JPH0239534A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法

Info

Publication number
JPH0239534A
JPH0239534A JP18841088A JP18841088A JPH0239534A JP H0239534 A JPH0239534 A JP H0239534A JP 18841088 A JP18841088 A JP 18841088A JP 18841088 A JP18841088 A JP 18841088A JP H0239534 A JPH0239534 A JP H0239534A
Authority
JP
Japan
Prior art keywords
interface
semiconductor device
insulating film
semiconductor substrate
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18841088A
Other languages
English (en)
Inventor
Shizunori Oyu
大湯 静憲
Masao Tamura
田村 誠男
Nobuyoshi Kashu
夏秋 信義
Masayoshi Miyao
宮尾 正義
Taijo Nishioka
西岡 泰城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18841088A priority Critical patent/JPH0239534A/ja
Publication of JPH0239534A publication Critical patent/JPH0239534A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に係り、特に、絶縁膜と
半導体基板界面の特性および信頼性を向上するのに好適
な半導体装置の製造方法に関する。
〔発明の背景〕
従来の半導体装置は、例えば特開昭63−56954に
記載されているような方法により製造されていた。しか
し、上記方法では、絶縁膜と半導体基板との界面特性を
向上すべく配慮がなされていなかつた。従って、上記界
面特性は、製造プロセスの条件やクリーン度等で決まっ
ていた。
この絶縁膜と半導体基板との界面特性を改善するために
、 IEEE Electron Device Le
tters Vo Q 。
9、&1.(1988)、38〜40ページに記載のY
 、 N15hiokaらの“叶amatic Imp
rovement ofHot−Flectron−I
nduead Interface Degradat
ionin MOS 5tructures Cont
aining F or CQ 1nSiO2”  と
題する論文にあるように、シリコン(Si)基板にフッ
化水素酸溶液を付着させた状態で熱酸化を行なう方法や
、熱酸化前にトリクロルエタン中で熱処理したのちに熱
酸化を行なう方法があった。これによれば、界面準位密
度の小さいシリコン酸化膜(S i Oz)/ S i
界面を得ることができた。これは、Si基板表面に付着
したFやCQが熱酸化中にSi○z/Si 界面に再分
布したためと考えられている。つまり、SiOzflM
の形成方法に関係している。しかし、SiOx/Si界
面に混入するフッ素(F)や塩素(C0)の量を正確に
制御することが困難である。
〔発明が解決しようとする課題〕
以上のように、上記従来の半導体装置では、半導体基板
と絶縁膜との界面特性を向上すべく配慮がされておらず
、良好な界面特性を維持できないという問題点があった
。また、界面特性を向上できる上記他の従来技術では、
熱酸化前に半導体基板の表面にFやCQを付着させ、酸
化膜と半導体基板の界面にF等を混入されているが、F
等の混入量の制御性について考慮されておらず、界面特
性を良好に制御することに困難があった。また、酸化条
件や5iOz膜厚により、酸化前の付着量の最適条件が
変動するために、各酸化条件ごとに最適化が必要である
本発明の目的は、上記従来法の問題点を解決し、界面特
性を良好に制御することが容易となる半導体装置の製造
方法を提供することにある。
〔課題を解決するための手段〕
上記目的は、半導体基板とその主表面に形成された絶縁
膜との界面を作製したのち、この界面に■A族元素を到
達せしめることにより達成される。
〔作用〕
通常、絶縁膜と半導体基板との界面では、半導体基板を
構成する元素の共有結合は完全ではなく。
未結合の部分が発生して界面準位が存在している。
この界面形成後に、■A族元素を界面に到達せしめるこ
とにより、上記未結合の部分をVIIA族元素により終
端させることができ、結果として界面準位の発生を抑え
ることができる。尚、絶縁膜と基板の界面を形成する前
にFやCQ等のVIIA族元素を8人した場合、絶縁膜
の形成方法や形成膜厚により導入するF等の量が変動し
てしまう、また。
界面形成後の熱処理により界面でのF等の量が低下する
。これに対して、界面形成後にVIIA族元素を導入す
ることにより、絶縁膜の種類、形成方法および膜厚に依
存せずに導入量を正確に制御できるようになる。また、
導入後の熱処理により界面でのVIIA族元素の量を制
御することが可能である。
これにより、界面特性の制御が容易となる。
〔実施例〕
以下1図面を用いて本発明の詳細な説明する。
第1図(a)に示すような半導体装置において、半導体
基板1と絶縁膜2の界面3を作製したのちにこの界面3
にVIIA族元素を到達せしめるために、基板表面に形
成した各種の不純物導入領域4.基板表面から1μm程
度以上の深い領域5.各種の絶縁膜2の膜中6、および
、絶縁膜2上に形成した電極7中に対して、■A族元素
を導入し熱処理を施す。
VIIA族元素を導入する場所としては、上記不純物導
入領域4内からはみ出さない部分、上記深い領域5では
半墓体基板全面またはその一部分、上記絶縁膜2では上
記界面に達しないような膜中または膜表面近傍の部分、
および、上記電極7中では電極下の絶縁膜に達しないよ
うな電極中または電極表面近傍の部分がある。特に、電
極7中への導入は、電極用の膜形成直後および膜加工後
のいずれでもよい。
VIIA族元素の導入は、イオン打込み方法または熱拡
散方法により行なう。そして、VISA族元素の導入量
は、I X 10’番〜5 x 10”/cafの範囲
とする。VIIA族元素の導入方法は、導入量と導入深
さの制御性の点からイオン打込み方法の方が優れている
。イオン打込みでは、打込みが上記不純物導入層4中、
絶縁膜2中および電極7中にのみ行なわれるように、打
込みエネルギを選ぶ、また、熱拡散法は、VIIA族元
素を含む雰囲気中で、800〜1100℃の温度範囲で
行ない、上記導入量になるように拡散時間を選ぶ。
VIIA族元素導入後の熱処理は、VIIA族元素を含
まない雰囲気中で800〜1000’Cの温度範囲で行
ない、処理時間を選ぶ。処理時間は、例えば。
900℃程度では10〜200分程度とし、これ以下の
温度ではさらに長い処理時間にし、また、これ以上の温
度では数10分程度以下の処理時間とする。尚、基板1
の表面から1μm程度以上の深さに導入する場合、導入
後の熱処理は1000〜1100℃で10〜60分程度
にする。
ここで、VIIA族元素は、フッ素(F)が最も良好で
あり1次いで塩素(Cα)、臭素(Br)、および、ヨ
ウ素(I)の順で選ばれる。その理由は、原子半径が小
さく半導体基板や絶縁膜中およびその界面に応力を与え
ないため、および、半導体、例えばシリコン原子との結
合エネルギが上記の順で大きく安定な結合を作るためで
ある。
上記不純物導入層4にVIIA族元素を導入して熱処理
を施すと、■A族元素は、不純物導入層4に接した絶縁
膜と半導体基板の界面および不純物導入層4の下部に達
して、界面準位や発生・再結合準位を減少させるので、
不純物導入層4と半導体基板とでの接合特性を改善でき
る。また、導入されたVIIA族元素は、不純物の拡散
を抑えることができるので、浅い不純物導入層14が実
現できる。
上記1μm8度以上の深い領域5にVIIA族元素を導
入して熱処理を施すと、VIIA族元素は、上記各部分
での絶縁膜2と半導体基板1の界面3に達し、界面準位
を減少させる。また、第1図のように深い部分のn十層
にVIIA族元素を導入すると、ゲッタリング層として
作用するようになる。
上記絶縁膜2の膜中に■A族元素を導入して熱処理を施
すと、■A族元素は、絶縁膜2と半導体基板1の界面に
達して、界面特性を改善する。これにより、特に、素子
分離に用いた絶縁膜2に導入した場合、素子分離間の漏
れ電流を低減できる。
上記絶縁膜2上の電極7中に■A族元素を導入して熱処
理を施すと、VIIA族元素は、絶縁膜2中を拡散して
、絶縁膜2と半導体基板1の界面に達するので、界面特
性を改善できる。
■A族元素の導入量は、様々な特性において制限を受け
るため、適切な値が必要である。第1図(b)に界面準
位の発生量と導入量の関係を示す。
初期の界面準位は、■A族導入量を増すことで減少する
が、界面に電気的なストレスを加えた後の界面準位密度
は、■A族導入量が5 X 101”/dを超えると増
加する。ここで、電気的ストレスは絶縁膜中に0.1c
/fflの電子を注入する方式により印加した。この導
入量が多い場合5絶縁膜2中のVIIA族元素量が増大
して絶縁膜の特性を劣化させる。この絶縁膜特性の劣化
が、電気的ストレスに弱くなる原因である。従って、V
IIA族元素の導入量は、界面特性を良好に維持するた
めに、前記のような範囲にする必要がある。
イオン打込みを用いたVIIA族元素の導入は、導入深
さに制限を受ける。これは、上記不純物導入層4.絶縁
膜2および絶縁膜2上の電極7の下部までイオン打込み
とすると、イオン打込みにより生ずる欠陥により、上記
接合特性や上記界面特性が劣化するからである。また、
1μm程度以上の深い領域5への■A族元素導入は、イ
オン打込みの損傷が基板1表面に達しないようにする必
要がある。
熱拡散を用いたVIIA族元素の導入は、導入時の試料
構造によるため、拡散条件設定が困難である。
しかし、上記範囲以下の温度では、VIIA族元素の導
入量が小さすぎて効果がなくなり、また、それ以上の温
度では、VIIA族元素の導入量制御が困難となる。例
えば、上記導入量が多すぎると第1図(b)で述べた絶
縁膜2の劣化が生じるからである。このようなことから
、導入方法は、上記イオン打込みが望ましい。
VIIA族元素の導入後の熱処理は、低2Ii(800
℃以下)では、絶縁膜2と基板1の界面に達するVII
A族元素が殆んど無く、温度に制限を受ける。
また、高m(1000℃以上)では、絶縁膜2中のVI
IA族元素の量が増え、膜2の劣化が生じたり、VII
A族元素の拡散により界面に存在する量が減少したりす
るため、この場合も制限を受ける。
熱処理時間の効果も同様に考えられ、温度の関数として
最適範囲が存在する。尚、基板1の表面から1μm程度
以上の深さにVIIA族元素を導入する場合、界面まで
VIIA族元素を到達させるため熱処理条件に下限が与
えられ、また、絶縁膜2中への■A族元素拡散量を抑え
るために条件に上限が与えられる。特に、イオン打込み
を用いた場合、打込みの損傷の影響を抑えるために、熱
処理条件に上限が与えられる。
次に、本発明をより具体的な半導体装置の製造に適用し
た場合の実施例を第2図乃至第9図を用いて説明する。
まず、MOS型ダイナミックランダムアクセス記憶装W
 (DRAM)の製造に実施した例を、第2図乃至第4
図を用いて説明する。
通常の製造プロセスを用いて、n型、(100)面方位
、10Ω・GのSi基板9に、表面濃度がI X 10
16/dのP型ウェル層10.膜厚が0.6μmの選択
酸化膜11および選択酸化膜11下の表面濃度がI X
 1017/cdのP型チャネルストッパ層12から成
る素子分離領域、膜厚が20nmのゲート酸化膜13、
および5 X 102°/dのリン(P)がドープされ
たゲート電極となるべき膜厚が0.3μmの多結晶シリ
コン膜14を形成した。ここで、フッ素(F)イオン1
5を20KeVテl X 1015/fflだケ上Ye
、 多結晶S i ′e414 ニ打込んだ(第2図(
a))。その後、通常のホトエツチング法により多結晶
シリコン膜14を加工してゲート電極14を形成し、P
イオンを50KeVでI X 101δ/−だけイオン
打込みしてP打込みJ516を形成したのち、通常の化
学気相成長法とドライエツチング法によりシリコン酸化
物のスペーサ17を形成した。ここで、ソース・ドレイ
ン領域に、Fイオン18を20KeVでlX1015/
dだけ打込んだのちヒ素(As)イオン19を80 K
 e Vテ5 X 10”/a#たけイオン打込みし。
窒素(N2)雰囲気中で、950℃、10分の熱処理を
行ない、n型のドープ層20を形成した(第2図(b)
)、 尚、上記多結晶S i Pa14 (7)形成前
にキャパシタ領域21には、Asを40KeVで5 X
 101&/a+!およびホウ素(B)を150KeV
でI X 10AR/cs&だけイオン打込みしており
、上記熱処理でn十層22およびp十層23が形成され
た。以上のように、VIIA族元素であるFは、MOS
トランジスタのゲート電極、ソース・ドレイン領域およ
びMOSキャパシタのキャパシタ電極に導入され、上記
熱処理により、近傍のシリコン酸化膜/Si界面に達し
ている。
次に、膜厚が0.5μm のリンガラスH莫24により
パッシベーションを行ない、上記リンガラスPIA24
にコンタクト穴25を開けたのち、アルミニウム電極2
6を形成した(第2図(C))。
このように作製されたDRAM素子の情報記憶保持時間
は、F打込みのない素子に比べて、約2倍にすることが
でき、また、ゲート絶縁膜13およびキャパシタ絶縁膜
13′の寿命を1桁程度まで向上することができた。こ
れは、打込まれたFの効果であり、第3図および第4図
に示すように、キャパシタ部からの漏れ電流および両絶
縁膜13および13′とSi基板との界面での界面準位
密度が減少したためである。また、MOSトランジスタ
のホットキャリヤ耐性は、F導入により約3倍に向上で
きた。以上のように、本実施例によれば、DRAM素子
の他の特性を損なうことなしに、高性能・高信頼の素子
を製造できる。
次にバイポーラ集積回路の製造に実施した例を第5図乃
至第9図を用いて説明する。
先のDRAMの例と同じSi基板27を用いて、シリコ
ン酸化膜を埋込んだ溝型素子分離領域28を、Siのド
ライエツチング法、熱酸化膜法および化学気相成長法を
駆使して作製したのち、Pを2 M e VでI X 
1015/dだけイオン打込みし、さらに、Fを1.5
MeVでI X 10”/cdだけイオン打込みした。
この時Fは、Si基板27の深い部分の上記P打込み層
29内および素子分離領域28に打込まれた。その後、
N2雰囲気中で1000℃、60分の熱処理を行ない埋
込みn層29を形成した。この熱処理により、Fは、素
子分離領域28のシリコン酸化膜中を拡散してシリコン
酸化膜/ S i界面に達する。また、P打込み層29
内でFは打込みの影響を受けた2次欠陥にトラップされ
、また、P打込み層29の表面側と基板側に拡散する。
(第5図(a))。次に、Pを50 K e V 、 
100 K a V 、 200 K e V 。
500KeVおよびI M e V ”C’それぞれ1
.X10”/cA、 2 X 1011/aJ、 3 
X 10”/cyK、 4 X10目/dおよび5X1
0”/a+fずつイオン打込みし、NZ雰囲気中で10
00’C,1,0分の熱処理を行ない、n型層30,3
1,32、および33を形成した。次いで、p nダイ
オード部34゜nPnトランジスタ部35および抵抗部
36において、膜厚が0.2μmのSiOx膜37に開
口部38.39および40を設けたのち、さらに膜厚が
10nmの5iOz膜41を形成してからBF2+イオ
ンを10KeVでI X 1014/cdだけ打込み、
NZ中で1000℃、30秒の熱処理を行ナイ、p中層
42.43および44を形成した(第5図(b))、こ
の時、BFz+打込みで打込まれたFは、各p中層周辺
のSi基板およびSi○z/ S i  界面に達する
次に、上記SiO2膜41および37に開口部を設けた
のち、膜厚が50nmの多結晶Si膜45を堆積し、A
sを25 K e Vで5×10工5/dだけイオン打
込みし、N2中で1000℃。
30秒の熱処理を施してn中層46,47.47’およ
び48を形成した(第5図(C))。この時、各n十層
の電極となる多結晶Si膜45に打込まれたFは、基板
27表面近傍のS i 02/ S j  界面、上記
p土層42および43、および上記n十層46〜48に
達する。
その後、上記多結晶Si膜45を加工したのち、膜厚が
0.5μmのリンガラス膜46を堆積しコンタクト穴を
開けた。そして、アルミニウム電極47を形成してバイ
ポーラ集積回路を作製した(第5図(d))。
本実施例により形成したn型埋込み層29のPの深さ方
向分布を第6図に示す。Fを1入することによりPの拡
散が抑えられ、再分布の少ない埋込み層29が得られた
。従って、F導入によりバイポーラトランジスタ部35
のコレクタの濃度分布を再現性良く作製できる。また、
上記埋込み層29の残留欠陥にFが捕獲されるため熱的
に安定な欠陥領域が形成される。Fi人のない埋込み層
では、埋込み層形成後の熱処理により残留欠陥が成長し
て表面近くまで欠陥が発生するが、Fi人のある埋込み
層ではそのようなことはない。また。
熱的に安定な欠陥領域はゲッタリング効果を有し、良好
な特性の素子が形成できた。本実施例のトランジスタ部
35から基板27への漏れ電流を第7図に示す。素子分
離領域28およびn型埋込み層29に打込まれたFが、
素子分離領域のSi○2/Si界面に達するため、漏れ
電流をF導入のない場合に比べて約半分の素子分離がで
きたことが分る。本実施例により形成したnpnトラン
ジスタのエミッタおよびベースのn中層47′およびp
中層43の不純物分布を第8図に示す。ここでは、特に
、多結晶Si膜45に打込まれたFが上記n十層47′
およびp+十層3まで達するために、AsおよびBの拡
散が抑えられ、浅いエミッタ・ベース接合が実現できた
。これにより、ベース濃度を高く、かつ、ベース幅を小
さくできたため、しゃ断周波数を1.5 倍にすること
ができ高速のnpnトランジスタが実現できた。また、
エミッタ、ベースおよびコレクタ領域の再結合中心の準
位がFi人により減少でき、アバランシェ現象による初
期漏れ電流を小さくできたため、エミッタ・ベース接合
およびベース・コレクタ接合の接合耐圧を10〜20%
向上できた。さらに、本実施例により形成した抵抗部3
6のpn接合の漏れ電流を第9図に示す。F導入により
漏れ電流を20〜30%低減できた。これは、上記pn
接合周辺の5iOz/Si  界面にFが達し表面再結
合の準位を減少させたためである。尚、上記多結晶Si
膜45へのFの導入は、Fを含むガス中で熱処理して拡
散させることでも可能である。又、以上の実施例におい
てはFを導入した場合について説明して来たが他の■A
層元素を導入しても同じような改善効果が得られている
以上のように、本実施例によれば、低消費電力。
高性能、高速化および高信頼性のバイポーラ集積回路が
実現できる。
〔発明の効果〕
本発明によれば、半導体装置を構成する絶縁物と半導体
基板との界面を良好に制御でき界面準位密度を低減でき
るので、半導体装置の信頼性および性能を向上するのに
効果がある。また、不純物拡散を抑えることができ浅い
接合形成が容易になるため、半導体装置の微細化および
高速化に効果がある。
【図面の簡単な説明】
第1図(a)は本発明の詳細な説明する半導体装置の断
面図、第1図(b)は第1図(a)の半導体装置におけ
るVIIA族元素の導入効果を示す図、第2図および第
5図は本発明の詳細な説明する工程図、第3図、第7図
および第9図は各素子の漏れ電流を示す図、第4図は界
面準位密度を示す図、第6図および第8図は不純物の濃
度分布を示す図である。 1・・・半導体基板、2・・・絶縁膜、3・・・界面、
4・・・表面領域、5・・・基板深部、7・・・電極、
8・・・VIIA族元素、9t27・・・81基板、1
1・・・選択酸化膜、13・・・ゲート酸化膜、14.
45・・・多結晶Si膜、15.18・・・フッ素イオ
ン、29・・・埋込みn層、↓ 茅 1 目 ど^) ↓   ↓   「  ↓ ↓ 茅 2 区 壷 + (−7S 重 ◆ 囚 茅 F“千丁Δ2ソ1み 1」 署 図 丼 す 図 牙 図

Claims (1)

  1. 【特許請求の範囲】 1、半導体基板とその主表面に形成された絶縁膜との界
    面を作製したのち、この界面にVIIA族元素を到達せし
    めることを特徴とする半導体装置の製造方法。 2、MOS型半導体装置の製造方法において、MOSト
    ランジスタおよびMOSキャパシタを作製したのちに、
    MOSトランジスタのゲート電極中およびソース・ドレ
    イン領域中、および、MOSキャパシタのキャパシタ電
    極中の内少なくとも1領域以上に、VIIA族元素を導入
    し熱処理を行なうことを特徴とする半導体装置の製造方
    法。 3、半導体装置の素子分離領域の形成において、素子分
    離のための絶縁膜中および素子分離された領域の不純物
    導入層中に、VIIA族元素を導入し熱処理を行なうこと
    を特徴とする半導体装置の製造方法。 4、上記半導体装置を製造する工程に入る直前、および
    、上記半導体装置の金属配線工程に入る直前に、用いる
    半導体基板中の基板表面から1μm以上の深い領域に、
    VIIA族元素を導入し熱処理を行なうことを特徴とする
    請求項2または3記載の半導体装置の製造方法。 5、上記VIIA族元素の導入を、イオン打込みまたは熱
    拡散により行なうことを特徴とする請求項1ないし4の
    一に記載の半導体装置の製造方法。
JP18841088A 1988-07-29 1988-07-29 半導体装置の製造方法 Pending JPH0239534A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18841088A JPH0239534A (ja) 1988-07-29 1988-07-29 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18841088A JPH0239534A (ja) 1988-07-29 1988-07-29 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JPH0239534A true JPH0239534A (ja) 1990-02-08

Family

ID=16223167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18841088A Pending JPH0239534A (ja) 1988-07-29 1988-07-29 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JPH0239534A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236424A (ja) * 1991-01-18 1992-08-25 Hitachi Cable Ltd 絶縁膜付き半導体ウェハ及びその製造方法
JP2009032792A (ja) * 2007-07-25 2009-02-12 Toyota Motor Corp キャパシタとその製造方法及びキャパシタを備えるsoi基板
US7666736B2 (en) 2004-11-08 2010-02-23 Panasonic Corporation Method for fabricating semiconductor device comprising P-type MISFET, including step of implanting fluorine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236424A (ja) * 1991-01-18 1992-08-25 Hitachi Cable Ltd 絶縁膜付き半導体ウェハ及びその製造方法
US7666736B2 (en) 2004-11-08 2010-02-23 Panasonic Corporation Method for fabricating semiconductor device comprising P-type MISFET, including step of implanting fluorine
JP2009032792A (ja) * 2007-07-25 2009-02-12 Toyota Motor Corp キャパシタとその製造方法及びキャパシタを備えるsoi基板

Similar Documents

Publication Publication Date Title
US4371403A (en) Method of providing gettering sites through electrode windows
US4382827A (en) Silicon nitride S/D ion implant mask in CMOS device fabrication
US6323525B1 (en) MISFET semiconductor device having relative impurity concentration levels between layers
KR100822228B1 (ko) 반도체 장치 및 그 제조 방법
US5773340A (en) Method of manufacturing a BIMIS
US3450961A (en) Semiconductor devices with a region having portions of differing depth and concentration
JPS6224945B2 (ja)
US4579601A (en) Method of growing a resistive epitaxial layer on a short lifetime epi-layer
JPH0799259A (ja) 縦型バイポーラトランジスタを有するBi−CMOS SOI構造及びその製造方法
US4362574A (en) Integrated circuit and manufacturing method
US3615938A (en) Method for diffusion of acceptor impurities into semiconductors
US5821173A (en) Semiconductor element and a method of manufacturing the same
JPH0239534A (ja) 半導体装置の製造方法
US20060223292A1 (en) Method of manufacturing semiconductor device
JPH07202166A (ja) 半導体装置
JP2796049B2 (ja) 薄膜トランジスタおよびその製造方法
JP3526127B2 (ja) Mosトランジスタの製造方法
JPH0334649B2 (ja)
US6362037B1 (en) Semiconductor device and method of fabricating same
US6103582A (en) Method to suppress boron penetration in P+ mosfets
JPH0411736A (ja) 半導体装置およびその製造方法
US6291284B1 (en) Method of fabricating semiconductor device
JPS60126867A (ja) 半導体装置の製造方法
JP3145694B2 (ja) 半導体装置
JPH0575041A (ja) Cmos半導体装置