JPH0243738A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0243738A
JPH0243738A JP19412488A JP19412488A JPH0243738A JP H0243738 A JPH0243738 A JP H0243738A JP 19412488 A JP19412488 A JP 19412488A JP 19412488 A JP19412488 A JP 19412488A JP H0243738 A JPH0243738 A JP H0243738A
Authority
JP
Japan
Prior art keywords
film
region
conductivity type
impurity
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19412488A
Other languages
Japanese (ja)
Inventor
Tomoyuki Hikita
智之 疋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP19412488A priority Critical patent/JPH0243738A/en
Publication of JPH0243738A publication Critical patent/JPH0243738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To increase the concentration in an external base region, to make shallow the depth of an active base region, to make narrow the width of an emitter region and to increase the operating speed of a bipolar transistor by a method wherein the side surface of a poly Si film are oxidized, an impurity implanted in the poly Si film is diffused in a semiconductor layer to form the emitter region and the like. CONSTITUTION:A low-concentration second conductivity type impurity diffused region 7 is selectively formed on a first conductivity type semiconductor substrate 3, and after that, a poly Si film 8 and an Si nitride film 9 are formed one after the other on the whole surface. The films 8 and 9 are etched using a mask 10 of a prescribed pattern and a high-concentration second conductivity type impurity 11 is ion-implanted using the etching mask 10 as a mask. Moreover, after the mask 10 is removed, a heat treatment is performed, and subsequently, the whole is oxidized, a first conductivity type impurity 13 is ion- implanted in the film 8 through said film 9 and the impurity 13 in the film 8 is diffused in said region 7 by a heat treatment.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、半導体装置の製造方法に関し、特に、バイポ
ーラトランジスタのペース、エミッタ形成方法の改良を
目的とした半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a semiconductor device aimed at improving the pace and emitter formation method of a bipolar transistor.

〈従来の技術〉 従来の一般的なバイポーラトランジスタの製造方法につ
いて、第2図(a)〜Bd)を用いて説明する。
<Prior Art> A conventional general method for manufacturing a bipolar transistor will be described with reference to FIGS. 2(a) to 2(Bd).

まず、第2図(a)に示すように、P型半導体基板1上
に選択的に高濃度のN型不純物を拡散し、更に、全面に
低濃度のN型エピタキシャル層3を成長させ、高濃度の
N型埋込み層2を形成する。
First, as shown in FIG. 2(a), a highly concentrated N-type impurity is selectively diffused onto a P-type semiconductor substrate 1, and then a lightly-concentrated N-type epitaxial layer 3 is grown over the entire surface. A high concentration N-type buried layer 2 is formed.

次に、第2図(b)のごとく、素子分離を行うために、
P型不純物を拡散、又は選択酸化法による絶縁膜の形成
により素子分離領域4を形成し、高濃度N型埋込み層2
を有する島状のN型エピタキシャル層3とする。そして
、高濃度N型埋込み層2に達するように高濃度のN型不
純物を拡散し、コレクタ引き出し領域5を形成する。
Next, as shown in FIG. 2(b), in order to perform element isolation,
An element isolation region 4 is formed by diffusing P-type impurities or forming an insulating film by selective oxidation, and a high concentration N-type buried layer 2 is formed.
An island-shaped N-type epitaxial layer 3 is formed. Then, high concentration N type impurities are diffused so as to reach the high concentration N type buried layer 2, thereby forming the collector extraction region 5.

次に、第2図(C)に示すように、低濃度N型エピタキ
シャル層3に選択的にP型不純物拡散を行ってベース領
域12を形成し、続いてベース領域12中にN型不純物
を拡散してエミッタ領域14を形成して、NPN )ラ
ンジスタを完成させる。
Next, as shown in FIG. 2(C), a P-type impurity is selectively diffused into the low concentration N-type epitaxial layer 3 to form a base region 12, and then an N-type impurity is diffused into the base region 12. Diffusion forms an emitter region 14 to complete the NPN transistor.

その後、第2図(d)のように、エミッタ、ベース、コ
レクタ各領域上の絶縁膜6を除去して、それぞれにエミ
ッタ電極工5、ベース電極17、コレクタ電極16を形
成する。
Thereafter, as shown in FIG. 2(d), the insulating film 6 on each of the emitter, base, and collector regions is removed to form an emitter electrode 5, a base electrode 17, and a collector electrode 16, respectively.

〈発明が解決しようとする課題〉 バイポーラトランジスタの動作速度を決定する要因とし
ては、ベース電極下の外部ベース領域の不純物濃度と、
エミッタ領域底面に接するベース領域(以下「活性ベー
ス領域コと呼ぶ)の深さ、そして、エミッタ領域の↑冨
が挙げられ、速度を上げるためには、外部ベース領域の
濃度を高くし、活性ベース領域の深さを浅くし、工ばツ
タ領域の幅を狭くする必要がある。しかし、従来の製造
方法では、それらすべてを達成することは困難であり、
トランジスタの高速化の妨げとなっていた。
<Problems to be Solved by the Invention> The factors that determine the operating speed of a bipolar transistor are the impurity concentration of the external base region under the base electrode,
The depth of the base region in contact with the bottom surface of the emitter region (hereinafter referred to as the "active base region") and the upper limit of the emitter region are important. It is necessary to reduce the depth of the area and the width of the ivy area.However, it is difficult to achieve all of these using traditional manufacturing methods.
This was an obstacle to increasing the speed of transistors.

また、エミッタ領域上の絶縁膜にエミッタ電極とコンタ
クトをとるための開口部を形成する場合、ベース領域と
の短絡を避けるため位置合せのための余裕をとる必要が
あり、このことが微細化の妨げとなっていた。
Furthermore, when forming an opening in the insulating film on the emitter region to make contact with the emitter electrode, it is necessary to allow a margin for alignment to avoid shorting with the base region. It was a hindrance.

本発明は、上記問題点を解決した半導体装置の製造方法
を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing a semiconductor device that solves the above problems.

く課題を解決するための手段〉 第1導電型半導体基体上に選択的に低濃度の第2導電型
不純物拡散領域を形成し、その後、全面に多結晶シリコ
ン膜及びシリコン窒化膜を順次形成する。そして、上記
多結晶シリコン膜及びシリコン窒化膜を所定パターンの
マスクを用いてエツチングし、該エツチングマスクをマ
スクとして高濃度の第2導電型不純物をイオン注入する
。更に、上記エツチングマスクを除去した後、熱処理を
行い、続いて全体を酸化し、上記シリコン窒化膜を通し
て上記多結晶シリコン膜中に第1導電型の不純物をイオ
ン注入し、熱処理により該多結晶シリコン膜中の該第1
導電型不純物を上記低濃度の第2導電型不純物拡散領域
へ拡散することにより、自己整合的にエミッタが形成さ
れ、ベース領域に2種類の不純物濃度及び深さをもたせ
る。
Means for Solving the Problem> Selectively forming a low concentration impurity diffusion region of a second conductivity type on a semiconductor substrate of a first conductivity type, and then sequentially forming a polycrystalline silicon film and a silicon nitride film on the entire surface. . Then, the polycrystalline silicon film and the silicon nitride film are etched using a mask with a predetermined pattern, and high concentration second conductivity type impurities are ion-implanted using the etching mask as a mask. Furthermore, after removing the etching mask, heat treatment is performed, followed by oxidation of the entire film, and impurity ions of the first conductivity type are implanted into the polycrystalline silicon film through the silicon nitride film. the first in the membrane
By diffusing conductivity type impurities into the low concentration second conductivity type impurity diffusion region, an emitter is formed in a self-aligned manner, and the base region has two types of impurity concentrations and depths.

く作 用〉 本発明の半導体装置の製造方法を用いると、活性ベース
領域と外部ベース領域との不純物濃度を異ならしめるこ
とが可能であり、活性ベース領域の深さのみを浅くする
ことができる。
Effects> By using the method of manufacturing a semiconductor device of the present invention, it is possible to make the impurity concentrations of the active base region and the external base region different, and only the depth of the active base region can be made shallow.

また、エミッタ電極として用いる多結晶シリコン膜の側
面を選択酸化法によって酸化し、上記多結晶シリコン膜
中に打込んだ不純物を熱処理によって半導体層に拡散し
てエミッタ領域を形成するため、幅の狭いエミッタ領域
の形成が可能であり、かつ、マスク合せのための余裕を
取る必要がない。
In addition, the sides of the polycrystalline silicon film used as the emitter electrode are oxidized by selective oxidation, and the impurities implanted into the polycrystalline silicon film are diffused into the semiconductor layer by heat treatment to form the emitter region. It is possible to form an emitter region, and there is no need to provide a margin for mask alignment.

〈実施例〉 第1図(a)〜(f)は本発明によるバイポーラトラン
ジスタの製造方法の一実施例を示す断面図である。
<Embodiment> FIGS. 1(a) to 1(f) are cross-sectional views showing an embodiment of the method for manufacturing a bipolar transistor according to the present invention.

第1図(a)では、従来の方法に基づいて、P型半導体
基板1表面上に高濃度のN型埋込み層2が選択的に形成
され、その上に素子分離領域4で囲まれた島状の低濃度
N型エピタキシャル層3が形成され、N型エピタキシャ
ル層3の表面からN型埋込み層2に達するようにN型の
コレクタ引き出し領域5が形成されている。その後、全
面に約3000λ程度のシリコン酸化膜6を設け、ベー
ス領域となる領域上とコレクタ引き出し領域上の一部の
シリコン酸化膜6を7オトレジストをマスクとして除去
し、続いて、このフォトレジストヲマスクとしてP型の
不純物、例えばボロンをイオン注入することにより、低
濃度のP型不純物領域7を形成する。このときのP型不
純物濃度は約10 ”cm −3であり、N型コレクタ
引き出し領域5にも一部注入されるが、低濃度であるた
め問題はない。
In FIG. 1(a), based on a conventional method, a highly concentrated N-type buried layer 2 is selectively formed on the surface of a P-type semiconductor substrate 1, and an island surrounded by an element isolation region 4 is formed thereon. A lightly doped N-type epitaxial layer 3 is formed, and an N-type collector extraction region 5 is formed so as to reach the N-type buried layer 2 from the surface of the N-type epitaxial layer 3. After that, a silicon oxide film 6 of about 3000λ is provided on the entire surface, and a part of the silicon oxide film 6 on the base region and the collector lead-out region is removed using the photoresist as a mask, and then this photoresist is removed. A low concentration P-type impurity region 7 is formed by ion-implanting a P-type impurity, for example, boron, using a mask. The P-type impurity concentration at this time is about 10''cm-3, and a portion of the P-type impurity is also implanted into the N-type collector lead-out region 5, but since the concentration is low, there is no problem.

次に、第1図(b)に示すように、全面に多結晶シリコ
ン膜8とシリコン窒化膜9を約1oooXずつ順次形成
する。更に、第1図(C)のように、エミッタ電極及び
コレクタ電極となる部分の多結晶シリコン膜8上をフォ
トレジス)10で覆い、これをマスクとしてシリコン窒
化膜9及び多結晶シリコン膜8を順次エツチングする。
Next, as shown in FIG. 1(b), a polycrystalline silicon film 8 and a silicon nitride film 9 are sequentially formed by approximately 100X over the entire surface. Furthermore, as shown in FIG. 1C, the portions of the polycrystalline silicon film 8 that will become the emitter and collector electrodes are covered with a photoresist (10), and using this as a mask, the silicon nitride film 9 and the polycrystalline silicon film 8 are coated. Etch sequentially.

そして、フォトレジスト10とシリコン酸化膜6をマス
クとしてP型不純物11、例えばボロンをイオン注入す
る。
Then, using the photoresist 10 and the silicon oxide film 6 as a mask, a P-type impurity 11, such as boron, is ion-implanted.

このとき、P型不純物濃度は先程のP型不純物領域7よ
りも高く、1019m−3〜1020m−3′程度であ
る。
At this time, the P-type impurity concentration is higher than that of the P-type impurity region 7 described earlier, and is about 1019 m-3 to 1020 m-3'.

7オトレジストlOを除去後、熱処理を行い、シリコン
窒化膜9を耐酸化性のマスクとして全面を酸化し、第1
図(d)のように、外部ベース領域12b1また、低濃
度のP型不純物領域7の部分は外部ペース領域12bと
比べて深く拡散されず、浅い活性ベース領域12aが形
成される。そして、多結晶シリコン膜8は、表面がシリ
コン窒化膜9で覆われているため酸化されず、側面のみ
が酸化されて小さくなるため、高濃度の外部ペース領域
12bからは離される。
7 After removing the photoresist 1O, heat treatment is performed to oxidize the entire surface using the silicon nitride film 9 as an oxidation-resistant mask.
As shown in FIG. 1D, the external base region 12b1 and the lightly doped P-type impurity region 7 are not diffused as deeply as the external space region 12b, forming a shallow active base region 12a. Since the surface of the polycrystalline silicon film 8 is covered with the silicon nitride film 9, it is not oxidized, and only the side surfaces are oxidized and become smaller, so that it is separated from the high concentration external space region 12b.

その後、N型不純物13、例えばひ素をシリコン窒化膜
9を通して多結晶シリコン膜8に注入する。熱処理を加
えることにより、第1図(e)の如く、エミッタ領域1
4が形成され、多結晶シリコン膜8はエミッタ電極15
.コレクタ電極16となる。
Thereafter, an N-type impurity 13, for example arsenic, is implanted into the polycrystalline silicon film 8 through the silicon nitride film 9. By applying heat treatment, the emitter region 1 is formed as shown in Fig. 1(e).
4 is formed, and the polycrystalline silicon film 8 serves as an emitter electrode 15.
.. This becomes the collector electrode 16.

シリコン窒化膜9を除去後、外部ベース領域12b上の
シリコン酸化膜6aを開口し、第1図<I)のように、
全面にアルミ基合金膜を8000〜1ooooX程度形
成し、所定のパターンにエツチングして、電極・配線領
域を形成する。
After removing the silicon nitride film 9, the silicon oxide film 6a on the external base region 12b is opened, and as shown in FIG.
An aluminum-based alloy film with a thickness of about 8000 to 100X is formed on the entire surface and etched into a predetermined pattern to form electrode/wiring regions.

上記説明はNPN)ランジスタについて述べたが、PN
Pトランジスタに於いても同様の効果が得られる。
The above explanation was about NPN) transistors, but PN
A similar effect can be obtained with a P transistor.

〈発明の効果〉 本発明によれば、外部ペース領域の濃度が低くならずベ
ース抵抗は高くならずに活性ベース領域を浅い接合とし
、またエミッタが自己整合的に形成できるため微細なエ
ミッタの形成が可能であり、工はツタ領域の幅を狭くす
ることによってベース抵抗が下げられ、高速性、高周波
性に優れたトランジスタを形成できる。
<Effects of the Invention> According to the present invention, the concentration of the external space region does not decrease, the base resistance does not increase, the active base region is formed into a shallow junction, and the emitter can be formed in a self-aligned manner, thereby making it possible to form a fine emitter. By narrowing the width of the ivy region, the base resistance can be lowered and a transistor with excellent high speed and high frequency performance can be formed.

更に、選択酸化法を用いて段差を少なくすることができ
平坦な素子構造を実現し、高集積なトランジスタを提供
しうる。
Further, by using a selective oxidation method, it is possible to reduce the step difference, realize a flat device structure, and provide a highly integrated transistor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f)は本発明の一実施例の製造工程を
示す断面図であり、第2図(a)〜(d)は従来の一般
的なバイポーラトランジスタの製造工程を示す断面図で
ある。 1・・・P型半導体基板、2・・・高濃度N型埋込み層
。 3・・・低濃度N型エピタキシャル層、4・・・素子分
離領域、5・・・高濃度N型コレクタ引き出し領域。 6.6a・・シリコン酸化膜、7・・・低濃度P型不純
物領域、8・・・多結晶シリコン膜、9・・・シリコン
窒化膜、10・・・フォトレジスト、11・・・P型不
純物。 12・・・ベース領域、12a・・・活性ベース領域。 12b・・・外部ペース領域、13・・・N型不純物、
14・・・エミッタ領域、15・・・エミッタ電極、1
6・・・コレクタ電極、17・・・ベース電極。 代理人 弁理士 杉 山 毅 至(他1名)園 第
FIGS. 1(a) to (f) are cross-sectional views showing the manufacturing process of an embodiment of the present invention, and FIGS. 2(a) to (d) are sectional views showing the manufacturing process of a conventional general bipolar transistor. FIG. 1... P-type semiconductor substrate, 2... High concentration N-type buried layer. 3...Low concentration N-type epitaxial layer, 4...Element isolation region, 5...High concentration N-type collector extraction region. 6.6a...Silicon oxide film, 7...Low concentration P type impurity region, 8...Polycrystalline silicon film, 9...Silicon nitride film, 10...Photoresist, 11...P type impurities. 12... Base region, 12a... Active base region. 12b...external pace region, 13...N-type impurity,
14... Emitter region, 15... Emitter electrode, 1
6...Collector electrode, 17...Base electrode. Agent Patent Attorney Takeshi Sugiyama (and 1 other person) Sonodai

Claims (1)

【特許請求の範囲】 1、第1導電型半導体基体上に選択的に低濃度の第2導
電型不純物拡散領域を形成し、その後、全面に多結晶シ
リコン膜及びシリコン窒化膜を順次形成する工程、 上記多結晶シリコン膜及びシリコン窒化膜を所定パター
ンのエッチングマスクを用いて順次エッチングし、更に
該エッチングマスクをマスクとして高濃度の第2導電型
不純物をイオン注入する工程、 上記エッチングマスクを除去した後、熱処理を行い、続
いて全体を酸化する工程、 上記シリコン窒化膜を通して上記多結晶シリコン膜中に
第1導電型の不純物をイオン注入し、熱処理により該多
結晶シリコン膜中の該第1導電型不純物を上記低濃度の
第2導電型不純物拡散領域へ拡散する工程からなること
を特徴とする、半導体装置の製造方法。
[Claims] 1. A step of selectively forming a low concentration impurity diffusion region of a second conductivity type on a semiconductor substrate of a first conductivity type, and then sequentially forming a polycrystalline silicon film and a silicon nitride film on the entire surface. , a step of sequentially etching the polycrystalline silicon film and the silicon nitride film using an etching mask with a predetermined pattern, and further ion-implanting a highly concentrated second conductivity type impurity using the etching mask as a mask; removing the etching mask; After that, a heat treatment is performed, followed by a step of oxidizing the whole, ion-implanting an impurity of a first conductivity type into the polycrystalline silicon film through the silicon nitride film, and a step of ion-implanting an impurity of a first conductivity type into the polycrystalline silicon film through the heat treatment. A method for manufacturing a semiconductor device, comprising the step of diffusing a type impurity into the low concentration second conductivity type impurity diffusion region.
JP19412488A 1988-08-03 1988-08-03 Manufacture of semiconductor device Pending JPH0243738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19412488A JPH0243738A (en) 1988-08-03 1988-08-03 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19412488A JPH0243738A (en) 1988-08-03 1988-08-03 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0243738A true JPH0243738A (en) 1990-02-14

Family

ID=16319309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19412488A Pending JPH0243738A (en) 1988-08-03 1988-08-03 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0243738A (en)

Similar Documents

Publication Publication Date Title
JPS5824018B2 (en) Bipolar IC manufacturing method
JPH0812865B2 (en) Bipolar transistor and manufacturing method thereof
JPH05160353A (en) Self-alignment type planer monolithic integrated circuit vertical type transistor process
JPH0611053B2 (en) Method for manufacturing semiconductor device
KR0172509B1 (en) Method of fabricating lateral bipolar transistor
JPH0243738A (en) Manufacture of semiconductor device
KR100267898B1 (en) Structure for and method of making a merged single polysilicon bipolar npn transistor
JP2890509B2 (en) Method for manufacturing semiconductor device
JP2633411B2 (en) Method for manufacturing semiconductor device
JPH0645341A (en) Manufacture of semiconductor device
JPH05235009A (en) Manufacture of semiconductor integrated circuit device
JPH02152240A (en) Manufacture of semiconductor device
JPS62281367A (en) Manufacture of semiconductor device
JPH0136709B2 (en)
JPH05211153A (en) Manufacture of semiconductor device
KR19980013700A (en) Semiconductor Transistor Manufacturing Method
JPS60140759A (en) Manufacture of semiconductor device
JPH03248423A (en) Manufacture of semiconductor device
JPS61184872A (en) Manufacture of semiconductor device
JPS639150A (en) Manufacture of semiconductor device
JPH02148847A (en) Manufacture of semiconductor device
JPH0258230A (en) Manufacture of bipolar transistor
JPH03152936A (en) Semiconductor integrated circuit device
JPS59161067A (en) Manufacture of bipolar type semiconductor device
JPS60113468A (en) Manufacture of semiconductor device