分中の水分含有率の低下が頭打ち傾向になることがある。
また、工程(B)のアルカリ性水溶液に工程(A)の酸性水溶液を添加している時の混合液(アルカリ性スラリー)の液温は、好ましくは30℃以上、より好ましくは35℃以上、特に好ましくは40℃以上である。該液温が高いほど、混合液(アルカリ性スラリー)の固液分離後の固形分中の水分含有率を減少させることができる。ただし、液温が60℃を超えると、当該固形分中の水分含有率の低下が頭打ち傾向になることがあるので、この場合には、加熱に要するエネルギーの節減のために、液温を60℃以下に抑えることが望ましい。
The time required for the addition of the acidic aqueous solution of step (A) to the alkaline aqueous solution of step (B) is the water content in the solid content after the liquid mixture (alkaline slurry) of these two aqueous solutions has been subjected to solid-liquid separation. It can be appropriately determined so as to be a certain value or less (for example, 75% by mass or less).
Although specific addition time changes also with conditions, such as the liquid quantity and liquid temperature of two aqueous solution, Preferably it is 20 minutes or more, More preferably, it is 30 minutes or more. When the addition time is about 10 minutes, the water content in the solid content is about 75% by mass, and the effects of the present invention cannot be sufficiently obtained. In addition, when addition time exceeds 60 minutes, the fall of the water content rate in the said solid content may become a peak tendency.
The liquid temperature of the mixed solution (alkaline slurry) when the acidic aqueous solution of step (A) is added to the alkaline aqueous solution of step (B) is preferably 30 ° C. or higher, more preferably 35 ° C. or higher, particularly preferably. Is 40 ° C. or higher. The higher the liquid temperature, the lower the water content in the solid content after solid-liquid separation of the mixed liquid (alkaline slurry). However, if the liquid temperature exceeds 60 ° C., the decrease in the water content in the solid content tends to reach a peak, and in this case, the liquid temperature is set to 60 to reduce the energy required for heating. It is desirable to keep it below ℃.

混合液(アルカリ性スラリー)のpHは、好ましくは8.5〜13、より好ましくは8.5〜12、特に好ましくは9〜11に調整される。pHをこの数値範囲内に調整することによって、亜鉛および鉛の回収率を高めることができる。pHが8.5未満では、液中に溶出する亜鉛および鉛の量が増加する。pHが13を超えると、液中に溶出する鉛の量が増加する。
なお、pH調整用薬剤としては、例えば、硫酸等の無機酸や、水酸化ナトリウム等のアルカリ化剤が挙げられる。
The pH of the mixed solution (alkaline slurry) is preferably adjusted to 8.5 to 13, more preferably 8.5 to 12, and particularly preferably 9 to 11. By adjusting the pH within this numerical range, the recovery rate of zinc and lead can be increased. When the pH is less than 8.5, the amount of zinc and lead eluted in the liquid increases. When the pH exceeds 13, the amount of lead eluted in the liquid increases.
Examples of the pH adjusting agent include inorganic acids such as sulfuric acid and alkalizing agents such as sodium hydroxide.

混合液(アルカリ性スラリー)は、固液分離前にしばらく放置することが望ましい。所定の時間放置することによって、アルカリ性スラリー中の沈澱物の性状が良好なものになり、本発明の効果(固液分離性等)をさらに向上させることができる。
放置時間は、特に限定されないが、好ましくは10分間以上、より好ましくは20分間以上である。
上述の添加時間、液温等の条件を適宜定めることによって、固液分離後の固形分中の水分含有率を、好ましくは65質量%以下、より好ましくは55質量%以下、特に好ましくは45質量%以下にまで減少させることができる。
アルカリ性スラリーは、フィルタープレス等の固液分離手段を用いて、亜鉛(および鉛)を含む固形分と、液分とに分離される。
固形分に含まれる亜鉛等の重金属は、山元還元されて再資源化される。
The mixed solution (alkaline slurry) is desirably left for a while before solid-liquid separation. By leaving it for a predetermined time, the properties of the precipitate in the alkaline slurry are improved, and the effects of the present invention (such as solid-liquid separation) can be further improved.
The standing time is not particularly limited, but is preferably 10 minutes or more, more preferably 20 minutes or more.
The water content in the solid content after the solid-liquid separation is preferably 65% by mass or less, more preferably 55% by mass or less, and particularly preferably 45% by appropriately determining the conditions such as the addition time and the liquid temperature. % Or less.
The alkaline slurry is separated into a solid content containing zinc (and lead) and a liquid content using solid-liquid separation means such as a filter press.
Heavy metals such as zinc contained in the solid content are reduced to the mountain and recycled.

[実施例1]
セメント製造設備で生じる飛灰(成分組成:Ca:3質量%、K:17質量%、Na:21質量%、Cl:40質量%、Cu:1質量%、Pb:2質量%、Zn:1質量%)30kgを、水100リットルを貯留した水槽中に投入した後、酸またはアルカリを加えて、スラリーのpHを10.5に調整し、攪拌混合した。
このスラリーをフィルタープレスで固液分離し、固形分6.0kgを得た。この固形分を解砕した後、2モル/リットルの硫酸を添加しながら水24リットルと混合して攪拌し、pH3.2のスラリーを得た。このスラリーをフィルタープレスで固液分離し、硫酸鉛、石膏(硫酸カルシウム)等を含む固形分3.9kgと、亜鉛、銅等を含む濾液20.7リットルを得た。
このうち、亜鉛、銅等を含む濾液については、亜鉛粉末0.352kgを添加した後、フィルタープレスで固液分離し、析出した銅を含む固形分0.336kgと、亜鉛を含む濾液19.6リットルを得た。この濾液は、加温して液温を35℃にした。
[Example 1]
Fly ash generated in a cement production facility (component composition: Ca: 3 mass%, K: 17 mass%, Na: 21 mass%, Cl: 40 mass%, Cu: 1 mass%, Pb: 2 mass%, Zn: 1 After 30 kg (mass%) was put into a water tank storing 100 liters of water, acid or alkali was added to adjust the pH of the slurry to 10.5, and the mixture was stirred and mixed.
This slurry was subjected to solid-liquid separation with a filter press to obtain a solid content of 6.0 kg. After this solid content was crushed, it was mixed with 24 liters of water while adding 2 mol / liter sulfuric acid and stirred to obtain a slurry of pH 3.2. This slurry was subjected to solid-liquid separation with a filter press to obtain 3.9 kg of a solid content containing lead sulfate, gypsum (calcium sulfate) and the like, and 20.7 liter of a filtrate containing zinc, copper and the like.
Among these, about the filtrate containing zinc, copper, etc., after adding 0.352 kg of zinc powder, it solid-liquid-separates with a filter press, 0.336 kg of solid content containing the copper which precipitated, and the filtrate 19.6 containing zinc I got a liter. The filtrate was heated to 35 ° C.

一方、硫酸鉛、石膏等を含む固形分については、水酸化ナトリウムを添加しながら水39リットルと混合して攪拌し、pH13.8のスラリーを得た。このスラリーをフィルタープレスで固液分離し、水酸化カルシウム等を含む固形分2.5kgと、鉛を含む濾液35リットルを得た。この濾液は、加温して液温を35℃にした。
この鉛を含む濾液(液温:35℃)の中に、上述の亜鉛を含む濾液(液温:35℃)を40分間に亘って徐々に添加しながら攪拌混合するとともに、2モル/リットルの硫酸を適宜添加して、混合液のpHを9〜11の範囲内に維持した。最終的に、pH10.5のスラリーを得た後、20分間放置した。その後、このスラリーをフィルタープレスで固液分離し、亜鉛および鉛を含む固形分0.42kgと、濾液を得た。
このうち、固形分は、乾燥後に、Zn:45質量%、Pb:29質量%、Ca:1質量%の成分組成を有していた。また、固形分の水分含有率は、45質量%であった。
On the other hand, about solid content containing lead sulfate, gypsum, etc., it mixed with 39 liters of water, adding sodium hydroxide, and stirred, and the slurry of pH 13.8 was obtained. This slurry was subjected to solid-liquid separation with a filter press to obtain 2.5 kg of a solid content containing calcium hydroxide and 35 liters of a filtrate containing lead. The filtrate was heated to 35 ° C.
The lead-containing filtrate (liquid temperature: 35 ° C.) was stirred and mixed while gradually adding the above-described zinc-containing filtrate (liquid temperature: 35 ° C.) over a period of 40 minutes. Sulfuric acid was appropriately added to maintain the pH of the mixed solution within the range of 9-11. Finally, a slurry with a pH of 10.5 was obtained and left for 20 minutes. Thereafter, the slurry was subjected to solid-liquid separation with a filter press to obtain 0.42 kg of a solid content containing zinc and lead and a filtrate.
Among these, solid content had the component composition of Zn: 45 mass%, Pb: 29 mass%, and Ca: 1 mass% after drying. Moreover, the moisture content of solid content was 45 mass%.

[実施例2]
実施例1と同様の飛灰30kgを、水100リットルを貯留した水槽中に投入した後、酸またはアルカリを加えて、スラリーのpHを10.5に調整し、攪拌混合した。
このスラリーをフィルタープレスで固液分離し、固形分6.0kgを得た。この固形分を解砕した後、2モル/リットルの硫酸を添加しながら水24リットルと混合して攪拌し、pH3.2のスラリーを得た。このスラリーをフィルタープレスで固液分離し、硫酸鉛、石膏(硫酸カルシウム)等を含む固形分3.9kgと、亜鉛、銅等を含む濾液20.7リットルを得た。
このうち、亜鉛、銅等を含む濾液については、亜鉛粉末0.352kgを添加した後、フィルタープレスで固液分離し、析出した銅を含む固形分0.336kgと、亜鉛を含む濾液19.6リットルを得た。この濾液は、加温して液温を35℃にした。
[Example 2]
30 kg of fly ash similar to that in Example 1 was put into a water tank storing 100 liters of water, and then acid or alkali was added to adjust the pH of the slurry to 10.5, followed by stirring and mixing.
This slurry was subjected to solid-liquid separation with a filter press to obtain a solid content of 6.0 kg. After this solid content was crushed, it was mixed with 24 liters of water while adding 2 mol / liter sulfuric acid, and stirred to obtain a slurry of pH 3.2. This slurry was subjected to solid-liquid separation with a filter press to obtain 20.7 liters of a filtrate containing 3.9 kg of solids containing lead sulfate, gypsum (calcium sulfate), etc., and zinc, copper and the like.
Among these, about the filtrate containing zinc, copper, etc., after adding zinc powder 0.352kg, it solid-liquid-separates with a filter press, solid content 0.336kg containing the deposited copper, and the filtrate 19.6 containing zinc Liter was obtained. The filtrate was heated to 35 ° C.

一方、硫酸鉛、石膏等を含む固形分については、水酸化ナトリウムを添加しながら水39リットルと混合して攪拌し、pH13.8のスラリーを得た。このスラリーをフィルタープレスで固液分離し、水酸化カルシウム等を含む固形分2.5kgと、鉛を含む濾液35リットルを得た。
この濾液に水硫化ソーダ0.200kgを添加した後、フィルタープレスで固液分離し、硫化鉛からなる固形分0.497kgと、鉛が除去された濾液34リットルを得た。この濾液は、加温して液温を35℃にした。
鉛が除去された濾液(液温:35℃)の中に、上述の亜鉛を含む濾液(液温:35℃)を45分間に亘って徐々に添加しながら攪拌混合するとともに、2モル/リットルの硫酸を適宜添加して、混合液のpHを9〜11の範囲内に維持した。最終的に、pH10.2のスラリーを得た後、20分間放置した。その後、このスラリーをフィルタープレスで固液分離し、亜鉛を含む固形分0.49kgと、濾液を得た。
このうち、固形分は、乾燥後に、Zn:58質量%、Ca:1質量%の成分組成を有していた。また、固形分の水分含有率は、52質量%であった。
On the other hand, about solid content containing lead sulfate, gypsum, etc., it mixed with 39 liters of water, adding sodium hydroxide, and stirred, and the slurry of pH 13.8 was obtained. This slurry was subjected to solid-liquid separation with a filter press to obtain 2.5 kg of a solid content containing calcium hydroxide and 35 liters of a filtrate containing lead.
After adding 0.200 kg of sodium hydrosulfide to this filtrate, solid-liquid separation was performed with a filter press to obtain 0.497 kg of solid content composed of lead sulfide and 34 liters of filtrate from which lead was removed. The filtrate was heated to 35 ° C.
In the filtrate from which lead has been removed (liquid temperature: 35 ° C.), the above-described filtrate containing zinc (liquid temperature: 35 ° C.) is stirred and mixed while gradually added over 45 minutes, and 2 mol / liter. Was appropriately added to maintain the pH of the mixed solution in the range of 9-11. Finally, a slurry with a pH of 10.2 was obtained and left for 20 minutes. Thereafter, this slurry was subjected to solid-liquid separation with a filter press to obtain a solid content of 0.49 kg containing zinc and a filtrate.
Among these, solid content had the component composition of Zn: 58 mass% and Ca: 1 mass% after drying. The moisture content of the solid content was 52% by mass.

[比較例1]
亜鉛を含む濾液の中に30分間に亘って徐々に、鉛を含む濾液を添加した他は、実施例1と同様にして、鉛および鉛を含む固形分と、濾液を得た。
このうち、固形分は、乾燥後に、Zn:45質量%、Pb:29質量%、Ca:1質量%の成分組成を有していた。また、固形分の水分含有率は、82質量%であった。
[比較例2]
亜鉛を含む濾液と、鉛を含む濾液を急激(約10秒間)に混合した他は、実施例1と同様にして、鉛および鉛を含む固形分と、濾液を得た。
このうち、固形分は、乾燥後に、Zn:45質量%、Pb:29質量%、Ca:1質量%の成分組成を有していた。また、固形分の水分含有率は、83質量%であった。
[Comparative Example 1]
A solid containing lead and lead and a filtrate were obtained in the same manner as in Example 1 except that the filtrate containing lead was gradually added to the filtrate containing zinc over 30 minutes.
Among these, solid content had the component composition of Zn: 45 mass%, Pb: 29 mass%, and Ca: 1 mass% after drying. The moisture content of the solid content was 82% by mass.
[Comparative Example 2]
A solid containing lead and lead and a filtrate were obtained in the same manner as in Example 1 except that the filtrate containing zinc and the filtrate containing lead were rapidly mixed (about 10 seconds).
Among these, solid content had the component composition of Zn: 45 mass%, Pb: 29 mass%, and Ca: 1 mass% after drying. The water content of the solid content was 83% by mass.

本発明の重金属類を含有する物質の処理方法の実施形態の一例を示すフロー図である。It is a flowchart which shows an example of embodiment of the processing method of the substance containing the heavy metals of this invention. 本発明の重金属類を含有する物質の処理方法の実施形態の他の例を示すフロー図である。It is a flowchart which shows the other example of embodiment of the processing method of the substance containing the heavy metals of this invention.

Claims (6)

(A)亜鉛を含む重金属類を含有する物質と、硫酸溶液を混合して酸性スラリーを得た後、該酸性スラリーを固液分離して、固形分と、亜鉛を含む酸性水溶液を得る酸浸出工程と、
(B)上記工程(A)で得られた固形分と、アルカリ化剤と、水とを混合してアルカリ性スラリーを得た後、該アルカリ性スラリーを固液分離して、固形分と、アルカリ性水溶液を得るアルカリ浸出工程と、
(C)上記工程(B)で得られたアルカリ性水溶液の中に、上記工程(A)で得られた亜鉛を含む酸性水溶液を、20分間以上の添加時間で徐々に添加して、アルカリ性スラリーを得た後、該アルカリ性スラリーを固液分離して、亜鉛を含む固形分と、液分を得る重金属回収工程と、
を含むことを特徴とする重金属類を含有する物質の処理方法。
(A) After an acidic slurry is obtained by mixing a substance containing heavy metals containing zinc and a sulfuric acid solution, the acidic slurry is solid-liquid separated to obtain an acidic aqueous solution containing a solid content and zinc. Process,
(B) The solid content obtained in the step (A), the alkalizing agent, and water are mixed to obtain an alkaline slurry, and then the alkaline slurry is subjected to solid-liquid separation to obtain a solid content and an alkaline aqueous solution. An alkali leaching step to obtain,
(C) In the alkaline aqueous solution obtained in the step (B), the acidic aqueous solution containing zinc obtained in the step (A) is gradually added with an addition time of 20 minutes or more, and the alkaline slurry is added. After obtaining, the alkaline slurry is subjected to solid-liquid separation, a solid content containing zinc, and a heavy metal recovery step for obtaining a liquid content,
A method for treating a substance containing heavy metals, comprising:
(A)亜鉛および鉛を含む重金属類を含有する物質と、硫酸溶液を混合して酸性スラリーを得た後、該酸性スラリーを固液分離して、鉛を含む固形分と、亜鉛を含む酸性水溶液を得る酸浸出工程と、
(B)上記工程(A)で得られた鉛を含む固形分と、アルカリ化剤と、水とを混合してアルカリ性スラリーを得た後、該アルカリ性スラリーを固液分離して、固形分と、鉛を含むアルカリ性水溶液を得るアルカリ浸出工程と、
(C)上記工程(B)で得られた鉛を含むアルカリ性水溶液の中に、上記工程(A)で得られた亜鉛を含む酸性水溶液を、20分間以上の添加時間で徐々に添加して、アルカリ性スラリーを得た後、該アルカリ性スラリーを固液分離して、亜鉛および鉛を含む固形分と、液分を得る重金属回収工程と、
を含むことを特徴とする重金属類を含有する物質の処理方法。
(A) After a substance containing heavy metals including zinc and lead and a sulfuric acid solution are mixed to obtain an acidic slurry, the acidic slurry is subjected to solid-liquid separation, and solids containing lead and acidic containing zinc An acid leaching step to obtain an aqueous solution;
(B) After mixing solid content containing the lead obtained by the said process (A), an alkalizing agent, and water to obtain an alkaline slurry, the alkaline slurry is subjected to solid-liquid separation to obtain a solid content. An alkaline leaching step to obtain an alkaline aqueous solution containing lead;
(C) In the alkaline aqueous solution containing lead obtained in the step (B), the acidic aqueous solution containing zinc obtained in the step (A) is gradually added with an addition time of 20 minutes or more , After obtaining the alkaline slurry, the alkaline slurry is subjected to solid-liquid separation, a solid content containing zinc and lead, and a heavy metal recovery step for obtaining a liquid content,
A method for treating a substance containing heavy metals, comprising:
(A)亜鉛および鉛を含む重金属類を含有する物質と、硫酸溶液を混合して酸性スラリーを得た後、該酸性スラリーを固液分離して、鉛を含む固形分と、亜鉛を含む酸性水溶液を得る酸浸出工程と、
(B)上記工程(A)で得られた鉛を含む固形分と、アルカリ化剤と、水とを混合してアルカリ性スラリーを得た後、該アルカリ性スラリーを固液分離して、固形分と、鉛を含むアルカリ性水溶液を得るアルカリ浸出工程と、
(C)上記工程(B)で得られた鉛を含むアルカリ性水溶液と、硫化剤を混合して、スラリーを得た後、該スラリーを固液分離し、鉛を含む固形分と液分を得るとともに、該液分に、上記工程(A)で得られた亜鉛を含む酸性水溶液を、20分間以上の添加時間で徐々に添加して、アルカリ性スラリーを得た後、該アルカリ性スラリーを固液分離して、亜鉛を含む固形分と、液分を得る重金属回収工程と、
を含むことを特徴とする重金属類を含有する物質の処理方法。
(A) After a substance containing heavy metals including zinc and lead and a sulfuric acid solution are mixed to obtain an acidic slurry, the acidic slurry is subjected to solid-liquid separation, and solids containing lead and acidic containing zinc An acid leaching step to obtain an aqueous solution;
(B) After mixing solid content containing the lead obtained by the said process (A), an alkalizing agent, and water to obtain an alkaline slurry, the alkaline slurry is subjected to solid-liquid separation to obtain a solid content. An alkaline leaching step to obtain an alkaline aqueous solution containing lead;
(C) The alkaline aqueous solution containing lead obtained in the above step (B) and a sulfiding agent are mixed to obtain a slurry, and then the slurry is solid-liquid separated to obtain a solid content and a liquid content containing lead. At the same time, the acidic aqueous solution containing zinc obtained in the step (A) is gradually added to the liquid in an addition time of 20 minutes or more to obtain an alkaline slurry, and then the alkaline slurry is subjected to solid-liquid separation. And a solid content containing zinc, and a heavy metal recovery step for obtaining a liquid content,
A method for treating a substance containing heavy metals, comprising:
上記工程(C)において、上記工程(B)で得られたアルカリ性水溶液への上記工程(A)で得られた酸性水溶液の添加に要する時間を、上記工程(C)で得られる固形分の水分含有率が75質量%以下になるように定める請求項1〜3のいずれか1項に記載の重金属類を含有する物質の処理方法。   In the step (C), the time required for the addition of the acidic aqueous solution obtained in the step (A) to the alkaline aqueous solution obtained in the step (B) is the water content of the solid content obtained in the step (C). The processing method of the substance containing the heavy metals of any one of Claims 1-3 defined so that a content rate may be 75 mass% or less. 上記工程(C)において、上記工程(B)で得られたアルカリ性水溶液への上記工程(A)で得られた酸性水溶液の添加で生じる混合液の液温を、30℃以上に調整する請求項1〜4のいずれか1項に記載の重金属類を含有する物質の処理方法。   In said process (C), the liquid temperature of the liquid mixture which arises by addition of the acidic aqueous solution obtained at the said process (A) to the alkaline aqueous solution obtained at the said process (B) is adjusted to 30 degreeC or more. The processing method of the substance containing heavy metals of any one of 1-4. 上記工程(C)において、上記アルカリ性スラリーのpHを8.5〜13に調整する請求項1〜5のいずれか1項に記載の重金属類を含有する物質の処理方法。   The processing method of the substance containing the heavy metals of any one of Claims 1-5 which adjusts the pH of the said alkaline slurry to 8.5-13 in the said process (C).
JP2004123056A 2004-04-19 2004-04-19 Method for treating substances containing heavy metals Expired - Lifetime JP4044068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004123056A JP4044068B2 (en) 2004-04-19 2004-04-19 Method for treating substances containing heavy metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004123056A JP4044068B2 (en) 2004-04-19 2004-04-19 Method for treating substances containing heavy metals

Publications (2)

Publication Number Publication Date
JP2005305244A JP2005305244A (en) 2005-11-04
JP4044068B2 true JP4044068B2 (en) 2008-02-06

Family

ID=35434621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004123056A Expired - Lifetime JP4044068B2 (en) 2004-04-19 2004-04-19 Method for treating substances containing heavy metals

Country Status (1)

Country Link
JP (1) JP4044068B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5019831B2 (en) * 2006-09-22 2012-09-05 太平洋セメント株式会社 Cement kiln combustion gas extraction dust treatment method
JP5288778B2 (en) * 2007-11-28 2013-09-11 太平洋セメント株式会社 Method for processing heavy metal-containing powder
CN107477597B (en) * 2017-08-15 2018-08-10 重庆盎瑞悦科技有限公司 A kind of method that incineration of refuse flyash stablizes harmless treatment
CN114472482A (en) * 2022-01-27 2022-05-13 江苏天楹环保能源成套设备有限公司 Method for performing harmless treatment and resource recovery on secondary fly ash
CN116218036A (en) * 2023-03-13 2023-06-06 吉林大学 Rubber filler with coal gasification fine slag as raw material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2005305244A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
CN101426731B (en) Method for treating arsenic containing solution
JP3802046B1 (en) Method for processing heavy metal-containing powder
JP3737459B2 (en) Waste recycling method
JP3625270B2 (en) Waste disposal method
JP4826532B2 (en) Processing method of molten fly ash
JP3911538B2 (en) Heavy metal recovery from fly ash
HUT70991A (en) Process for decontamination of metal-polluted earth
JP4044068B2 (en) Method for treating substances containing heavy metals
JP2002018394A (en) Treating method for waste
JP3924981B2 (en) Waste material processing method for cement
JP2003225633A (en) Method of treating chloride-containing dust
JP5084272B2 (en) Method for treating heavy metals containing zinc and substances containing chlorine
JP2003334510A (en) Chlorine removing treatment method for molten fly ash
JPH09192625A (en) Alkali fly ash detoxicating treatment
JP5288778B2 (en) Method for processing heavy metal-containing powder
JP2008246398A (en) Method for recovering gypsum from molten fly ash
JPH07214029A (en) Recycling method of heavy metal by making incineration ash or fly ash harmless
JP3794260B2 (en) Waste disposal method
JP3896442B2 (en) Method for treating fly ash containing heavy metals
JP2003201524A (en) Waste treatment method
JP3733452B2 (en) Waste disposal method
US6053963A (en) Method for treating rotary slag
JP2005177757A (en) Calcium-and heavy metal-containing matter treatment method
JP4505840B2 (en) Method for recovering valuable materials from molten fly ash
JP2000212654A (en) Recovery of heavy metal from substance containing heavy metal and chlorine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071114

R150 Certificate of patent or registration of utility model

Ref document number: 4044068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250