JPH0252468A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0252468A
JPH0252468A JP63204397A JP20439788A JPH0252468A JP H0252468 A JPH0252468 A JP H0252468A JP 63204397 A JP63204397 A JP 63204397A JP 20439788 A JP20439788 A JP 20439788A JP H0252468 A JPH0252468 A JP H0252468A
Authority
JP
Japan
Prior art keywords
source electrode
current detection
electrode material
electrodes
bonding pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63204397A
Other languages
Japanese (ja)
Inventor
Tomohide Terajima
知秀 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63204397A priority Critical patent/JPH0252468A/en
Publication of JPH0252468A publication Critical patent/JPH0252468A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7815Vertical DMOS transistors, i.e. VDMOS transistors with voltage or current sensing structure, e.g. emulator section, overcurrent sensing cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To use an electrode region on other electrodes as a wire bonding pad region in addition to an electrode region formed directly on a semiconductor substrate and to form a sufficiently wide wire bonding region irrespective of a connection state to an active layer inside the semiconductor substrate. CONSTITUTION:A first source electrode material 20 for current detection use is formed on two MOSFET cells 17; source electrodes 1 for output use are formed on other MOSFET cells. In addition, a second source electrode material 21 for current detection use is laminated on the first source electrode material 20 for current detection use; it is formed also on the source electrodes 1 for output use inside a bonding pad part 2a via an insulating film 6. This insulating film 6 is formed also between the source electrode material 20 for current detection use and the source electrodes 1 for output use; it insulates and separates both 1, 20. By this constitution, even when the number of the MOSFET cells 17 connected to the source electrode material 20 for current detection use is small, the sufficiently large wire bonding part 2a can be secured when a source electrode 2 for current detection use is formed of the source electrode materials 20, 21 for current detection use.

Description

【発明の詳細な説明】 〔産業上の利用分野) この発明は半導体基板上に複数の電極を有する半導体装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device having a plurality of electrodes on a semiconductor substrate.

〔従来の技術〕[Conventional technology]

第3図は従来の複数の電極を有りる半導体装置の一例と
して、電流検出用ソース電極を右する半導体装置を示す
平面図である。同図に43いて、18は出力用ソース電
極の外部接続用ポンディングパッド部、28は電流検出
用ソース電極の外部接続用ポンディングパッド部、3a
はゲート電極の外部接続用ポンディングパッド部、4は
ガラスコート、5は絶縁膜、7はゲート電極接続用アル
ミ配線層である。上記した外部接続用ポンディングパッ
ド部18.28.3a上で直接ワイヤボンディングが行
われる。
FIG. 3 is a plan view showing a semiconductor device including a current detection source electrode as an example of a conventional semiconductor device having a plurality of electrodes. 43 in the figure, 18 is a bonding pad portion for external connection of the output source electrode, 28 is a bonding pad portion for external connection of the current detection source electrode, 3a
Reference numeral 4 indicates a bonding pad portion for external connection of the gate electrode, 4 a glass coat, 5 an insulating film, and 7 an aluminum wiring layer for connection to the gate electrode. Direct wire bonding is performed on the external connection bonding pad portion 18.28.3a described above.

第4図は第3図の半導体装置の1−1断面図である。同
図に示すJ:うに、r)”lt板10上にnエピタキシ
ャル層11を形成し、この日 エピタキシャル層11の
上層部に多数のp+拡散層12を形成している。各p+
拡散層12の上層部には2つずつn+拡散層13が形成
されており、隣接するp+拡散層12間には周囲を絶縁
膜14で覆われたポリシリコンゲート15が形成されて
いる。
FIG. 4 is a 1-1 sectional view of the semiconductor device of FIG. 3. An n epitaxial layer 11 is formed on the J: uni, r)''lt board 10 shown in the same figure, and on this day, a large number of p+ diffusion layers 12 are formed on the upper layer of the epitaxial layer 11. Each p+
Two n+ diffusion layers 13 are formed in the upper layer of the diffusion layer 12, and a polysilicon gate 15 whose periphery is covered with an insulating film 14 is formed between adjacent p+ diffusion layers 12.

このポリシリコンゲート15は第3図で示した外部接続
用ポンディングパッド部3aにアルミ配線層7を介して
電気的接続される。
This polysilicon gate 15 is electrically connected to an external connection bonding pad portion 3a shown in FIG. 3 via an aluminum wiring layer 7.

また、外部接続用ポンディングパッド部2aにおいては
、電流検出用ソース電極2が絶縁膜14を含むn−エピ
タキシャル層11上に形成され直下(7) p” 拡r
l1m l 2 、 n ” 拡rllI 131.:
’m気的IIF続される。一方、他の領域においてA、
X−S+等により出力用ソース電極1が形成され直下の
p+拡散層12.n+拡散層13に電気的接続される。
In addition, in the external connection bonding pad section 2a, the current detection source electrode 2 is formed on the n-epitaxial layer 11 including the insulating film 14, and is directly below (7) p"
l1m l2, n” expansion rllI 131.:
'm's spirit continues. On the other hand, in other areas A,
The output source electrode 1 is formed by X-S+, etc., and the p+ diffusion layer 12. It is electrically connected to the n+ diffusion layer 13.

この出力用ソース電極1は第3図で示した外部接続用ポ
ンディングパッド部1aに電気的接続されている。ぞし
て、ガラスコー1〜4がこの出力用ソース電極1を覆う
と共に、電流検出用ソース電極2どの絶縁分離を果たし
ている。このガラスコート4は第1図で示すJ:うに、
各外部接続用ポンディングパッド部1 a、2a、3a
1絶縁膜5、アルミ配線層7以外の領域を覆っている。
This output source electrode 1 is electrically connected to an external connection bonding pad portion 1a shown in FIG. Glass coats 1 to 4 cover the output source electrode 1 and provide insulation and isolation between the current detection source electrodes 2 and the like. This glass coat 4 is J: sea urchin shown in FIG.
Each external connection bonding pad part 1a, 2a, 3a
1 insulating film 5 and the area other than the aluminum wiring layer 7 is covered.

なお、17はMO8FETセルを示し、1Bはドレイン
電極である。
Note that 17 indicates a MO8FET cell, and 1B is a drain electrode.

このような構成において、動作時にポリシリコンゲート
5に正の電圧を印加し、各MO8FETセル17のチャ
ネル領域であるポリシリコンゲート15下のp+拡r1
1.層12をr)型に反転させることで、電流をドレイ
ン?1lli極18からn+W板10゜n−エピタキシ
ャル層11.各MO8FETセル17のチャネル領域及
びn+拡散層13を介して出力用ソース電極1及び電流
検出用ソース電極2に流している。
In such a configuration, a positive voltage is applied to the polysilicon gate 5 during operation, and the p+ expansion r1 under the polysilicon gate 15, which is the channel region of each MO8FET cell 17, is
1. By inverting the layer 12 to r) type, the current can be drained? 1lli pole 18 to n+W plate 10°n-epitaxial layer 11. The current flows through the channel region of each MO8FET cell 17 and the n+ diffusion layer 13 to the output source electrode 1 and the current detection source electrode 2.

各MO8FFTセル17を流れる電流量は一定であるこ
とから、出力用ソース1IfiiとN流検出用ソース電
極2にそれぞれ流れる電流量の比は、出力用ソース電極
1と電流検出用ソース電極2にそれぞれ接続されている
MO8FETセル17の数の比に等しい。従って、電流
検出用ソース電極2より得られる電流量より出力用ソー
ス電極1を流れる電流量を容易に口出することができる
Since the amount of current flowing through each MO8FFT cell 17 is constant, the ratio of the amount of current flowing through the output source 1 Ifii and the N current detection source electrode 2 is as follows: It is equal to the ratio of the number of MO8FET cells 17 connected. Therefore, the amount of current flowing through the output source electrode 1 can be easily determined from the amount of current obtained from the current detection source electrode 2.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

電流検出用ソース電極を有する従来の半導体装置は以上
のように構成されており、電流検出用ソース電極2を流
れる電流を大きくとると、その分出力用ソース電1!!
1を流れる電流量を削減することになる。
A conventional semiconductor device having a current detection source electrode is configured as described above, and when the current flowing through the current detection source electrode 2 is increased, the output source electrode 1! !
This will reduce the amount of current flowing through 1.

従って、電流検出用ソース電極2に接続されるMO3F
ETセル17の数は電流量検出が可能な範囲において、
少なくする方が望ましい。
Therefore, MO3F connected to the current detection source electrode 2
The number of ET cells 17 is within the range where current amount detection is possible.
Less is better.

しかし4′Kがら、電流検出用ソース電極2に接続され
るMO8FETセル17の数を少なくすると、電流検出
用ソース電極2の形成面積が狭くなり、十分な広さの外
部接続用ポンディングパッド部2aを確保できなくなる
。このため、通常のパワー半導体素子に用いる300μ
mφ程度のAIワイヤを使用すると、ワイヤボンディン
グが困難になるという問題点があった。また、電流検出
用ソース電極2の外部接続用ポンディングパッド部2a
は大電流を流す必要がないため、このポンディングパッ
ド部2aのみ径の細い金ワイヤを使用することも考えら
れるが、ポンディングパッド部2aへのワイヤボンディ
ングのみ径の細いワイヤを使用すると作業性が低下する
という別の問題点を生じてしまう。
However, unlike 4'K, if the number of MO8FET cells 17 connected to the current detection source electrode 2 is reduced, the formation area of the current detection source electrode 2 becomes narrower, and the bonding pad area for external connection is sufficiently large. 2a cannot be secured. For this reason, the 300μ
When an AI wire with a diameter of approximately mφ is used, there is a problem in that wire bonding becomes difficult. Also, a bonding pad portion 2a for external connection of the source electrode 2 for current detection.
Since it is not necessary to flow a large current, it may be possible to use a gold wire with a small diameter only for this bonding pad portion 2a, but it is easier to work if a wire with a small diameter is used only for wire bonding to the bonding pad portion 2a. Another problem arises in that the value decreases.

この発明は上記のような問題点を解決するためになされ
たもので、半導体基板内の活性層との接続状態に関係な
く、十分な広さのワイヤボンディング領域を確保するこ
とのできる電極を有する半導体装置を得ることを目的と
する。
This invention was made to solve the above problems, and has an electrode that can secure a sufficiently large wire bonding area regardless of the connection state with the active layer in the semiconductor substrate. The purpose is to obtain a semiconductor device.

〔課題を解決するための手段〕[Means to solve the problem]

この発明にかかる半導体装置は、半導体基板−ヒに複数
の電極を有し、前記複数の電極のうち、少なくと−し1
つの電極が絶縁膜を介して他の電極」ニに形成される。
A semiconductor device according to the present invention has a plurality of electrodes on a semiconductor substrate, and at least one of the plurality of electrodes has a plurality of electrodes.
One electrode is formed on the other electrode through an insulating film.

〔作用〕[Effect]

この発明におりる少なくどし1つの電極は、他の7El
上に絶縁膜を介して形成されるため、この電極は半導体
基板上に直接形成される電極領域に加え、上記した他の
?f214上の電極領域をワイA7ボンデイングパツド
領域とすることができる。。
At least one electrode according to this invention has another 7El
Since this electrode is formed on the semiconductor substrate with an insulating film interposed therebetween, in addition to the electrode region formed directly on the semiconductor substrate, this electrode is also used in other regions as mentioned above. The electrode area on f214 can be a wire A7 bonding pad area. .

〔実施例〕〔Example〕

第1図はこの発明の一実施例である電流検出用ソース電
極を右する半導体装置を示J断面図である。この断面図
は、従来の第3図のI−I断面図に相当する。111図
に示づ−ように、少数(図中2つ)のMO3F[ETセ
ル17上に第1の電流検出用ソース電極材20が形成さ
れ、その他のM OS F ETセル17上には出力用
ソース電極1が形成されている。ざらに、第2の電流検
出用ソース電極月21が第1の電流検出用ソース電極材
20上に積層されるとともに、ポンディングパッド部り
a内において、絶縁膜6を介して出力用ソース電極1上
にも形成されている。この絶縁膜6は第1の電流検出用
ソース電極材20と出力用ソース電極1間にし形成され
、両者1.20を絶縁分離している。他の構成は従来と
同じであるため説明は省略でる。
FIG. 1 is a cross-sectional view of a semiconductor device showing a current detection source electrode according to an embodiment of the present invention. This sectional view corresponds to the conventional sectional view taken along line II in FIG. As shown in Figure 111, the first current detection source electrode material 20 is formed on a small number (two in the figure) of MOSFET cells 17, and the A source electrode 1 is formed. Roughly speaking, the second current detection source electrode material 21 is laminated on the first current detection source electrode material 20, and the output source electrode 21 is laminated on the first current detection source electrode material 20, and the output source electrode 21 is laminated on the first current detection source electrode material 20. It is also formed on 1. This insulating film 6 is formed between the first current detection source electrode material 20 and the output source electrode 1, and insulates and separates both. The other configurations are the same as the conventional ones, so the explanation is omitted.

このにうに構成することで、第1の電流検出用ソース電
極t420に接続されるMO3FETセル17の数を少
なくしても、第1及び第2の電流検出用ソース電極材2
0.21により電流検出用ソース電極2を形成すること
で、十分な大きさのワイヤボンディング部2aを確保す
ることができる。
With this configuration, even if the number of MO3FET cells 17 connected to the first current detection source electrode t420 is reduced, the first and second current detection source electrode materials 2
By forming the current detection source electrode 2 with a thickness of 0.21, a sufficiently large wire bonding portion 2a can be secured.

従って、電流検出用ソース電極材20を設けることによ
る出力用ソース電極1を流れる電流量の減少を最小限に
抑えるとともに、十分な広さのワイヤボンディング領域
を確保できる。
Therefore, a reduction in the amount of current flowing through the output source electrode 1 due to the provision of the current detection source electrode material 20 can be minimized, and a sufficiently large wire bonding area can be secured.

また、第2の電流検出用ソース電極材21を第1の電流
検出用ソース電極材20上あるいは絶縁膜6を介して出
力用ソース″市極1上に形成することで電極材料の厚み
が増すため、ボンディング時における活性層(p+拡散
層12.n+拡散層13)へのダメージを軽減させる効
果もある。この効果は、第2の?fi流検出用ソース電
極月21どしてΔA−8i、にり柔かいAi等を用いる
ことでざらに向上づる。また、AIはAl−5;より伝
導率が高いという利点も有している。
Furthermore, by forming the second current detection source electrode material 21 on the first current detection source electrode material 20 or on the output source electrode 1 via the insulating film 6, the thickness of the electrode material increases. Therefore, it has the effect of reducing damage to the active layer (p+ diffusion layer 12, n+ diffusion layer 13) during bonding. This can be improved by using a soft material such as Al.Al-5 also has the advantage of higher conductivity than Al-5.

なお、この実施例では、電流検出用ソース電極の構造を
改良した崖導体装置について述べたが、第2図に示すよ
うにゲート電極3の構造を改良づ゛ることも考えられる
。第2図に示すように少数(図中1つ)のポリシリコン
ゲート15上に第1のゲート電極材30が形成されるこ
とでポリシリコンゲート15と電気的接続されている。
Although this embodiment describes a cliff conductor device in which the structure of the current detection source electrode is improved, it is also possible to improve the structure of the gate electrode 3 as shown in FIG. As shown in FIG. 2, a first gate electrode material 30 is formed on a small number (one in the figure) of polysilicon gates 15 to electrically connect them to the polysilicon gates 15.

そして、第2のゲート電極材31が第1のゲート電極材
30上に積層されると共に、ポンディングパッド部り0
a内において、絶縁膜6を介して出力用ソース電極1上
に形成される。他の構成は第1図と同様である。このよ
うに構成することで、ポリシリコンゲート15との電気
的接続箇所が少くとも、十分なワイヤボンディング領域
を有するゲート電極3が形成できる。
Then, the second gate electrode material 31 is laminated on the first gate electrode material 30, and the bonding pad portion is
A is formed on the output source electrode 1 with an insulating film 6 interposed therebetween. The other configurations are the same as in FIG. 1. With this configuration, it is possible to form the gate electrode 3 having at least a sufficient wire bonding area at the electrical connection point with the polysilicon gate 15.

また、MOSFETに限らずバイポーラトランジスタや
l G B T等の他の種類の半導体装置について゛し
、基板表面に複数の電極を有するものであれば広くこの
発明を適用することかできる。
Furthermore, the present invention is widely applicable not only to MOSFETs but also to other types of semiconductor devices such as bipolar transistors and 1GBTs, as long as they have a plurality of electrodes on the substrate surface.

〔発明の効果] 以上説明したように、この発明によれば、電極の一部を
、他の゛上極−ヒに絶縁n9を介して形成することで、
半導体基板上に直)&形成される電極領域に加え、上記
した他の電極上の電極領域をワイヤポンディングパッド
領域とづることができるため、この電極は、半導体基板
内の活性層との接続状態に関係なく十分な広さのワイヤ
ボンディング領域を形成することができる効果がある。
[Effects of the Invention] As explained above, according to the present invention, by forming a part of the electrode on the other upper electrode via the insulation n9,
In addition to the electrode area formed directly on the semiconductor substrate, the electrode area on the other electrodes mentioned above can be referred to as the wire bonding pad area, so that this electrode can be used for connection with the active layer within the semiconductor substrate. This has the advantage that a wire bonding area of sufficient size can be formed regardless of the state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例である半導体装置を示す断
面図、第2図はこの発明の他の実施例である半導体装置
を示す断面図、第3図は従来の半導体装置を示寸平面図
、第4図は第3図の半導体装置のi−I断面図である。 図において、1は出ツノ用ソース電極、2は電流検出用
ソース電極、6は絶縁膜、20は第1の電流検出用ソー
ス電極材、21は第2の電流検出用ソース電極材である
。 なお、各図中同一符号は同一または相当部分を示す。 代理人   大  岩  増  雄 第 図 a a 手続補正書(自発) 平成 ≠抑 1年 5月 8日 2、発明の名称 半導体装置 3、補正をする者 事件との関係  特許出願人 住 所    東京都千代田区丸の内二丁目2番3号名
 称  (601)三菱電機株式会社代表者 志 岐 
守 哉 4、代理人 5、補正の対象 明細書の[発明の詳細な説明の欄」並びに図面の第1図
、第3図及び第4図 6、補正の内容 (1)  明細書第2頁第1行ないし第2行の「4はガ
ラスコート、5は絶縁膜1を、[5はゲート・ソース間
絶縁部、6は絶縁膜]に訂正する。 (2)  明m書第2頁第9行、同第10行、同第12
 tl、同第20行、第3頁第2行ないし第3行。 同第17行及び第8頁第2行の「p+拡散層12」を、
   [p−拡散層12」に訂正する。 (3)  明細書第3頁第10行ないし第11行の[上
層部には2つずつ]を[内部には1に訂正する。 (4)  明細書第3頁第14の「ガラスコート4」を
、[絶縁1!i!6Jに訂正する。 (5)  明細書第3頁第8行ないし第11行の[この
ガラスコート4は・・・覆っている。」を削除する。 (6)  明細書第3頁第14行ないし第15行の「ポ
リシリコンゲート5」を、「ポリシリコンゲート15」
に訂正する。 (1)  明細書第4頁第1行の「及び」を、「または
1に訂正する。 (8)  明細書筒E3頁第17行のr30al゛を、
r3alに訂正り“る。 (9)  明細書第8頁第19行ないし第9頁第2行の
[ポリシリコンゲート15との・・・形成できる。 」を、[ボンゲイングパッド部りa内にす、MOS F
 E Tヒルを形成することが可能となるとともに、ゲ
ート抵抗を減少さぼることにもつながる。−1に訂正す
る。 (10)図面の第1図、第3図および第4図を別紙の通
り補正する。 以上 第 図 a N!−〇
FIG. 1 is a sectional view showing a semiconductor device which is an embodiment of the present invention, FIG. 2 is a sectional view showing a semiconductor device which is another embodiment of the invention, and FIG. 3 is a sectional view showing a conventional semiconductor device. The plan view, FIG. 4, is a sectional view taken along line i--I of the semiconductor device shown in FIG. In the figure, reference numeral 1 denotes a source electrode for output, 2 a source electrode for current detection, 6 an insulating film, 20 a first source electrode material for current detection, and 21 a second source electrode material for current detection. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa Diagram a a Procedural amendment (voluntary) May 8, 1999 2 Name of the invention Semiconductor device 3 Relationship to the case of the person making the amendment Patent applicant address Chiyoda, Tokyo 2-2-3 Marunouchi Ward Name (601) Mitsubishi Electric Corporation Representative Shiki
Moriya 4, Agent 5, [Detailed description of the invention column] of the specification to be amended, Figures 1, 3 and 4 of the drawings 6, Contents of the amendment (1) Page 2 of the specification In the first and second lines, "4 is the glass coat, 5 is the insulating film 1, [5 is the gate-source insulating part, 6 is the insulating film]". (2) Memorandum, page 2 9th line, 10th line, 12th line
tl, line 20, page 3, lines 2 and 3. "p+ diffusion layer 12" in line 17 and line 2 of page 8,
Corrected to "p-diffusion layer 12". (3) In lines 10 and 11 of page 3 of the specification, [2 each in the upper part] is corrected to [1 in the inside]. (4) Add "Glass Coat 4" on page 3, No. 14 of the specification to [Insulation 1! i! Corrected to 6J. (5) [This glass coat 4 covers...] on page 3 of the specification, lines 8 to 11. ” to be deleted. (6) "Polysilicon gate 5" on page 3, line 14 to line 15 of the specification is replaced with "polysilicon gate 15".
Correct. (1) Correct “and” in the first line of page 4 of the specification to “or 1.” (8) Correct r30al゛ in line 17 of page 3 of the specification tube E.
(9) From page 8, line 19 to page 9, line 2 of the specification, [can be formed with polysilicon gate 15] has been changed to [in bonding pad area a]. Nisu, MOS F
This makes it possible to form an ET hill and also leads to a reduction in gate resistance. Correct to -1. (10) Figures 1, 3, and 4 of the drawings will be corrected as shown in the attached sheet. Above is Figure a N! −〇

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板上に複数の電極を有する半導体装置に
おいて、 前記複数の電極のうち、少なくとも1つの電極が絶縁膜
を介して他の電極上に形成されることを特徴とする半導
体装置。
(1) A semiconductor device having a plurality of electrodes on a semiconductor substrate, wherein at least one electrode among the plurality of electrodes is formed on another electrode with an insulating film interposed therebetween.
JP63204397A 1988-08-17 1988-08-17 Semiconductor device Pending JPH0252468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63204397A JPH0252468A (en) 1988-08-17 1988-08-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63204397A JPH0252468A (en) 1988-08-17 1988-08-17 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0252468A true JPH0252468A (en) 1990-02-22

Family

ID=16489865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63204397A Pending JPH0252468A (en) 1988-08-17 1988-08-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0252468A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394472A (en) * 1989-09-06 1991-04-19 Matsushita Electron Corp Vertical type mos field-effect transistor
JP2002314086A (en) * 2001-04-13 2002-10-25 Sanyo Electric Co Ltd Mosfet
JP2009105177A (en) * 2007-10-23 2009-05-14 Shindengen Electric Mfg Co Ltd Semiconductor device
JP2009194330A (en) * 2008-02-18 2009-08-27 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
WO2020250869A1 (en) * 2019-06-14 2020-12-17 日立オートモティブシステムズ株式会社 Semiconductor device
EP3817039A4 (en) * 2019-02-07 2021-12-08 Fuji Electric Co., Ltd. Semiconductor device
JP2022527399A (en) * 2019-04-11 2022-06-01 ウルフスピード インコーポレイテッド Transistor semiconductor die with increased working area

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394472A (en) * 1989-09-06 1991-04-19 Matsushita Electron Corp Vertical type mos field-effect transistor
JP2002314086A (en) * 2001-04-13 2002-10-25 Sanyo Electric Co Ltd Mosfet
JP2009105177A (en) * 2007-10-23 2009-05-14 Shindengen Electric Mfg Co Ltd Semiconductor device
JP2009194330A (en) * 2008-02-18 2009-08-27 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
EP3817039A4 (en) * 2019-02-07 2021-12-08 Fuji Electric Co., Ltd. Semiconductor device
JP2022527399A (en) * 2019-04-11 2022-06-01 ウルフスピード インコーポレイテッド Transistor semiconductor die with increased working area
WO2020250869A1 (en) * 2019-06-14 2020-12-17 日立オートモティブシステムズ株式会社 Semiconductor device
JP2020205298A (en) * 2019-06-14 2020-12-24 日立オートモティブシステムズ株式会社 Semiconductor device
US20220359694A1 (en) * 2019-06-14 2022-11-10 Hitachi Astemo, Ltd. Semiconductor device
EP3985716A4 (en) * 2019-06-14 2023-06-28 Hitachi Astemo, Ltd. Semiconductor device
US11855166B2 (en) 2019-06-14 2023-12-26 Hitachi Astemo, Ltd. Semiconductor device including sub-cell disposed at chip center

Similar Documents

Publication Publication Date Title
JP5008840B2 (en) Semiconductor device
TW366590B (en) Insulated gate semiconductor
JPH0252468A (en) Semiconductor device
JP2003101025A (en) Semiconductor device
JPS6354762A (en) Semiconductor integrated circuit device
JPS6348182B2 (en)
JPS634666A (en) Semiconductor integrated circuit device
JPH0278230A (en) Semiconductor integrated circuit device
JPH0666412B2 (en) Stacked semiconductor integrated circuit
JPS5935452A (en) Semiconductor integrated circuit device
JPS58107649A (en) Semiconductor integrated circuit device
JPS63275158A (en) Semiconductor device
JPS6325962A (en) Semiconductor integrated circuit device
JPS58142579A (en) Mos transistor
JPS60128655A (en) Semiconductor device
JP2892673B2 (en) Semiconductor device
JPH01185974A (en) Mis-fet
JPS61156854A (en) Input protection circuit for cmos semiconductor device
JPS62291056A (en) Semiconductor device
JP2996346B2 (en) MOS integrated circuit
JP2585633B2 (en) Semiconductor device
JPS61125047A (en) Semiconductor integrated circuit device
KR940008101A (en) Semiconductor memory device and manufacturing method
JPH0430531A (en) Semiconductor integrated circuit
JPS5864069A (en) Semiconductor device and manufacture thereof