JPH02309652A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02309652A
JPH02309652A JP13082889A JP13082889A JPH02309652A JP H02309652 A JPH02309652 A JP H02309652A JP 13082889 A JP13082889 A JP 13082889A JP 13082889 A JP13082889 A JP 13082889A JP H02309652 A JPH02309652 A JP H02309652A
Authority
JP
Japan
Prior art keywords
film
polycrystalline silicon
recess
thin film
semiconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13082889A
Other languages
Japanese (ja)
Inventor
Takehiro Hirai
健裕 平井
Mitsuo Tanaka
光男 田中
Yoshiro Fujita
藤田 良郎
Akihiro Kanda
神田 彰弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13082889A priority Critical patent/JPH02309652A/en
Publication of JPH02309652A publication Critical patent/JPH02309652A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To enable a polycrystalline silicon to be embedded into a recess and then achieve flattening without producing any stage difference by accumulating a semiconductor thin film with a film thickness which is 1/2 or more than the width of the recess and by performing oxidation so that no semiconductor thin film at an area outside the recess remains. CONSTITUTION:After eliminating a PSG film 4, the bottom part of an isolation groove 5 and a side surface part are oxidized for forming an oxide film 6, a high-concentration boron is ion-implanted into the bottom of the isolation groove 5, a channel stopper region 7 is formed at the bottom of the isolation groove 5, and then a polycrystalline silicon film 8 is accumulated by the film thickness which exceeds 1/2 of the width of the isolation groove 5. Then, after etching the polycrystalline silicon film 8 by a desired thickness so that it remains on the entire surface of substrate, the polycrystalline silicon film 8 is oxidized so that it does not remain outside the separation groove 5, thus forming an oxide film 10. Therefore, only the semiconductor thin film at a part to be eliminated other than the area within a recessed part can be changed to an oxide film and a semiconductor thin film can be embedded into the recessed part without sacrificing flattening properties.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(九 半導体装置 及びそれらを多数同一基板上
に集積した集積回路装置の製造方法に関するものであム 従来の技術 従来 半導体装置の製造における素子分離領域の形成方
法として、素子分離領域となるべき部分をエツチングし
て溝を形成した徽 溝内を酸化し溝内に多結晶シリコン
膜を埋め込み素子分離領域を形成するという方法があa
 その従来技術の一例を第4図により説明すも 半導体基板(Si)1の一主面上へ シリコン酸化膜(
SiO*)2.シリコン窒化膜(SisNJ3、PSG
S複膜形成した免 レジストをマスクにしてPSGS複
膜エツチングを行賎 レジストを除去i  PSGS複
膜マスクとして、分離溝5を形成する(第4図(a))
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention (9) relates to a semiconductor device and a method for manufacturing an integrated circuit device in which a large number of these devices are integrated on the same substrate.Prior art: Element separation in the manufacture of semiconductor devices As a method for forming the region, there is a method in which a trench is formed by etching the part that is to become the element isolation region, the inside of the trench is oxidized, and a polycrystalline silicon film is buried in the trench to form the element isolation region.
An example of the conventional technology will be explained with reference to FIG. 4. A silicon oxide film (
SiO*)2. Silicon nitride film (SisNJ3, PSG
Perform PSGS double film etching using the formed S double film resist as a mask.Remove the resist.I Form a separation groove 5 as a PSGS double film mask (Fig. 4(a))
.

PSGS複膜除去後、表面を酸化して酸化膜6を形成す
も その後、不純物イオンを注入し 基板凹部の底部に
チャネルストッパ7を形成した徽多結晶シリコン膜8を
堆積する(第4図(b))。
After removing the PSGS composite film, the surface is oxidized to form an oxide film 6. Then, impurity ions are implanted and a polycrystalline silicon film 8 with a channel stopper 7 formed at the bottom of the substrate recess is deposited (see Fig. 4). b)).

その後ドライエツチングにより、基板凹部以外に堆積さ
れた多結晶シリコン膜8を除去し 基板凹部のみく 多
結晶シリコン膜8を埋め込む(第4図(C))。
Thereafter, by dry etching, the polycrystalline silicon film 8 deposited in areas other than the substrate recesses is removed, and the polycrystalline silicon film 8 is buried only in the substrate recesses (FIG. 4(C)).

その比 多結晶シリコン膜8の表面を酸化してCap酸
化膜lOを形成ヒ 素子分離領域を完成する(第4図(
d))。
The ratio is oxidized to the surface of the polycrystalline silicon film 8 to form a cap oxide film lO. The element isolation region is completed (see FIG.
d)).

発明が解決しようとする課題 従来技術において(友 多結晶シリコンIt!!!8の
ドライエツチングの際へ 凹部以外の多結晶シリコン膜
8が残り少なくなって行くと、ローディング効果によっ
て分離溝5の部分の多結晶シリコン膜8のエツチングレ
ートが急激に大きくなり、分離溝5の部分で(友 多結
晶シリコンが過度にエツチングされ段差が形成され翫 
さらく この段差は後のCap酸化によっても回復しな
い(第4図(c)、 (d)参照)。
Problems to be Solved by the Invention In the prior art (During dry etching of polycrystalline silicon It!!!8), when the polycrystalline silicon film 8 other than the concave portions becomes less and less, the portions of the isolation grooves 5 are damaged due to the loading effect. The etching rate of the polycrystalline silicon film 8 increases rapidly, and the polycrystalline silicon is excessively etched and a step is formed in the separation groove 5.
Furthermore, this level difference is not recovered even by subsequent Cap oxidation (see Figures 4(c) and (d)).

従って、この段差のためt、、AI配線の断電あるいは
AIエツチングの際のAl残りによる短絡という事態が
発生u 問題となってい九本発明ζ上 上述の問題点に
鑑みて試されたちの弘 凹部内に多結晶シリコンを埋め
込む際鳳 段差を生じることなく、凹部内に多結晶シリ
コンを埋め込へ 平坦化を可能とする半導体装置の製造
方法を提供することを目的とすも 課題を解決するための手段 本発明(上 上述の課題を解決するたべ 半導体基板の
一主面上に凹部が形成された半導体装置において、前記
半導体基板上へ 少なくとも前記凹部の幅の172以上
の膜厚の半導体簿膜を堆積する工程と、前記凹部内以外
の前記基板の一主面上にある前記半導体薄膜力(少なく
とも残らないように前記半導体薄膜を酸化する工程とを
有し 凹部内を前記半導体薄膜で平坦に埋め込むという
構成を備えたものであ4 作用 本発明(友 上述の構成によって、半導体薄膜を凹部内
に埋め込む際!ζ 少なくとも凹部の幅のl/2以上の
膜厚の半導体薄膜を堆積することにより、凹部内を半導
体薄膜で完全に埋め込むことができ、その表面も平坦に
することができム さらく 段差の主原因であるドライ
エツチングによるローディング効果が起こらないようく
 レートを自由に制御でき、かつレートの安定な酸化を
用いることで、凹部内とそれ以外の半導体薄膜の膜厚差
を利゛ 用して、凹部内以外の除去したい部分の半導体
薄膜のみを酸化膜に変えることができ、半導体薄膜を堆
積したときの平坦性を損なわず番ζ 半導体薄膜を凹部
内に埋め込むことが可能とな翫実施例 (実施例1) 第1図(友 本発明の第1の実施例における半導体装置
の製造方法を示す工程断面図であム 第1の実施例を図
に沿って詳細の説明を行う。
Therefore, due to this difference in height, a situation such as a power cut in the AI wiring or a short circuit due to the remaining Al during AI etching may occur. When embedding polycrystalline silicon in a recess, there is no step difference when embedding polycrystalline silicon in a recess.The purpose of this invention is to provide a method for manufacturing a semiconductor device that enables flattening. Means for Solving the Problems of the Invention In a semiconductor device in which a recess is formed on one main surface of a semiconductor substrate, a semiconductor film having a film thickness of at least 172 mm or more of the width of the recess is formed on the semiconductor substrate. a step of depositing a film; and a step of oxidizing the semiconductor thin film so that no residual force (at least) remains on the semiconductor thin film on one main surface of the substrate other than inside the recess, and flattening the inside of the recess with the semiconductor thin film. When a semiconductor thin film is embedded in a recess by the above-described structure, a semiconductor thin film having a thickness of at least 1/2 of the width of the recess is deposited. This makes it possible to completely fill the inside of the recess with the semiconductor thin film, and also to flatten the surface. Moreover, by using oxidation with a stable rate, it is possible to use the difference in film thickness between the semiconductor thin film inside the recess and the rest of the recess to convert only the semiconductor thin film in the portions to be removed other than the recess into an oxide film. Embodiment (Example 1) in which it is possible to embed a semiconductor thin film in a recess without impairing the flatness when depositing a semiconductor thin film. FIG. 1 is a process cross-sectional view showing a manufacturing method of FIG.

(a)半導体基板1上番ζ 酸化膜2を形成ヒ その上
に5itN43を堆積したa  PSG膜4を堆積ずa
 この抵 ホトレジストをマスクに280M4をドライ
エッチしレジストを除去した後、PSG膜4をマスクに
5isNa膜3、酸化[2、半導体基板lをエツチング
し 素子分離溝5を形成すも (b)PSG膜4を除去後、溝底部と側面部を酸化して
酸化膜6を形成した後、分離溝底部に高濃度のボロンの
イオン注入を行(\ 溝5底部にチャネルストッパ領域
7を形成すも その徽 多結晶シリコン膜8を分離溝5
の幅の1/2以上の膜厚だけ堆積すも (C)  ドライエッチあるい(よ ウェットエッチに
よって、多結晶シリコン膜8を基板の全面に残るように
所望の厚さだけエツチングした後、多結晶シリコン膜8
を分離溝5内以外に残らないように酸化を行い酸化膜1
0を形成する。・ な叔 酸化膜106表 そのまま分離溝のCap膜とし
てもよい力(酸化1i!jlOを除去acap膜として
絶縁膜を形成してもよ(℃ また 半導体基板lと逆方向導電型のエピタキシャル層
を半導体基板1上に形成してから第1図(a)の工程へ
続くことも当然可能であaま?、:、(C)において、
多結晶シリコンをエツチングせずに直接酸化することも
可能であ4以上のように本実施例によって形成した分離
部分を利用して、分離に囲まれた部分にデバイスを形成
すると、分離溝の部分に段差がないので、金属配線の断
電 短絡などが発生することがな(−(実施例2) 第2図1上 本発明の第2の実施例における半導体装置
の製造方法を示す工程断面図であa 第2の実施例を図
に沿って詳細の説明を行う。
(a) Semiconductor substrate 1 upper part ζ Oxide film 2 is formed, 5itN43 is deposited on it, a PSG film 4 is not deposited, a
After removing the resist by dry etching 280M4 using this photoresist as a mask, etching the 5isNa film 3, oxidation [2] and semiconductor substrate l using the PSG film 4 as a mask to form element isolation grooves 5. (b) PSG film 4 is removed, the bottom and side surfaces of the trench are oxidized to form an oxide film 6, and high-concentration boron ions are implanted into the bottom of the isolation trench. Separation groove 5 for polycrystalline silicon film 8
(C) After etching the polycrystalline silicon film 8 to a desired thickness by dry etching or wet etching so that it remains on the entire surface of the substrate, crystalline silicon film 8
The oxide film 1 is oxidized so that it does not remain outside of the isolation trench 5.
form 0. - Oxide film 106 Table May be used as a cap film in the isolation trench as it is (oxidation 1i!jlO may be removed and an insulating film formed as an acap film (°C) Also, an epitaxial layer of the conductivity type opposite to that of the semiconductor substrate Of course, it is also possible to continue with the process shown in FIG. 1(a) after forming it on the semiconductor substrate 1. In (C),
It is also possible to directly oxidize polycrystalline silicon without etching it.If a device is formed in the area surrounded by the isolation by using the isolation part formed in this example as described above, the isolation groove part Since there are no steps, there is no possibility of electrical disconnection or short circuit of the metal wiring (- (Example 2) Fig. 2 (above 1) is a process sectional view showing a method for manufacturing a semiconductor device in a second example of the present invention. The second embodiment will be explained in detail with reference to the drawings.

(a)半導体基板l上に酸化膜21、窒化膜23を形成
した抵 ホトレジストをマスクとして半導体基板lとコ
ンタクトを取りたい部分(拡散層22)にコンタクトホ
ールをエツチングによって形成しレジストを除去す翫 (b)多結晶シリコン膜24をコンタクトホール幅の1
72以上の膜厚だけ堆積し 多結晶シリコン膜24に不
純物をイオン注入等によって導入した喪 熱処理を行う
(a) Using a resistive photoresist in which an oxide film 21 and a nitride film 23 are formed on a semiconductor substrate 1 as a mask, a contact hole is formed by etching in a portion (diffusion layer 22) where contact with the semiconductor substrate 1 is desired, and the resist is removed. (b) Polycrystalline silicon film 24 is
After the polycrystalline silicon film 24 is deposited to a thickness of 72 mm or more, a heat sink treatment is performed in which impurities are introduced into the polycrystalline silicon film 24 by ion implantation or the like.

(C)  ドライエッチあるい(友 ウェットエッチに
よって、多結晶シリコン膜24を基板の全面に残るよう
に所望の厚さだけエツチングした後、多結晶シリコン膜
24をコンタクトホール内以外に残らないように酸化を
行t\ 酸化膜26を形成すも(d)酸化膜26を除去
後、金属電極27を形成すムな抵 酸化膜26はそのま
ま残し これに窓を開けて多結晶シリコン膜25上に金
属電極27を形成してもよ(〜 また 半導体基板lと逆方向導電型のエピタキシャル層
を半導体基板l上に形成してから第2図(a)へ続くこ
とも当然可能であa まr=(c)において、多結晶シリコンをエツチングせ
ずに直接酸化することも可能であもま?、、(b)にお
いて、不純物を含んだ多結晶シリコン膜24を堆積して
もよ(− 以上のように本実施例によって形成したコンタクトを利
用して、デバイスを形成すると、コンタクトの部分に段
差がないので、金属配線の断線短絡などが発生すること
がな(−さらへ この多結晶シリコン膜をバイポーラト
ランジスタのエミッタとすれ(戴 このコンタクト法の
有用性がいっそう向上すも (実施例3) 第3図1上 本発明の第3の実施例における半導体装置
の製造方法を示す工程断面図であa 図に沿って詳細の
説明を行う。
(C) After etching the polycrystalline silicon film 24 to a desired thickness by dry etching or wet etching so that it remains on the entire surface of the substrate, etching the polycrystalline silicon film 24 so that it remains only in the contact hole. Oxidation is performed to form the oxide film 26. (d) After removing the oxide film 26, the metal electrode 27 cannot be formed.The resistive oxide film 26 is left as is, a window is opened in it, and the metal electrode 27 is formed on the polycrystalline silicon film 25. It is also possible to form the metal electrode 27 (~ Also, it is naturally possible to form an epitaxial layer of a conductivity type opposite to that of the semiconductor substrate 1 on the semiconductor substrate 1 and then proceed to FIG. 2(a). = In (c), is it possible to directly oxidize the polycrystalline silicon without etching? In (b), it is also possible to deposit a polycrystalline silicon film 24 containing impurities (- When a device is formed using the contacts formed according to this example as shown in FIG. is used as the emitter of a bipolar transistor (the usefulness of this contact method is further improved (Embodiment 3)). A. Detailed explanation will be provided according to the diagram.

(a)半導体基板l上に第一層目金属配線31を形成し
た柩 層間絶縁wA32を形成すも その後、第一層目
金属配線31とコンタクトを取りたいところにホトレジ
ストをマスクとしてスルーホールを開ロレ レジストを
除去すa (b)多結晶シリコン膜33をスルーホール幅のl/2
以上の膜厚だけ堆積し 多結晶シリコン膜33に不純物
をイオン注入等によって導入した丸 熱処理を行う。
(a) A coffin with the first layer metal wiring 31 formed on the semiconductor substrate 1 After forming the interlayer insulation wA32, through holes are opened using photoresist as a mask at the locations where contact with the first layer metal wiring 31 is desired. (b) Polycrystalline silicon film 33 is removed by l/2 of the through-hole width.
After the film is deposited to the above thickness, impurities are introduced into the polycrystalline silicon film 33 by ion implantation or the like, and a round heat treatment is performed.

(C)  ドライエッチあるい1友 ウェットエッチに
よって、多結晶シリコン膜33を層間絶縁膜32の全面
に残るように所望の厚さだけエツチングした瓜多結晶シ
リコン膜33をスルーホール内以外に残らないように酸
化を行い酸化膜35を形成すa(d)酸化膜35を除去
比 第二層目金属配線36を形成すも な耘 酸化膜35はそのまま残し、これに窓を聞けて多
結晶シリコン膜34上に第二層目金属配線3Gを形成し
てもよ(〜 また 半導体基板lと逆方向導電型のエピタキシャル層
を半導体基板l上に形成してから第3図(a)へ続くこ
とも当然可能であも ま?=(c)において、多結晶シリコン33をエツチン
グせずに直接酸化することも可能であもまr=(b)に
おいて、不純物を含んだ多結晶シリコンg!33を堆積
してもよ(℃ まな この方法1よ 第n層目金属配線と第n十1層目
金属配線を形成する場合にも有効であム以上のように本
実施例によって形成した層間コンタクトを利用して、配
線を形成すると、コンタクトの部分に段差がないので、
金属配線の断線短絡などが発生することがな(− 発明の詳細 な説明したように本発明によれ(二 半導体薄膜を凹部
内に埋め込む際く 少なくとも凹部の幅の1/2以上の
膜厚の半導体薄膜を堆積することにより、凹部内を半導
体薄膜で完全に埋め込むことができ、その表面も平坦に
することができもざら番へ疫差の主原因であるドライエ
ッチングによるローディング効果が起こらないようく 
レートを自由に制御でき、かつレートの安定な酸化を用
いることで、凹部内とそれ以外の半導体薄膜の膜厚差を
利用して、凹部内以外の除去したい部分の半導体薄膜の
みを酸化膜に変えることができ、半導体薄膜を堆積した
ときの平坦性を損なわず凶手導体薄膜を凹部内に埋め込
むことが可能となも挿板 本発明1友 半導体基板上の
凹部内に半導体薄膜を非常に平坦に埋め込むことができ
るので、金属配線の新風 短絡が生じないという効果を
有するもの弘 その実用的効果は大き−
(C) Dry etching or wet etching: The polycrystalline silicon film 33 is etched to a desired thickness so that it remains on the entire surface of the interlayer insulating film 32.The polycrystalline silicon film 33 is etched only in the through holes. A (d) Removal ratio of the oxide film 35 The oxide film 35 is left as is, and a window is formed on it to form the polycrystalline silicon. A second layer metal wiring 3G may be formed on the film 34 (~ Also, an epitaxial layer having a conductivity type opposite to that of the semiconductor substrate 1 is formed on the semiconductor substrate 1, and then the process continues to FIG. 3(a). In (c), it is also possible to directly oxidize the polycrystalline silicon 33 without etching it. In (b), polycrystalline silicon containing impurities g!33 (℃) This method 1 is also effective when forming the n-th layer metal wiring and the n-11th layer metal wiring.As described above, the interlayer contact formed by this example When forming wiring using , there is no step at the contact part,
According to the present invention, as described in the detailed explanation of the invention, disconnection and short-circuiting of metal wiring does not occur. By depositing a semiconductor thin film, it is possible to completely fill the inside of the recess with the semiconductor thin film, and the surface can also be made flat, which also prevents the loading effect caused by dry etching, which is the main cause of unevenness. Ku
By using oxidation that can control the rate freely and has a stable rate, it is possible to use the difference in film thickness between the semiconductor thin film inside the recess and the rest of the recess to oxidize only the parts of the semiconductor thin film that you want to remove, except inside the recess. It is possible to embed a conductive thin film into a recess without impairing the flatness of the semiconductor thin film when it is deposited. Because it can be embedded in metal wiring, it is a new style of metal wiring and has the effect of preventing short circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の素子分離の製造方法を
示す工程断面は 第2図は本発明の第2の実施例の多結
晶シリコンコンタクトの製造方法を示す工程断面医 第
3図は本発明の第3の実施例の多結晶シリコンによる層
間配線間のコンタクトの製造方法を示す工程断面久 第
4図は従来例における素子分離の形成方法を示す工程断
面図であん l・・・半導体基K 5・・・分離へ 8・・・埋め込
み用ノンドープ多結晶シリコンJIt9・・・分離溝に
埋め込まれた多結晶シリコン[10,26,35・・・
酸化膜22・・・拡散@  24.33・・・多結晶シ
リコンK  25・・・コンタクトホールに埋め込まれ
た多結晶シリコン風27・・・金属電板 31・・・第
一層目金属配!  32・・・層間絶縁へ34・・・ス
ルーホールに埋め込まれた多結晶シリコン瓜36・・・
第二層目金属配胤代理人の氏名 弁理士 粟野重孝 は
か1泡層 1 図 jlf2  図 第2図 第3図 第3図
FIG. 1 is a process cross-section showing a method for manufacturing an element isolation device according to a first embodiment of the present invention. FIG. 2 is a process cross-section diagram showing a method for manufacturing a polycrystalline silicon contact according to a second embodiment of the present invention. The figure is a cross-sectional view showing a process for manufacturing a contact between interlayer interconnects using polycrystalline silicon according to the third embodiment of the present invention. Figure 4 is a cross-sectional process view showing a method for forming element isolation in a conventional example. - Semiconductor base K 5... To separation 8... Non-doped polycrystalline silicon for embedding JIt9... Polycrystalline silicon embedded in isolation trench [10, 26, 35...
Oxide film 22...Diffusion@24.33...Polycrystalline silicon K 25...Polycrystalline silicon style buried in contact hole 27...Metal electric plate 31...First layer metal arrangement! 32... To interlayer insulation 34... Polycrystalline silicon melon embedded in through hole 36...
Name of second layer metal seed distribution agent Patent attorney Shigetaka Awano Haka1 Foam layer 1 Figure jlf2 Figure 2 Figure 3 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板の一主面上に凹部が形成された半導体
装置において、前記半導体基板上に、少なくとも前記凹
部の幅の1/2以上の膜厚の半導体薄膜を堆積する工程
と、前記凹部内以外の前記基板の一主面上にある前記半
導体薄膜力が、少なくとも残らないように、前記半導体
薄膜を酸化する工程とを備えた半導体装置の製造方法。
(1) In a semiconductor device in which a recess is formed on one main surface of a semiconductor substrate, a step of depositing a semiconductor thin film having a thickness of at least 1/2 or more of the width of the recess on the semiconductor substrate; oxidizing the semiconductor thin film so that at least the semiconductor thin film on one main surface of the substrate other than the inner surface remains.
(2)半導体基板上に半導体薄膜を形成した後、前記半
導体薄膜を所望の厚さエッチングする工程を有すること
を特徴とする特許請求の範囲第1項に記載の半導体装置
の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, further comprising the step of forming a semiconductor thin film on a semiconductor substrate and then etching the semiconductor thin film to a desired thickness.
JP13082889A 1989-05-24 1989-05-24 Manufacture of semiconductor device Pending JPH02309652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13082889A JPH02309652A (en) 1989-05-24 1989-05-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13082889A JPH02309652A (en) 1989-05-24 1989-05-24 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02309652A true JPH02309652A (en) 1990-12-25

Family

ID=15043656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13082889A Pending JPH02309652A (en) 1989-05-24 1989-05-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02309652A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4139200A1 (en) * 1991-01-16 1992-07-23 Gold Star Electronics Formation of cylindrical insulation layer in semiconductor substrate - using self-aligned etch process resulting in smooth field oxide on top surface

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107740A (en) * 1984-10-31 1986-05-26 Toshiba Corp Manufacture of semiconductor device
JPS6221269A (en) * 1985-07-19 1987-01-29 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPS63292645A (en) * 1987-05-26 1988-11-29 Nec Corp Formation of trench isolation in semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107740A (en) * 1984-10-31 1986-05-26 Toshiba Corp Manufacture of semiconductor device
JPS6221269A (en) * 1985-07-19 1987-01-29 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPS63292645A (en) * 1987-05-26 1988-11-29 Nec Corp Formation of trench isolation in semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4139200A1 (en) * 1991-01-16 1992-07-23 Gold Star Electronics Formation of cylindrical insulation layer in semiconductor substrate - using self-aligned etch process resulting in smooth field oxide on top surface
DE4139200C2 (en) * 1991-01-16 1993-12-23 Gold Star Electronics Method for forming an island-shaped insulated silicon layer in a semiconductor device

Similar Documents

Publication Publication Date Title
KR100274924B1 (en) Process for restoring rejected wafers in line for reuse as new
TW200931589A (en) Semiconductor device and manufacturing method thereof
JPH03219677A (en) Semiconductor device
JP3523531B2 (en) Method for manufacturing semiconductor device
JP4175650B2 (en) Manufacturing method of semiconductor device
JPH02309652A (en) Manufacture of semiconductor device
US7674681B2 (en) Semiconductor device and method for manufacturing the same
JPH10308448A (en) Isolation film of semiconductor device and formation method thereof
JPH09139382A (en) Manufacture of semiconductor device
JPH0955477A (en) Semiconductor device and its manufacture
JPH0358430A (en) Semiconductor device and manufacture thereof
KR100493012B1 (en) Trench element isolation
JPS603157A (en) Manufacture of semiconductor device
JPH09213949A (en) Semiconductor device manufacturing method
JP2000183154A (en) Method of forming grooved element isolation region
US6365469B2 (en) Method for forming dual-polysilicon structures using a built-in stop layer
JPH0778833A (en) Bipolar transistor and its manufacture
JP2003218224A (en) Semiconductor device and manufacturing method thereof
JPS62120040A (en) Manufacture of semiconductor device
KR100209927B1 (en) Method for isolating semiconductor device
JPS6154661A (en) Manufacture of semiconductor device
JP2987850B2 (en) Semiconductor integrated circuit
JPH06244415A (en) Semiconductor device and manufacture thereof
JPH07283300A (en) Semiconductor device and manufacture thereof
JPH1126756A (en) Manufacture of semiconductor device