JPH0645341A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0645341A
JPH0645341A JP19934592A JP19934592A JPH0645341A JP H0645341 A JPH0645341 A JP H0645341A JP 19934592 A JP19934592 A JP 19934592A JP 19934592 A JP19934592 A JP 19934592A JP H0645341 A JPH0645341 A JP H0645341A
Authority
JP
Japan
Prior art keywords
insulating film
forming
film
polycrystalline silicon
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19934592A
Other languages
Japanese (ja)
Inventor
Masahiko Nakabayashi
昌彦 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19934592A priority Critical patent/JPH0645341A/en
Publication of JPH0645341A publication Critical patent/JPH0645341A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To form an element isolation area, base lead-out region, base and emitter regions in a self alignment manner, and reducing the area of the element, and integrating this device, and reduce base-emitter junction capacity, and increase the operation speed of a transistor. CONSTITUTION:An n-type buried layer 2 is formed on a p-type semiconductor substrate 1, and an n-type epitaxial layer 3 is grown all over the surface, and leaving an oxide film 5 only on the emitter formation part, a nitride film 6 is formed on the sidewall of the oxide film 5, and an oxide film 7 for element isolation is formed, and the nitride film 6 is removed. Next, a polycrystalline silicon 8 for base leadout is formed, and an insulating film is formed, and the insulating film on the oxide film 5 is removed, and an exposed oxide film 5 is removed, and the polycrystalline silicon on the sidewall is oxidized, and a base region 15 is formed by ion implantation, and a nitride film 19 is formed on the sidewall, and after removal of the oxide film on the base region 15, a polycrystalline silicon 16 is grown selectively, ions of arsenic are implanted and by the diffusion from the polycrystalline silicon 16, an emitter region 17 is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
係わり、特に高速性能を有するバイポーラトランジスタ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a bipolar transistor having high speed performance.

【0002】[0002]

【従来の技術】従来の半導体装置の製造工程を図4を用
いて説明する。
2. Description of the Related Art A conventional semiconductor device manufacturing process will be described with reference to FIG.

【0003】図4において、P型半導体基板1にN型埋
込層2を形成し、全面にN型エピタキシャル層3を成長
させ、素子分離領域20を形成した後、シリコン酸化膜
21を形成する(図4(a))。次に、フォトリソグラ
フィ及びエッチングによりベース部上のシリコン酸化膜
21を除去し、多結晶シリコン22を形成し、多結晶シ
リコン22にボロン等のP型不純物を導入し、その上に
シリコン窒化膜23を形成する(図4(b))。次に、
フォトリソグラフィ及びエッチングによりエミッタ及び
ベース形成部上のシリコン窒化膜23及び多結晶シリコ
ン22を除去し、熱処理を行い多結晶シリコン22から
ボロンを導入してベース引き出し領域12を形成した
後、ボロン等のP型不純物をイオン注入して、ベース領
域15を形成する(図4(c))。次に、全面にシリコ
ン窒化膜24を成長させ、異方性エッチングにより側壁
のみにシリコン窒化膜24を残し、多結晶シリコン16
をベース領域15上に選択成長させ、多結晶シリコン1
6に砒素等のN型不純物を導入し、熱処理により不純物
を拡散させエミッタ領域17を形成していた(図4
(d))。
In FIG. 4, an N type buried layer 2 is formed on a P type semiconductor substrate 1, an N type epitaxial layer 3 is grown on the entire surface, an element isolation region 20 is formed, and then a silicon oxide film 21 is formed. (FIG. 4 (a)). Next, the silicon oxide film 21 on the base portion is removed by photolithography and etching to form polycrystalline silicon 22, a P-type impurity such as boron is introduced into the polycrystalline silicon 22, and a silicon nitride film 23 is formed thereon. Are formed (FIG. 4B). next,
After removing the silicon nitride film 23 and the polycrystalline silicon 22 on the emitter and base forming portions by photolithography and etching and performing a heat treatment to introduce boron from the polycrystalline silicon 22 to form the base lead-out region 12, the boron and the like are removed. P-type impurities are ion-implanted to form the base region 15 (FIG. 4C). Next, a silicon nitride film 24 is grown on the entire surface, and the silicon nitride film 24 is left only on the sidewalls by anisotropic etching.
Is selectively grown on the base region 15, and polycrystalline silicon 1
An N-type impurity such as arsenic was introduced into 6 and the impurity was diffused by heat treatment to form the emitter region 17 (FIG. 4).
(D)).

【0004】[0004]

【発明が解決しようとする課題】この従来の半導体装置
では、素子分離領域、ベース引き出し領域とベースをそ
れぞれ別のフォトリソグラフィ工程で形成しているた
め、フォトリソグラフィ工程間の位置ずれを考慮し、余
裕のある素子設計をする必要があるので、素子面積及び
コレクタ−ベース間の接合容量が、大きくなり、高集積
化、高速化の妨げとなっている。
In this conventional semiconductor device, since the element isolation region, the base lead-out region and the base are formed in different photolithography processes, the positional deviation between the photolithography processes is taken into consideration. Since it is necessary to design the device with a margin, the device area and the junction capacitance between the collector and the base become large, which hinders high integration and high speed operation.

【0005】[0005]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、一導電型の半導体基板の一主面の素子領域に
反対導電型の埋込層を形成する工程と、前記半導体基板
の全面に反対導電型のエピタキシャル層を形成する工程
と、前記エピタキシャル層上に耐酸化性の第1の絶縁膜
を形成する工程と、前記第1の絶縁膜上に第2の絶縁膜
を形成する工程と、前記第2の絶縁膜を所定形状にパタ
ーニングする工程と、全面に第3の絶縁膜を形成し、異
方性エッチングにより、前記第2の絶縁膜の側壁部に前
記第3の絶縁膜を残し、前記第2の絶縁膜と前記第3の
絶縁膜の下部に第1の絶縁膜を残す工程と、酸化により
素子分離領域を形成する工程と、前記第3の絶縁膜及
び、その下部の前記第1の絶縁膜を除去する工程と、全
面に一導電型の不純物を含有する第1の多結晶シリコン
を形成する工程と、熱処理により、前記第1の多結晶シ
リコン中の一導電型の不純物を前記エピタキシャル層に
拡散させる工程と、全面に第4の絶縁膜を形成する工程
と、前記第2の絶縁膜上の前記第4の絶縁膜と前記第1
の多結晶シリコンを順次除去する工程と、露出した前記
第2の絶縁膜を除去し凹部を形成する工程と、前記凹部
底面に露出した前記第1の絶縁膜を除去する工程と、前
記凹部内に露出した前記1の多結晶シリコンと前記エピ
タキシャル層表面に、第1のシリコン酸化膜を形成する
工程と、前記エピタキシャル層に一導電型不純物を導入
し、ベース領域を形成する工程と、全面に第5の絶縁膜
を形成し、異方性エッチングにより、前記凹部の側壁以
外の前記第5の絶縁膜を除去し、前記凹部底面の前記第
1のシリコン酸化膜を除去する工程と、前記凹部に反対
導電型の不純物を含有する第2の多結晶シリコンを形成
する工程と、熱処理により、前記第2の多結晶シリコン
中の反対導電型の不純物をエピタキシャル層に拡散させ
エミッタ領域を形成する工程を有している。
A method of manufacturing a semiconductor device according to the present invention comprises a step of forming a buried layer of opposite conductivity type in an element region of one main surface of a semiconductor substrate of one conductivity type, and a step of forming the semiconductor substrate of the semiconductor substrate. Forming an epitaxial layer of opposite conductivity type on the entire surface, forming an oxidation resistant first insulating film on the epitaxial layer, and forming a second insulating film on the first insulating film Step, patterning the second insulating film into a predetermined shape, forming a third insulating film on the entire surface, and anisotropically etching the third insulating film on the side wall portion of the second insulating film. Leaving the film, leaving the first insulating film below the second insulating film and the third insulating film, forming an element isolation region by oxidation, the third insulating film, and A step of removing the first insulating film underneath, and a single conductivity type impurity on the entire surface. Forming a first polycrystalline silicon containing silicon, diffusing one conductivity type impurity in the first polycrystalline silicon into the epitaxial layer by heat treatment, and forming a fourth insulating film on the entire surface. Forming step, and the fourth insulating film and the first insulating film on the second insulating film.
The step of sequentially removing the polycrystalline silicon, the step of removing the exposed second insulating film to form a recess, the step of removing the first insulating film exposed on the bottom surface of the recess, and the step of Forming a first silicon oxide film on the exposed surface of the first polycrystalline silicon and the surface of the epitaxial layer; forming a base region by introducing one conductivity type impurity into the epitaxial layer; Forming a fifth insulating film, removing the fifth insulating film other than the side wall of the recess by anisotropic etching, and removing the first silicon oxide film on the bottom surface of the recess; A step of forming second polycrystalline silicon containing impurities of opposite conductivity type in the first and a heat treatment to diffuse impurities of opposite conductivity type in the second polycrystalline silicon into the epitaxial layer to form an emitter region. It has the step of.

【0006】[0006]

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0007】図1および図2は本発明の第1の一実施例
の製造方法について工程順に示す断面図である。尚、こ
こでは、コレクタ取り出し部は図示を省略している。
FIG. 1 and FIG. 2 are sectional views showing the manufacturing method of the first embodiment of the present invention in the order of steps. Here, the collector take-out section is not shown.

【0008】P型半導体基板1にN型半導体埋込層2を
形成し、全面にN型エピタキシャル層3を成長し、シリ
コン窒化膜4を成長する(図1(a))。
An N type semiconductor buried layer 2 is formed on a P type semiconductor substrate 1, an N type epitaxial layer 3 is grown on the entire surface, and a silicon nitride film 4 is grown (FIG. 1A).

【0009】次に、シリコン酸化膜5を全面に成長させ
た後、フォトリソグラフィ及び異方性エッチングによ
り、将来エミッタとなる部分上にのみシリコン酸化膜5
を残し、膜厚0.5μmのシリコン窒化膜6を成長させ
る(図1(b))。
Next, after the silicon oxide film 5 is grown on the entire surface, the silicon oxide film 5 is only formed on a portion which will be an emitter in the future by photolithography and anisotropic etching.
Is left to grow a silicon nitride film 6 having a film thickness of 0.5 μm (FIG. 1B).

【0010】次に、異方性エッチングにより、シリコン
酸化膜5の側壁部に幅0.5μmのシリコン窒化膜6が
残り、シリコン酸化膜5及びシリコン酸化膜5の側壁に
残るシリコン窒化膜の下部にシリコン窒化膜4が残るよ
うにエッチングする(図1(c))。
Next, by anisotropic etching, the silicon nitride film 6 having a width of 0.5 μm remains on the side wall of the silicon oxide film 5, and the silicon oxide film 5 and the lower part of the silicon nitride film left on the side wall of the silicon oxide film 5. Etching is performed so that the silicon nitride film 4 remains (FIG. 1C).

【0011】次に、5気圧、950℃の水蒸気雰囲気中
で70分酸化し、膜厚0.6μmのフィールド絶縁膜と
なるシリコン酸化膜7を形成する。このとき、シリコン
酸化膜7はシリコン窒化膜4の下に0.2μm食い込む
(図1(d))。
Then, the silicon oxide film 7 to be a field insulating film having a film thickness of 0.6 μm is formed by oxidizing for 70 minutes in a steam atmosphere of 950 ° C. and 5 atmospheres. At this time, the silicon oxide film 7 digs into the silicon nitride film 4 by 0.2 μm (FIG. 1D).

【0012】次に、シリコン酸化膜5の下部のみにシリ
コン窒化膜4が残るように、シリコン窒化膜6及びその
下のシリコン窒化膜4を除去すると、幅0.3μmのN
型エピタキシャル層3が露出する。次に、膜厚0.1μ
mのベース引き出し用の多結晶シリコン8を成長し、ボ
ロン等のP型不純物をイオン注入し、シリコン窒化膜9
を成長し、平坦化用のスピン・オン・グラス(SOG)
膜を塗布し、熱処理を行いSOG膜10を焼き固めると
同時に多結晶シリコン8よりボロンを拡散させベース引
き出し領域12を形成し、シリコン窒化膜11を成長す
る(図2(a))。
Next, the silicon nitride film 6 and the silicon nitride film 4 thereunder are removed so that the silicon nitride film 4 remains only under the silicon oxide film 5.
The type epitaxial layer 3 is exposed. Next, the film thickness is 0.1μ
Polycrystalline silicon 8 for extracting the base of m is grown, P-type impurities such as boron are ion-implanted, and silicon nitride film 9 is formed.
Spin-on-glass (SOG) for growing and flattening
A film is applied and heat treatment is performed to harden the SOG film 10, and at the same time, boron is diffused from the polycrystalline silicon 8 to form a base extraction region 12, and a silicon nitride film 11 is grown (FIG. 2A).

【0013】次に、フォトリソグラフィ及び異方性エッ
チングにより、シリコン酸化膜5上のシリコン窒化膜1
1、SOG膜10、シリコン窒化膜9及び多結晶シリコ
ン8を順次除去し、シリコン酸化膜5を露出させ、シリ
コン窒化膜13を全面に成長し、異方性エッチングによ
り、側壁にのみシリコン窒化膜13を残す(図2
(b))。
Next, the silicon nitride film 1 on the silicon oxide film 5 is formed by photolithography and anisotropic etching.
1, the SOG film 10, the silicon nitride film 9 and the polycrystalline silicon 8 are sequentially removed, the silicon oxide film 5 is exposed, and the silicon nitride film 13 is grown on the entire surface. Leave 13 (Fig. 2
(B)).

【0014】次に、シリコン酸化膜5及びシリコン窒化
膜4を順次除去し、露出した側壁部の多結晶シリコン8
が全てシリコン酸化膜になるように、露出した多結晶シ
リコン8及びN型エピタキシャル層3を5気圧、950
℃の水蒸気雰囲気中で15分酸化し、シリコン酸化膜1
4を形成し、ボロン等のP型不純物をイオン注入しベー
ス領域15を形成する(図2(c))。
Next, the silicon oxide film 5 and the silicon nitride film 4 are sequentially removed, and the exposed polycrystalline silicon film 8 on the side wall portion is removed.
Of the exposed polycrystalline silicon 8 and the N type epitaxial layer 3 at 5 atm for 950
Oxidation in steam atmosphere at ℃ for 15 minutes, silicon oxide film 1
4 is formed, and a P-type impurity such as boron is ion-implanted to form a base region 15 (FIG. 2C).

【0015】次に、全面にシリコン窒化膜19を成長
し、異方性エッチングにより側壁にのみシリコン窒化膜
19を残し、露出するシリコン酸化膜14を除去し、ベ
ース領域15を露出させ、多結晶シリコン16を露出し
たベース領域15上に選択成長させ、多結晶シリコン1
6に砒素等のN型不純物をイオン注入し、熱処理により
多結晶シリコン16から砒素を拡散させ、エミッタ領域
17を形成する(図2(d))。
Next, a silicon nitride film 19 is grown on the entire surface, the silicon nitride film 19 is left only on the sidewalls by anisotropic etching, the exposed silicon oxide film 14 is removed, and the base region 15 is exposed to form a polycrystal. The silicon 16 is selectively grown on the exposed base region 15, and polycrystalline silicon 1
An N-type impurity such as arsenic is ion-implanted in 6 and arsenic is diffused from the polycrystalline silicon 16 by heat treatment to form an emitter region 17 (FIG. 2 (d)).

【0016】図3は、本発明の第2の実施例の半導体装
置の製造工程断面図である。
FIG. 3 is a sectional view of a semiconductor device manufacturing process according to the second embodiment of the present invention.

【0017】図1の(a)〜(d),図2(a)〜
(b)までの第1の実施例の工程の後に、この第2の実
施例ではシリコン酸化膜5及びシリコン窒化膜4を順次
除去し、露出した側壁部の多結晶シリコン8が全てシリ
コン酸化膜になるように、露出した多結晶シリコン8及
びN型エピタキシャル層3を酸化し、シリコン酸化膜1
4を形成し、シリコン酸化膜14を除去し、ボロン濃度
4mol%のBSG膜18を成長する(図3(a))。
1A to 1D and 2A to 2D.
After the steps of the first embodiment up to (b), in this second embodiment, the silicon oxide film 5 and the silicon nitride film 4 are sequentially removed, and the exposed polycrystalline silicon 8 on the side wall is entirely the silicon oxide film. The exposed polycrystalline silicon 8 and the N-type epitaxial layer 3 are oxidized so that the silicon oxide film 1
4 is formed, the silicon oxide film 14 is removed, and a BSG film 18 having a boron concentration of 4 mol% is grown (FIG. 3A).

【0018】次に、1000℃の窒素雰囲気中で20秒
の熱処理を行いBSG膜より、ボロンをN型エピタキシ
ャル領域3に拡散させベース領域15を形成し、全面に
シリコン窒化膜19を成長し、異方性エッチングにより
側壁にのみシリコン窒化膜19を残し、露出するBSG
膜18を除去し、ベース領域15を露出させ、多結晶シ
リコン16を露出したベース領域15上に選択成長さ
せ、多結晶シリコン16に砒素を1×1016個/cm2
イオン注入し、1000℃の窒素雰囲気中で20秒の熱
処理を行い多結晶シリコン16から砒素を拡散させ、エ
ミッタ領域17を形成する(図3(b))。
Next, heat treatment is performed for 20 seconds in a nitrogen atmosphere at 1000 ° C., boron is diffused from the BSG film into the N type epitaxial region 3 to form a base region 15, and a silicon nitride film 19 is grown on the entire surface. BSG exposed by leaving the silicon nitride film 19 only on the sidewalls by anisotropic etching
The film 18 is removed, the base region 15 is exposed, and the polycrystalline silicon 16 is selectively grown on the exposed base region 15. 1 × 10 16 arsenic / cm 2 is added to the polycrystalline silicon 16.
Ions are implanted and heat treatment is performed for 20 seconds in a nitrogen atmosphere at 1000 ° C. to diffuse arsenic from the polycrystalline silicon 16 to form an emitter region 17 (FIG. 3B).

【0019】本実施例では、浅いベース領域が得られ、
より高速に動作するトランジスタを形成できるため、本
発明による接合容量低減の効果がより顕著に現れる。
In this embodiment, a shallow base region is obtained,
Since a transistor that operates at a higher speed can be formed, the effect of reducing the junction capacitance according to the present invention becomes more prominent.

【0020】[0020]

【発明の効果】以上、説明したように本発明は、素子分
離領域、ベース引き出し領域、ベース及びエミッタ領域
を1回のフォトリソグラフィ工程により自己整合で形成
することができるため、素子設計の位置合わせマージン
をゼロにすることができる。このため、素子面積を縮小
することができ高集積化が図れる。また、コレクタ−ベ
ース間の接合容量を低減できるため動作速度が速くな
る。
As described above, according to the present invention, since the element isolation region, the base lead-out region, the base and the emitter region can be formed by self-alignment by one photolithography process, the device design can be aligned. Margin can be zero. Therefore, the device area can be reduced and high integration can be achieved. In addition, the operating speed is increased because the junction capacitance between the collector and the base can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の製造工程の前半につい
て説明する工程断面図。
FIG. 1 is a process cross-sectional view illustrating the first half of a manufacturing process according to a first embodiment of the present invention.

【図2】本発明の第1の実施例の製造工程の後半につい
て説明する工程断面図。
FIG. 2 is a process sectional view explaining the latter half of the manufacturing process of the first embodiment of the invention.

【図3】本発明の第2の実施例の製造工程について説明
する工程断面図。
FIG. 3 is a process sectional view explaining a manufacturing process of the second embodiment of the present invention.

【図4】従来技術による半導体装置の工程断面図。FIG. 4 is a process sectional view of a semiconductor device according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 P型半導体基板 2 N型半導体埋込層 3 N型エピタキシャル層 4 シリコン窒化膜 5 シリコン酸化膜 6 シリコン窒化膜 7 シリコン酸化膜 8 多結晶シリコン 9 シリコン窒化膜 10 SOG膜 11 シリコン窒化膜 12 ベース引き出し領域 13 シリコン窒化膜 14 シリコン酸化膜 15 ベース領域 16 多結晶シリコン 17 エミッタ領域 18 BSG膜 19 シリコン窒化膜 20 シリコン酸化膜 21 シリコン酸化膜 22 多結晶シリコン 23 シリコン窒化膜 24 シリコン窒化膜 1 P-type semiconductor substrate 2 N-type semiconductor burying layer 3 N-type epitaxial layer 4 Silicon nitride film 5 Silicon oxide film 6 Silicon nitride film 7 Silicon oxide film 8 Polycrystalline silicon 9 Silicon nitride film 10 SOG film 11 Silicon nitride film 12 Base Lead-out region 13 Silicon nitride film 14 Silicon oxide film 15 Base region 16 Polycrystalline silicon 17 Emitter region 18 BSG film 19 Silicon nitride film 20 Silicon oxide film 21 Silicon oxide film 22 Polycrystalline silicon 23 Silicon nitride film 24 Silicon nitride film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一導電型の半導体基板の一主面の素子領
域に反対導電型の埋込層を形成する工程と、前記半導体
基板の全面に反対導電型のエピタキシャル層を形成する
工程と、前記エピタキシャル層上に耐酸化性の第1の絶
縁膜を形成する工程と、前記第1の絶縁膜上に第2の絶
縁膜を形成する工程と、前記第2の絶縁膜を所定形状に
パターニングする工程と、全面に第3の絶縁膜を形成
し、異方性エッチングにより、前記第2の絶縁膜の側壁
部に前記第3の絶縁膜を残し、前記第2の絶縁膜と前記
第3の絶縁膜の下部に第1の絶縁膜を残す工程と、酸化
により素子分離領域を形成する工程と、前記第3の絶縁
膜及び、その下部の前記第1の絶縁膜を除去する工程
と、全面に一導電型の不純物を含有する第1の多結晶シ
リコンを形成する工程と、熱処理により、前記第1の多
結晶シリコン中の一導電型の不純物を前記エピタキシャ
ル層に拡散させる工程と、全面に第4の絶縁膜を形成す
る工程と、前記第2の絶縁膜上の前記第4の絶縁膜と前
記第1の多結晶シリコンを順次除去する工程と、露出し
た前記第2の絶縁膜を除去し凹部を形成する工程と、前
記凹部底面に露出した前記第1の絶縁膜を除去する工程
と、前記凹部内に露出した前記1の多結晶シリコンと前
記エピタキシャル層表面に、第1のシリコン酸化膜を形
成する工程と、前記エピタキシャル層に一導電型不純物
を導入し、ベース領域を形成する工程と、全面に第5の
絶縁膜を形成し、異方性エッチングにより、前記凹部の
側壁以外の前記第5の絶縁膜を除去し、前記凹部底面の
前記第1のシリコン酸化膜を除去する工程と、前記凹部
に反対導電型の不純物を含有する第2の多結晶シリコン
を形成する工程と、熱処理により、前記第2の多結晶シ
リコン中の反対導電型の不純物をエピタキシャル層に拡
散させエミッタ領域を形成する工程を有することを特徴
とする半導体装置の製造方法。
1. A step of forming a buried layer of opposite conductivity type in an element region of one main surface of a semiconductor substrate of one conductivity type, and a step of forming an epitaxial layer of opposite conductivity type on the entire surface of the semiconductor substrate. Forming an oxidation resistant first insulating film on the epitaxial layer; forming a second insulating film on the first insulating film; and patterning the second insulating film into a predetermined shape. And a third insulating film is formed on the entire surface, and the third insulating film is left on the side wall portion of the second insulating film by anisotropic etching, and the second insulating film and the third insulating film are formed. Leaving the first insulating film below the insulating film, forming an element isolation region by oxidation, removing the third insulating film and the first insulating film below the third insulating film, A step of forming a first polycrystalline silicon containing an impurity of one conductivity type on the entire surface; A step of diffusing one conductivity type impurity in the first polycrystalline silicon into the epitaxial layer by heat treatment, a step of forming a fourth insulating film on the entire surface, and a step of forming a fourth insulating film on the second insulating film. A step of sequentially removing a fourth insulating film and the first polycrystalline silicon; a step of removing the exposed second insulating film to form a concave portion; and a first insulating film exposed on the bottom surface of the concave portion. A step of forming a first silicon oxide film on the surface of the first polycrystalline silicon and the surface of the epitaxial layer exposed in the recess, and introducing an impurity of one conductivity type into the epitaxial layer. A step of forming a region, a fifth insulating film is formed on the entire surface, the fifth insulating film other than the sidewall of the recess is removed by anisotropic etching, and the first silicon oxide on the bottom surface of the recess is formed. Film removal process , A step of forming second polycrystalline silicon containing impurities of opposite conductivity type in the recess and heat treatment to diffuse impurities of opposite conductivity type in the second polycrystalline silicon into an epitaxial layer to form an emitter region. A method of manufacturing a semiconductor device, comprising the step of forming.
【請求項2】 前記ベース領域を、前記第1のシリコン
酸化膜を通して、一導電型の不純物をイオン注入して形
成することを特徴とする請求項1に記載の半導体の製造
方法。
2. The method of manufacturing a semiconductor according to claim 1, wherein the base region is formed by ion-implanting impurities of one conductivity type through the first silicon oxide film.
【請求項3】 前記ベース領域を、前記第1のシリコン
酸化膜を除去し、一導電型の不純物を含有する絶縁膜を
形成した後、熱処理により前記絶縁膜より一導電型の不
純物をエピタキシャル層に拡散させることにより形成す
ることを特徴とする請求項1に記載の半導体装置の製造
方法。
3. In the base region, the first silicon oxide film is removed, an insulating film containing an impurity of one conductivity type is formed, and then heat treatment is performed to make an impurity of one conductivity type epitaxial layer from the insulating film. 2. The method for manufacturing a semiconductor device according to claim 1, wherein the semiconductor device is formed by diffusing into.
JP19934592A 1992-07-27 1992-07-27 Manufacture of semiconductor device Withdrawn JPH0645341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19934592A JPH0645341A (en) 1992-07-27 1992-07-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19934592A JPH0645341A (en) 1992-07-27 1992-07-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0645341A true JPH0645341A (en) 1994-02-18

Family

ID=16406229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19934592A Withdrawn JPH0645341A (en) 1992-07-27 1992-07-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0645341A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000018630A1 (en) 1997-05-20 2000-04-06 Hitachi, Ltd. Car body
US6550397B2 (en) 2001-03-27 2003-04-22 Hitachi, Ltd. Car body
KR100462178B1 (en) * 1997-05-20 2005-06-17 가부시끼가이샤 히다치 세이사꾸쇼 Body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000018630A1 (en) 1997-05-20 2000-04-06 Hitachi, Ltd. Car body
KR100462178B1 (en) * 1997-05-20 2005-06-17 가부시끼가이샤 히다치 세이사꾸쇼 Body
US6550397B2 (en) 2001-03-27 2003-04-22 Hitachi, Ltd. Car body

Similar Documents

Publication Publication Date Title
US4839305A (en) Method of making single polysilicon self-aligned transistor
US4408387A (en) Method for producing a bipolar transistor utilizing an oxidized semiconductor masking layer in conjunction with an anti-oxidation mask
JPH0812865B2 (en) Bipolar transistor and manufacturing method thereof
US4746623A (en) Method of making bipolar semiconductor device with wall spacer
JPH0645341A (en) Manufacture of semiconductor device
JP2519251B2 (en) Method for manufacturing semiconductor integrated circuit device
JP2500597B2 (en) Method for manufacturing semiconductor device
JP2500427B2 (en) Method for manufacturing bipolar semiconductor device
JP3609906B2 (en) Bipolar transistor manufacturing method
JP3168971B2 (en) Manufacturing method of bipolar transistor
JPH0629304A (en) Semiconductor device and manufacture thereof
JP2836393B2 (en) Semiconductor device and manufacturing method thereof
JP3109579B2 (en) Method for manufacturing semiconductor device
JP2785854B2 (en) Method for manufacturing semiconductor device
JPS6295871A (en) Manufacture of semiconductor device
JPH061815B2 (en) Method for manufacturing semiconductor device
JPH02152240A (en) Manufacture of semiconductor device
JPS62281367A (en) Manufacture of semiconductor device
JPH034539A (en) Semiconductor device and its manufacture
JPH03131037A (en) Manufacture of semiconductor device
KR19980013700A (en) Semiconductor Transistor Manufacturing Method
JPH01204470A (en) Manufacture of semiconductor device
JPH05347312A (en) Manufacture of semiconductor device
JPH04255230A (en) Manufacture of semiconductor device
JPH0766214A (en) Manufacture of bi-polar semiconductor integrated circuit device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005