JPH0430531A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH0430531A
JPH0430531A JP13875290A JP13875290A JPH0430531A JP H0430531 A JPH0430531 A JP H0430531A JP 13875290 A JP13875290 A JP 13875290A JP 13875290 A JP13875290 A JP 13875290A JP H0430531 A JPH0430531 A JP H0430531A
Authority
JP
Japan
Prior art keywords
wiring
potential
insulating film
side wiring
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13875290A
Other languages
Japanese (ja)
Inventor
Kazuo Kaneko
和夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP13875290A priority Critical patent/JPH0430531A/en
Publication of JPH0430531A publication Critical patent/JPH0430531A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent disconnection due to corrosion by a method wherein an interruption wiring put in a floating state whereon no potential is impressed is disposed on an insulating film between a low-potential-side wiring and a high-potential-side wiring. CONSTITUTION:With bias impression on a low-potential-side wiring 2 and a high-potential-side wiring 3, movable ions in an electrolyte solution are to move respectively. An interruption wiring 5 is disposed between the low-potential-side wiring 2 and the high-potential-side wiring 3 and the movable ions can not move through an interface between the interruption wiring 5 and an insulating film 1, since the adhesion of this wiring to the insulating film 1 is made stronger than that of a passivation film 4 to the insulating film 1 by annealing. The surface of the interruption wiring put in a floating state is made passive by an oxide film, and therefore an electric reaction can hardly occur. Therefore, the low-potential-side wiring 2 and the high-potential-side wiring 3 are put in a state of being insulated from each other by the interruption wiring held by a passive giobsite in the electrolyte solution. Accordingly, electrolytic corrosion is suppressed and the deterioration and disconnection of the wirings 2 and 3 can be prevented.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はアルミ配線の電解腐食による不良発生を防止で
きる半導体集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a semiconductor integrated circuit that can prevent defects caused by electrolytic corrosion of aluminum wiring.

(ロ)従来の技術 半導体素子の配線金属として、アルミニウムはオーミッ
ク性が容易に得られる、電気伝導性が良い、低コストで
あるなどの点でもっとも多く用いられている。素子内部
の構造は、第3図に示す如< Sin、やポリイミド系
樹脂から成る絶縁膜(1)表面をアルミ(Al)又はア
ルミ・シリフン(Al−5i)から成る配線(2)(3
)を延在きせたもので、配線(2)(3)は絶縁膜(1
)に開けられたコンタクトホールを介してその下の基板
表面に設けられた拡散領域とオーミックコンタクトし、
所望の回路接続を行なうようになっている。多層配線構
造では、配線(2)(3)の絶縁膜(1)に開けられた
スルーホールを介してその下の配線層と電気接続するこ
とになる。そして、配線(2>(3)の表面はSin、
やポリイミド系樹脂等のパッシベーション被膜(4)で
覆われている。
(B) Prior Art Aluminum is most often used as a wiring metal for semiconductor devices because it can easily obtain ohmic properties, has good electrical conductivity, and is low cost. The internal structure of the element is as shown in Figure 3. The surface of an insulating film (1) made of Sin or polyimide resin is covered with wiring (2) (3) made of aluminum (Al) or aluminum silicon (Al-5i).
) is extended, and the wiring (2) and (3) are insulating film (1
) makes ohmic contact with the diffusion region provided on the substrate surface below through the contact hole opened in
The desired circuit connections are made. In the multilayer wiring structure, the wirings (2) and (3) are electrically connected to the underlying wiring layer through through holes formed in the insulating film (1). Then, the surface of the wiring (2>(3) is Sin,
It is covered with a passivation film (4) made of polyimide resin or the like.

(ハ〉発明が解決しようとする課題 しかしながら、隣接する配線(2)(3)間に例えばy
 ccとGNDの如きバイアス電圧が印加された場合、
樹脂中に含まれる又は外部より侵入した水分と、樹脂中
に含まれる可動イオンにより配線り2)(3)間に電解
質溶液が生じ、前記バイアス印加に伴うリーク電流の作
用によって電気分解が生じることに起因し、 高電位側配線(3)では AN +4C1−→AjICj24−+3eAIC1m
−+5uzo−Affi (OH)、+3H“+4C!
−・・・(1)なる反応式で、低電位側配線(2)では
Aj!+3(OH>−=Aj!(OH)s+3e  ・
=・”・””・”<2)なる反応式で電解腐食が発生す
るのである。このようなAffiの腐食は、ポンディン
グパッド部の例であるが例えば特開昭63−17953
8号に記載されている。
(C) Problem to be solved by the invention However, for example, between the adjacent wirings (2) and (3)
When a bias voltage such as cc and GND is applied,
Moisture contained in the resin or invaded from the outside and mobile ions contained in the resin generate an electrolyte solution between wiring lines 2) and 3), and electrolysis occurs due to the action of leakage current accompanying the bias application. Due to this, in the high potential side wiring (3), AN +4C1-→AjICj24-+3eAIC1m
-+5uzo-Affi (OH), +3H"+4C!
-...(1) In the reaction formula, Aj! on the low potential side wiring (2)! +3(OH>-=Aj!(OH)s+3e ・
Electrolytic corrosion occurs according to the reaction formula =・”・””・”<2). Such corrosion of Affi is an example of the bonding pad part, and for example,
It is stated in No. 8.

また、絶縁膜(1)やパッシベーション被膜(4)とし
て段差の被覆性、コスト、および工程の簡素化に優れた
ポリイミド系樹脂を用いると、上述した腐食が著しい。
Further, if polyimide resin, which is excellent in step coverage, cost, and process simplification, is used as the insulating film (1) or the passivation film (4), the above-mentioned corrosion is significant.

理由は、第1にポリイミド系樹脂の耐湿性自体がシリコ
ン窒化膜(SiN)等のものより劣ること、第2にポリ
イミド系樹脂表面にアルミとの密着性を向上する目的で
アルミ堆積前に処す粗面処理(逆スパッタ等)によって
絶縁膜(1〉表面に導電層(カーボン等)が形成され、
前記電解イオンが移動しやすい状態であること、である
The reason is that firstly, the moisture resistance of polyimide resin itself is inferior to that of silicon nitride (SiN) films, etc., and secondly, the polyimide resin surface is treated before aluminum is deposited in order to improve its adhesion with aluminum. A conductive layer (carbon, etc.) is formed on the surface of the insulating film (1) by roughening (reverse sputtering, etc.),
The electrolytic ions are in a state where they are easy to move.

このような電解腐食による断線を防止するため、従来は
低電位側配線(2〉と高電位側配線(3)との距離を広
くとることで対応していたが、チップサイズが大きくな
る欠点を有していた。
In order to prevent such disconnection due to electrolytic corrosion, the conventional method was to widen the distance between the low potential side wiring (2) and the high potential side wiring (3), but this method had the drawback of increasing the chip size. had.

(ニ)課題を解決するための手段 本発明は上記従来の欠点に鑑み成されたもので、低電位
側配線(2)と高電位側配線(3〉との間の絶縁膜(1
〉上に、何の電位も印加しないフローティング状態とし
た遮断配線(5)を配置することにより、腐食による断
線を防止できる半導体集積回路を提供するものである。
(d) Means for Solving the Problems The present invention has been made in view of the above-mentioned drawbacks of the conventional art.
By arranging a cutoff wiring (5) in a floating state with no potential applied thereon, a semiconductor integrated circuit is provided in which disconnection due to corrosion can be prevented.

(*〉作用 本発明によれば、遮断配線(5)のA2表面は通常の条
件下で表面が酸化物被膜で不働態化されており、且つ絶
縁膜(1)との密着力は絶縁膜(1)とパッシベーショ
ン被膜(4)のものより強固である。そのため、主に絶
縁膜(1)表面を流れるリーク電流の導通路に遮断配線
(5)による絶縁物が配置きれたのに等しく、前記リー
ク電流を抑制できるので、腐食反応も抑制できる。
(*> Function) According to the present invention, the A2 surface of the cutoff wiring (5) is passivated with an oxide film under normal conditions, and the adhesion with the insulating film (1) is as low as that of the insulating film. It is stronger than the passivation film (1) and the passivation film (4).Therefore, it is equivalent to placing the insulator by the cutoff wiring (5) in the conduction path of the leakage current that mainly flows on the surface of the insulating film (1). Since the leakage current can be suppressed, corrosion reactions can also be suppressed.

〈へ)実施例 以下に本発明の一実施例を図面を参照しながら詳細に説
明する。
<Example> An example of the present invention will be described below in detail with reference to the drawings.

第1図と第2図は夫々本発明の配線構造を示す平面図と
断面図である。以下、配線層が多層配線の2層目配線で
ある構造を例にとる。
FIG. 1 and FIG. 2 are a plan view and a cross-sectional view, respectively, showing the wiring structure of the present invention. Hereinafter, a structure in which the wiring layer is a second layer wiring of a multilayer wiring will be taken as an example.

図示せぬ半導体チップの表面には選択拡散によって多数
の回路素子(トランジスタ、抵抗等)が作り込まれ、チ
ップ表面を覆う酸化膜を開孔したコンタクトホールを介
して第1層の配線層が不純物拡散領域とフンタクトする
。前記第1層目配線を覆うようにして層間絶縁膜(1)
が形成され、層間絶縁膜(1)上に第2の配線層によっ
て低電位側配線(2)と高電位側配線(3)とが形成き
れる。前記第1の配線層と第2の配線層とは、層間絶縁
膜(1)を開口したスルーホールを介してコンタクトし
、前記回路素子の相互接続をとる。前記第2の配線層の
表面は、パッシベーション被膜(4)で覆われる。
A large number of circuit elements (transistors, resistors, etc.) are built into the surface of a semiconductor chip (not shown) by selective diffusion, and the first wiring layer is exposed to impurities through contact holes in the oxide film covering the chip surface. Interact with the diffusion area. An interlayer insulating film (1) covering the first layer wiring
is formed, and a low potential side wiring (2) and a high potential side wiring (3) are completed by the second wiring layer on the interlayer insulating film (1). The first wiring layer and the second wiring layer are in contact with each other via a through hole opened in the interlayer insulating film (1), and the circuit elements are interconnected. The surface of the second wiring layer is covered with a passivation film (4).

前記層間絶縁膜(1)は、CVD法によるシリコン酸化
膜を用いる他、スピンオン塗布法によるポリイミド系絶
縁膜を用いることもできる。この場合、アルミとの密着
性を向上する目的で層間絶縁膜(1)表面に粗面化処理
を処す。手法は逆スパッタ等である。そして粗面化いれ
た層間絶縁膜(1)上に蒸着又はスパッタ法により八!
又はAN −5iを堆積し、これをバターニングするこ
とで前記第2の配線層を形成する。層間絶縁膜(1)が
ポリイミドであれば、最終パッシベーション被膜(4〉
もボッイミド系絶縁膜とする。
The interlayer insulating film (1) may be a silicon oxide film formed by CVD, or may be a polyimide insulating film formed by spin-on coating. In this case, the surface of the interlayer insulating film (1) is roughened in order to improve its adhesion to aluminum. The method is reverse sputtering, etc. Then, on the roughened interlayer insulating film (1), vapor deposition or sputtering is performed.
Alternatively, the second wiring layer is formed by depositing AN-5i and patterning it. If the interlayer insulating film (1) is polyimide, the final passivation film (4)
Also, a boimide insulating film is used.

上記第2の配線による低電位側配線(2)と高電位側配
線(3)は、動作時に夫々接地電位(GND)と電源電
位(VcC)の如き電位が印加され、両者間に電位差が
生ずるものである。このように電位差がある配線が近接
配置されることは、半導体チップのパターン設計上比較
的多くみられる。
During operation, potentials such as ground potential (GND) and power supply potential (VcC) are applied to the low potential side wiring (2) and high potential side wiring (3) of the second wiring, respectively, and a potential difference occurs between them. It is something. In pattern design of semiconductor chips, it is relatively common for wiring lines with potential differences to be placed close to each other in this manner.

近接配置を全く無くすことは、パターン設計に多大な制
約を与えることになる。
Eliminating close placement at all would place significant restrictions on pattern design.

そして、近接配置された低電位側配線(2)と高電位側
配線(3)との間の絶縁膜(1)表面に、前記第2の配
線層のパターニングと同時に遮断配線(5)を形成する
。遮断配線(5)はどこにも結線せず、何の電位も印加
しないフローティング状態とする。線幅は任意である。
Then, at the same time as patterning the second wiring layer, a cutoff wiring (5) is formed on the surface of the insulating film (1) between the low potential side wiring (2) and the high potential side wiring (3) arranged in close proximity. do. The cutoff wiring (5) is not connected anywhere and is in a floating state with no potential applied. Line width is arbitrary.

また、低電位側配線(2)と高電位側配線(3)とが近
接した部分にのみ延在させれば良い。
Moreover, it is sufficient to extend only the portion where the low potential side wiring (2) and the high potential side wiring (3) are close to each other.

上述した本発明の配線構造においては、低電位側配線(
2)と高電位側配線(3)とのバイアス印加に伴い電解
質溶液中の可動イオン((J−、Na′″等)が夫々に
移動しようとする。移動ルートは絶縁膜(1)表面の界
面が主である。ところが、低電位側配線(2〉と高電位
側配線(3)との間には遮断配線(5)が配置され、遮
断配線(5)はアニール処理によって絶縁膜(1)とパ
ッシベーション被膜(4)との密着より強固に絶縁膜(
1)と密着しているので、前記可動イオンは遮断配線(
5)と絶縁膜(1)との界面を移動できない0分子径が
大き過ぎるのである。又電位的にフローティングされた
遮断配線の表面は、酸化物被膜で不働態化きれているた
め、電気的反応が行なわれにくい。このため、低電位側
配線(2)と高電位側配線(3)の間は、その電解質溶
液中に、不働態ギブサイトに保護された遮断配線で、絶
縁された状態になっている。従って、画電極(2)(3
)間の可動イオンの移動を阻止できるので、(1)(2
)式の電解腐食を抑制し、配線(2)(3)の劣化、断
線を防止できるのである。高温高湿状態で動作試験を行
なうTHB試験においても、本願発明は優れた効果をも
たらすことが確認された。
In the wiring structure of the present invention described above, the low potential side wiring (
2) and the high potential side wiring (3), mobile ions ((J-, Na''', etc.) in the electrolyte solution try to move to each other.The migration route is along the surface of the insulating film (1). However, a cut-off wire (5) is arranged between the low-potential side wire (2) and the high-potential side wire (3), and the cut-off wire (5) is coated with an insulating film (1) by annealing. ) and the passivation film (4), the insulation film (
1), the mobile ions are in close contact with the cutoff wiring (
5) and the insulating film (1), the diameter of the molecule is too large. Furthermore, since the surface of the electrically floating cutoff wiring is completely passivated with an oxide film, electrical reactions are difficult to occur. Therefore, the low potential side wiring (2) and the high potential side wiring (3) are insulated by a cutoff wiring protected by passive gibbsite in the electrolyte solution. Therefore, picture electrodes (2) (3
) can prevent the movement of mobile ions between (1) and (2).
) type electrolytic corrosion can be suppressed, and deterioration and disconnection of wiring (2) and (3) can be prevented. It was confirmed that the present invention has excellent effects also in the THB test, which is an operation test conducted under high temperature and high humidity conditions.

(ト)発明の効果 以上に説明した通り、本発明は遮断配線(5)をダムと
して可動イオンの界面での移動を阻止できるので、腐食
反応を抑制し配、1(2)(3)の劣化、断線を防止で
きる利点を有する。従って、耐湿性の高い半導体装置を
提供できる利点をも有する。また、低電位側配線(2)
と高電位側配線(3)との間を広くする必要がないので
、チップサイズの縮手にも寄与できる利点をも有する。
(G) Effects of the Invention As explained above, the present invention can prevent the movement of mobile ions at the interface by using the cutoff wiring (5) as a dam. It has the advantage of preventing deterioration and disconnection. Therefore, it also has the advantage of providing a semiconductor device with high moisture resistance. Also, low potential side wiring (2)
Since there is no need to widen the space between the wire and the high potential side wiring (3), it also has the advantage of contributing to reduction in chip size.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は夫々本発明を説明する為の平面図と断
面図、第3図は従来例を説明する為の断面図である。
1 and 2 are a plan view and a sectional view, respectively, for explaining the present invention, and FIG. 3 is a sectional view for explaining a conventional example.

Claims (3)

【特許請求の範囲】[Claims] (1)アルミニウムを主体とする導電材料から成り、異
った電位が与えられる2つの配線が互いに隣接して絶縁
膜上を延在する半導体集積回路において、 前記2つの配線の高電位側配線と低電位側配線との間の
前記絶縁膜上に、前記導電材料から成り何の電位も印加
しないフローティング状態とした遮断配線を配置したこ
とを特徴とする半導体集積回路。
(1) In a semiconductor integrated circuit in which two wirings made of a conductive material mainly made of aluminum and to which different potentials are applied extend adjacent to each other on an insulating film, the high-potential side wiring of the two wirings and A semiconductor integrated circuit characterized in that a cut-off wiring made of the conductive material and placed in a floating state to which no potential is applied is disposed on the insulating film between the wiring on the low potential side.
(2)前記絶縁膜はポリイミド系樹脂であることを特徴
とする請求項第1項に記載の半導体集積回路。
(2) The semiconductor integrated circuit according to claim 1, wherein the insulating film is made of polyimide resin.
(3)前記ポリイミド系樹脂の表面は逆スパッタによる
粗面化処理が処されていることを特徴とする請求項第1
項に記載の半導体集積回路。
(3) The surface of the polyimide resin is roughened by reverse sputtering.
The semiconductor integrated circuit described in .
JP13875290A 1990-05-28 1990-05-28 Semiconductor integrated circuit Pending JPH0430531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13875290A JPH0430531A (en) 1990-05-28 1990-05-28 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13875290A JPH0430531A (en) 1990-05-28 1990-05-28 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH0430531A true JPH0430531A (en) 1992-02-03

Family

ID=15229356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13875290A Pending JPH0430531A (en) 1990-05-28 1990-05-28 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0430531A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472305B2 (en) * 2009-08-19 2014-04-16 日本電気株式会社 Feed line structure, circuit board using the same, and EMI noise reduction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472305B2 (en) * 2009-08-19 2014-04-16 日本電気株式会社 Feed line structure, circuit board using the same, and EMI noise reduction method

Similar Documents

Publication Publication Date Title
US20070114577A1 (en) Semiconductor device
JPS6134967A (en) Input protecting structure for vlsi integrated circuit device
JP5040035B2 (en) Low on-resistance power FETs using fused metal layers
JP4058619B2 (en) Semiconductor wafer
JPH0430531A (en) Semiconductor integrated circuit
JPS6359257B2 (en)
JP2004186439A (en) Semiconductor device and method for manufacturing the same
KR910007513B1 (en) Wiring connection of semiconductor device
JPH01130545A (en) Resin-sealed type semiconductor device
JP2719569B2 (en) Semiconductor device
JP2881907B2 (en) Power semiconductor device
JPH0821584B2 (en) Semiconductor integrated circuit
JPS59154056A (en) Semiconductor device
JPH0587137B2 (en)
JP2776569B2 (en) Semiconductor device
JPS62104142A (en) Semiconductor device
JP2781688B2 (en) Semiconductor device
JPH01201964A (en) Semiconductor device
JPH0314050Y2 (en)
KR100728945B1 (en) A method for fabricating metal line
KR970024026A (en) A Conductive Device Structure that can be rendered Non-Conductive Using An Etch Process Operable in Predator System
JPH0122989B2 (en)
JPH0528044U (en) Semiconductor integrated circuit device
JPH0329361A (en) Semiconductor device
JPS62293670A (en) Semiconductor memory device