JPH0230779A - Production of grain-oriented silicon steel sheet having low iron loss - Google Patents

Production of grain-oriented silicon steel sheet having low iron loss

Info

Publication number
JPH0230779A
JPH0230779A JP63164873A JP16487388A JPH0230779A JP H0230779 A JPH0230779 A JP H0230779A JP 63164873 A JP63164873 A JP 63164873A JP 16487388 A JP16487388 A JP 16487388A JP H0230779 A JPH0230779 A JP H0230779A
Authority
JP
Japan
Prior art keywords
steel sheet
silicon steel
iron loss
grain
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63164873A
Other languages
Japanese (ja)
Other versions
JPH0472920B2 (en
Inventor
Hirotake Ishitobi
石飛 宏威
Ujihiro Nishiike
西池 氏裕
Shigeko Sujita
筋田 成子
Tsutomu Kami
力 上
Yasuhiro Kobayashi
康宏 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63164873A priority Critical patent/JPH0230779A/en
Priority to EP88308226A priority patent/EP0307163B1/en
Priority to DE88308226T priority patent/DE3886146T2/en
Priority to CA000576999A priority patent/CA1332345C/en
Priority to KR1019880011737A priority patent/KR930009390B1/en
Publication of JPH0230779A publication Critical patent/JPH0230779A/en
Priority to US07/600,136 priority patent/US5125991A/en
Publication of JPH0472920B2 publication Critical patent/JPH0472920B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PURPOSE:To reduce iron loss at a low cost and to improve the adhesion of an insulating coating by magnetically smoothing a finish-annealed grain-oriented silicon steel sheet in an aq. soln. contg. a water-soluble halide. CONSTITUTION:A finish-annealed grain-oriented silicon steel sheet is magnetically smoothed with an aq. soln. contg. >=1 kinds of water-soluble halide or the aq. soln. further contg. polyether as an electrolyte. The surface of the steel sheet is brushed, if necessary, by using an aq. soln. or suspension of a bicarbonate. In addition, a corrosion inhibitor can be advantageously added to the aq. electrolyte soln. The bath temp. is set at ordinary temp. to about 90 deg.C, and the current density to 5 to several hundreds A/dm<2>. By this process, the iron loss is reduced, and an insulating cord can be easily stuck to the steel sheet surface.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、低鉄損方向性けい素鋼板の製造方法に関し
、特にその表面を工業的に低コストの手法によって効果
的に平滑な状態に仕上げることによって鉄損特性の有利
な改善を図ろうとするものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a grain-oriented silicon steel sheet with low core loss, and in particular to a method for effectively making the surface smooth by an industrially low-cost method. The objective is to improve iron loss characteristics by finishing the iron.

一方向性けい素鋼板は、製品の2次再結晶粒を(110
) (001)すなわちゴス方位に集積させたもので、
主として変圧器その他の電気機器の鉄心として使用され
る。このため一方向性けい素鋼板の特性としては、磁束
密度(B、。値で代表される)が高いこと、ならびに鉄
FM (WIT/S。値で代表される)が低いことが要
求される。特に最近では省エネルギーの見地から、変圧
器等の電力損失を少なくするためよりいっそうの鉄損の
低減が望まれている。
Unidirectional silicon steel sheet has secondary recrystallized grains (110
) (001) That is, it is accumulated in the Goss direction,
Mainly used as cores for transformers and other electrical equipment. For this reason, the characteristics of unidirectional silicon steel sheets are required to have high magnetic flux density (B, represented by the value) and low iron FM (WIT/S, represented by the value). . Particularly recently, from the viewpoint of energy conservation, it has been desired to further reduce iron loss in order to reduce power loss in transformers and the like.

従来の一方向性けい素鋼板の製造方法は、例えばSiを
2.0〜4.0重量%(以下単に%で示す)含有し7た
素材を、熱間圧延したのち、1回又は中間焼鈍を含む2
回の冷間圧延により最終板厚とし、脱炭焼鈍後、MgO
を主成分とする焼鈍分離剤を塗布してからコイルに巻き
取り、ついで2次再結晶焼鈍及び純化焼鈍を行ない、し
かるのち必要に応してりん酸塩系絶縁コーティングを施
す方法が通常行なわれている。
The conventional method for manufacturing unidirectional silicon steel sheets involves hot rolling a material containing 2.0 to 4.0% by weight of Si (hereinafter simply expressed as %), followed by one-time or intermediate annealing. including 2
The final thickness is obtained by cold rolling twice, and after decarburization annealing, MgO
The usual method is to apply an annealing separator mainly composed of , then wind it into a coil, then perform secondary recrystallization annealing and purification annealing, and then apply a phosphate-based insulating coating if necessary. ing.

なお上記の純化焼鈍の際には、脱炭焼鈍後の鋼板表面に
生成した5iOzを主成分とする酸化層と焼鈍分離剤中
のMgOとが反応してフォルステライト(門gzsiO
a )被膜が形成される。
In addition, during the purification annealing described above, the oxide layer containing 5iOz as a main component generated on the surface of the steel sheet after decarburization annealing reacts with MgO in the annealing separator to form forsterite (gzsiO).
a) A film is formed.

(従来の技術) ところで一方向性けい素鋼板の鉄損特性改善については
、純化焼鈍時に綱板表面に形成されるガラス質被膜を除
去し、次いで地鉄とガラス質被膜の界面付近にある窒化
物や硫化物等の不純物を含む層を除去し、表面を平滑に
仕上げることによって著しい鉄…の低減を図り得ること
が報告されている(例えば特公昭52−24499号、
同56−4150号各公報)。
(Prior art) By the way, in order to improve the iron loss characteristics of unidirectional silicon steel sheets, the glassy film formed on the steel sheet surface during purification annealing is removed, and then the nitriding film near the interface between the base steel and the glassy film is removed. It has been reported that it is possible to significantly reduce iron by removing layers containing impurities such as metals and sulfides and by smoothing the surface (for example, Japanese Patent Publication No. 52-24499,
56-4150).

鋼板表面を鏡面化する一般的な方法としては、ハフ、ブ
ラシ等による機械研磨、化学的に表面を溶解させる化学
研磨および電気化学的に溶解させる電解研磨がある。こ
のうち、機械研磨による場合、鋼板に歪を与えずに研磨
することは難しく、またこの加工歪は歪取り焼鈍によっ
ても完全には除去できないため、鉄損は上昇する。した
がって鉄損の低減を安定して実現するには、化学研磨又
は電解研磨による鏡面化が必要となるわけであるが、化
学研磨の場合、研磨量の劣化により、研磨量と研磨面の
所定条件からのずれが大きくなり易いのに対し、電解研
磨の場合は、電気化学的処理であるため、研磨量や研磨
面の制御が化学研磨に比べると極めて容易である。従っ
て、工業的観点からみると鏡面化処理としては電解研磨
の方が有利であると言える。
General methods for mirror-finishing the surface of a steel plate include mechanical polishing using huffing, brushing, etc., chemical polishing for chemically dissolving the surface, and electrolytic polishing for electrochemically dissolving the surface. Among these methods, when mechanical polishing is used, it is difficult to polish the steel plate without straining the steel plate, and since this processing strain cannot be completely removed even by strain relief annealing, iron loss increases. Therefore, in order to stably reduce iron loss, mirror polishing by chemical polishing or electrolytic polishing is necessary. However, in the case of electrolytic polishing, since it is an electrochemical process, it is much easier to control the amount of polishing and the polished surface compared to chemical polishing. Therefore, from an industrial point of view, it can be said that electrolytic polishing is more advantageous as a mirror polishing treatment.

(発明が解決しようとする課題) しかしながらこれらの技術はいずれも鉄損低減効果は非
常に明確であるにもかかわらず、今日工業的に実施され
るまでには至っていない。
(Problems to be Solved by the Invention) However, although all of these techniques have a very clear effect of reducing iron loss, they have not yet been industrially implemented today.

その理由は、化学研摩液として用いられる11F+lh
O,やll3POn + 11□0□などは高価なため
コスト高になるからである。同しく電解研摩液として通
常用いられるりん酸系浴、硫酸系浴、りん酸−硫酸系浴
および過塩素酸系浴などもいずれも高濃度の酸を主成分
とし、しかも添加物としてクロム酸塩、沸酸、有機化合
物等を使用するためコスト高となり、しかも大量に鋼板
を処理するには、均質性、生産性および液の早期劣化な
ど未解決の問題も多く、工業的規模で実施されるには至
っていない。
The reason is that 11F+lh is used as a chemical polishing liquid.
This is because O, and ll3POn + 11□0□ are expensive, resulting in high costs. Similarly, phosphoric acid baths, sulfuric acid baths, phosphoric acid-sulfuric acid baths, and perchloric acid baths, which are commonly used as electrolytic polishing solutions, all contain high concentrations of acid as their main component, and they also contain chromate as an additive. The cost is high due to the use of fluoric acid, organic compounds, etc., and there are many unresolved problems in processing steel plates in large quantities, such as homogeneity, productivity, and early deterioration of the liquid, so it is not carried out on an industrial scale. This has not yet been achieved.

さらにもう一つの工業化を妨げる重要な欠点に、鏡面研
磨された表面には絶縁コートがのりにくいことがある。
Another important drawback that hinders industrialization is that it is difficult for insulating coats to adhere to mirror-polished surfaces.

すなわち従来知られているりん酸塩系コートやセラミン
クコ−1は鏡面故に密着性が悪く現実の使用には耐え得
ない。
That is, the conventionally known phosphate-based coats and Ceramin Kuko-1 have poor adhesion due to their mirror surfaces and cannot withstand actual use.

この発明は、上記の問題を有利に解決するもので、電解
研磨または化学研磨による鏡面化処理に代わる工業化の
容易な表面処理手段について提案することを目的とする
The present invention advantageously solves the above-mentioned problems, and aims to propose a surface treatment means that can be easily industrialized as an alternative to mirror polishing by electrolytic polishing or chemical polishing.

(課題を解決するための手段) さて発明者らは、表面状態が鉄損に及ぼす影響について
再検討した結果、以下に述べる知見を得た。
(Means for Solving the Problems) The inventors reexamined the influence of surface conditions on iron loss, and as a result, they obtained the knowledge described below.

すなわちその第1は、ヒステリシス世に対して大きく影
響を与えているのは、主として表面酸化物であり、表面
の凹凸に関しては必ずしも鏡面状態とする必要はないこ
とである。ここに鏡面状態とは光学的な概念であり、定
量的に定義づけられていないが表面粗さが中心線平均粗
さで0.4μm以下望むらくは0.1μm以下のことを
指す。
That is, the first point is that it is mainly the surface oxide that has a large influence on the hysteresis, and the surface irregularities do not necessarily have to be mirror-like. Here, the specular state is an optical concept, and although it is not quantitatively defined, it refers to a surface roughness of 0.4 μm or less, preferably 0.1 μm or less in center line average roughness.

第2図に、酸化物が表面に存在する方向性けい素鋼板、
鏡[■比処理を施した方向性けい素鋼板およびその後さ
らに酸洗を施して表面が荒れた方向性けい素鋼板の各鉄
損を比較して示したが、同図から明らかなように酸洗に
よって鏡面が失われても鉄損はさほど劣化していない。
Figure 2 shows a grain-oriented silicon steel sheet with oxides on its surface.
The graph shows a comparison of the iron losses of a grain-oriented silicon steel sheet that has been subjected to mirror [■ ratio treatment and a grain-oriented silicon steel sheet that has been further acid-washed and has a roughened surface. Even if the mirror surface is lost due to washing, the iron loss has not deteriorated much.

このように低ヒステリシス損のけい素鋼板を得るために
は、必ずしも鏡面にする必要はなく、鋼板の表面を磁気
的に平滑な面、すなわちヒステリシス…の原因となる磁
壁の移動を妨害することがなくかつ、被膜密着性にも優
れた表面にすればよい。したがって電解研磨や化学研磨
は必要不可欠の条件ではなく、もっと自由に表面処理手
段を選択できることになる。
In order to obtain a silicon steel sheet with low hysteresis loss, it is not necessarily necessary to make the surface of the steel sheet a mirror surface, but to make the surface of the steel sheet a magnetically smooth surface, that is, to prevent the movement of domain walls that cause hysteresis. What is necessary is to provide a surface that is free from oxidation and has excellent film adhesion. Therefore, electrolytic polishing and chemical polishing are not indispensable conditions, and surface treatment means can be selected more freely.

とはいえけい素鋼板の磁気的平滑化のプロセス中に鋼板
表面に歪が入ることは鉄損を劣化させるために極力回避
すべきことはいうまでもなく、この点化学研磨や電解研
磨などの無歪の研磨方法が適している。
However, it goes without saying that strain on the surface of the steel sheet during the magnetic smoothing process of the silicon steel sheet should be avoided as much as possible since it will degrade core loss. Strain-free polishing methods are suitable.

ここで電解研磨法を特徴づけている鏡面化現象に触れて
おく。電解研磨においては、被研磨面を陽極として強酸
、強アルカリの電解液中で電流を通すと、電解反応によ
って金属は表面からイオンとなって流出するが、金属表
面と電解液の間に粘性膜が生じる。この粘性膜が表面の
凸部では薄いので、より多くの電流が流れ、凸部が凹部
より多く溶は出し金属表面は凹凸のない鏡面に仕上げら
れるとされている。したがって化学研磨や電解研磨は結
晶粒度や方位に全く依存せずに金属表面を平滑にする方
法であるともいえる。
Here we will touch on the mirror polishing phenomenon that characterizes the electrolytic polishing method. In electrolytic polishing, when a current is passed through a strong acid or strong alkaline electrolyte using the surface to be polished as an anode, the metal flows out from the surface as ions due to an electrolytic reaction, but a viscous film is formed between the metal surface and the electrolyte. occurs. Since this viscous film is thinner at the convex parts of the surface, more current flows through the convex parts, causing more melting to occur in the convex parts than in the concave parts, resulting in a mirror-like finish with no irregularities on the metal surface. Therefore, it can be said that chemical polishing and electrolytic polishing are methods for smoothing metal surfaces, completely independent of crystal grain size and orientation.

また第2の知見は、塩化物水溶液でけい素鋼板を陽極電
解処理した場合に鋼板表面の結晶粒方位の違いによって
表面性状が大きく異なることである。
The second finding is that when a silicon steel sheet is subjected to anodic electrolysis treatment with an aqueous chloride solution, the surface properties of the steel sheet vary greatly depending on the crystal grain orientation on the surface of the steel sheet.

従来、珪素鋼板に対する塩化物による電解処理はなんら
用途がないために実施されることはなかったが、発明者
らは上述した第1の知見によって広く電解処理の可能性
を探っていたため、塩化物についても確認実験を行った
ところ、上述の特異な現象を突き止めたのである。
Conventionally, electrolytic treatment using chlorides on silicon steel sheets has not been carried out because there is no use for it. When they conducted confirmation experiments on this, they discovered the above-mentioned peculiar phenomenon.

第3図に面方位の差異によって、電解処理後の結晶面の
モルホロジーが異なることを表した金属組織写真を示す
FIG. 3 shows photographs of metallographic structures showing that the morphology of crystal planes after electrolytic treatment differs depending on the difference in plane orientation.

第3図Aは結晶粒の(110)面が圧延面に対して5°
傾いている場合であり、独得の網目状表面モルホロジー
を呈している。この網目状粒は結晶粒の如くみえる窪み
が粒内に分散して隣合っていることによって形成され、
電解上ンチによって得られるグレイニング面に類似して
いるのでグレイニング様面と呼称する。第3図Bは、同
じ<11゜傾いている場合であり鱗状モルホロジーを呈
している。さらに第3図Cは、25°傾いている場合で
あっ゛(木肌状m織となっている。これらの特異なモル
ホロジーを有する面は写真A−Cで想像しうるように網
目状Mi織Aですら鏡面ではなくマクロ的外観では結晶
粒界の出現した酸洗面の様相を呈している。
In Figure 3A, the (110) plane of the grain is 5° to the rolling surface.
It is a tilted case and exhibits a unique network-like surface morphology. These mesh grains are formed by hollows that look like crystal grains that are distributed and adjacent to each other within the grain.
It is called a graining-like surface because it is similar to the graining surface obtained by electrolytic punching. FIG. 3B shows the same case of <11° inclination and exhibits a scale-like morphology. Furthermore, Fig. 3C shows the case where the surface is tilted by 25 degrees (wood grain-like M weave).As you can imagine from photos A-C, these surfaces with unique morphology form mesh-like Mi weave A. Even this is not a mirror surface, and from a macroscopic appearance it has the appearance of a pickled surface with grain boundaries.

ここで重要なことは、かかる特異な網目状組織を有する
表面は(1101面を有するけい素鋼素材を塩化物水溶
液を電解液として電解処理した時のみ得られ、しかも上
記の網目状組織は磁性的に平滑な面であることである。
What is important here is that the surface with such a unique network structure can only be obtained by electrolytically treating a silicon steel material with 1101 planes using an aqueous chloride solution as an electrolyte; The surface must be perfectly smooth.

さらにこの塩化物水溶液で陽極電解した鋼板表面は、化
学研磨または電解研磨によって得られる鏡面に比し、絶
縁コーティングを施した際の被膜の密着性に優れている
ことも新たに確認された。
Furthermore, it has been newly confirmed that the surface of a steel sheet anodically electrolyzed with this chloride aqueous solution has superior adhesion when an insulating coating is applied, compared to mirror surfaces obtained by chemical polishing or electrolytic polishing.

しかし絶縁コーティングの種類や膜厚によっては被膜の
密着性にばらつきが生じるため、表面に通常のブラシン
グ処理を施して改善を試みたが満足する結果は得られな
かった。そこで被膜の密着性低下の原因について調べた
ところ、通常のブラシング処理のみでは除去しきれずに
鋼板表面に残るPcの水和酸化物やスマットが被膜の密
着性に影響を及ぼしていることが判明した。そしてこの
水和酸化物やスマットの除去には、電解後に鋼板表面に
炭酸水素塩の水溶液または水懸濁液を用いるブラシング
処理を施すことが極めて有効で、この処理によって清浄
な表面を現出することで絶縁被膜の密着性を十分に向上
し得ることもわかった。
However, the adhesion of the coating varies depending on the type and thickness of the insulating coating, so an attempt was made to improve the adhesion by applying a normal brushing treatment to the surface, but no satisfactory results were obtained. When we investigated the cause of the decrease in film adhesion, we found that hydrated Pc oxides and smut that remained on the steel sheet surface and were not removed by normal brushing alone were affecting the film adhesion. . To remove these hydrated oxides and smut, it is extremely effective to apply a brushing treatment to the surface of the steel sheet after electrolysis using an aqueous solution or suspension of hydrogen carbonate, and this treatment reveals a clean surface. It was also found that the adhesion of the insulating film could be sufficiently improved by this method.

この発明は上記の知見に由来するものである。This invention is derived from the above knowledge.

すなわちこの発明は、 仕上げ焼鈍済みの方向性けい素鋼板に、水溶性のハロゲ
ン化物を1種以上含む水溶液中で電解による磁気的平滑
化処理を施すことを特徴とする低鉄損方向性けい素鋼板
の製造方法(第1発明)仕上げ焼鈍済みの方向性けい素
鋼板に、少なくとも1種の水溶性のハロゲン化物とポリ
エーテルとを含む水溶液中で電解による磁気的平滑化処
理を施すことを特徴とする低鉄…方向性けい素鋼板の製
造方法(第2発明) 仕上げ焼鈍済みの方向性けい素鋼板に、水溶性のハロゲ
ン化物を1種以上含む水溶液中で電解による磁気的平滑
化処理を施し、ついで鋼板表面に炭酸水素塩の水溶液ま
たは水懸濁液を用いるブラシング処理を施すことを特徴
とする低鉄損方向性けい素鋼板の製造方法(第3発明) 仕上げ焼鈍済みの方向性けい素鋼板に、少なくとも1種
の水溶性のハロゲン化物とポリエーテルとを含む水溶液
中で電解による磁気的平滑化処理を施し、ついで鋼板表
面に炭酸水素塩の水溶液または水懸濁液を用いるブラシ
ング処理を施すことを特徴とする低鉄損方向性けい素鋼
板の製造方法(第4発明) である。
That is, the present invention provides a low iron loss oriented silicon steel sheet, which is characterized in that a finish annealed grain oriented silicon steel sheet is subjected to magnetic smoothing treatment by electrolysis in an aqueous solution containing one or more water-soluble halides. Method for manufacturing a steel sheet (first invention) A method of manufacturing a grain-oriented silicon steel sheet that has been finish annealed is subjected to magnetic smoothing treatment by electrolysis in an aqueous solution containing at least one water-soluble halide and polyether. A method for manufacturing a grain-oriented silicon steel sheet with low iron (second invention) A finish-annealed grain-oriented silicon steel sheet is subjected to magnetic smoothing treatment by electrolysis in an aqueous solution containing one or more water-soluble halides. A method for producing a low iron loss grain-oriented silicon steel sheet (third invention), characterized in that the surface of the steel sheet is subjected to a brushing treatment using an aqueous solution or suspension of hydrogen carbonate (third invention). A raw steel plate is subjected to magnetic smoothing treatment by electrolysis in an aqueous solution containing at least one water-soluble halide and polyether, and then the steel plate surface is subjected to a brushing treatment using an aqueous solution or suspension of hydrogen carbonate. A method for manufacturing a grain-oriented silicon steel sheet with low core loss (fourth invention).

また実施に当り、電解水溶液に腐食防市剤を添加するこ
とが有利である。
In practice, it is advantageous to add a corrosion inhibitor to the electrolytic aqueous solution.

以下この発明を具体的に説明する。This invention will be specifically explained below.

この発明では、常法に従ってけい素鋼板用スラブに熱間
圧延を施し、次に中間焼鈍をはさむ冷間圧延を施して最
終板厚としたのぢ、脱炭焼鈍を施し次いで最終仕上げ焼
鈍を施す。
In this invention, a slab for silicon steel plate is hot rolled according to a conventional method, then cold rolled with intermediate annealing to obtain the final plate thickness, decarburized annealed, and then final finish annealed. .

この最終仕上げ焼鈍の際の焼鈍分離剤としては、従来か
らフォルステライト被膜も同時に形成させるためにMg
Oを主成分とする焼鈍分離剤が主に用いられてきたが、
かかるフォルステライト被膜を生成させない様に配合さ
れた、たとえばAffizOa等を主成分とし、これに
不活性MgOやCa、 Sr化合物を添加した分離剤を
用いてもよい。
Conventionally, Mg was used as an annealing separator during final annealing to form a forsterite film at the same time.
Annealing separators containing O as the main component have been mainly used,
A separation agent formulated to prevent the formation of such a forsterite film, for example, containing AffizOa as a main component and to which inert MgO, Ca, or Sr compounds may be used.

次に最終仕上げ焼鈍板の表面酸化層を除去する。Next, the surface oxidation layer of the final annealed plate is removed.

除去方法としては、酸洗等の化学的方法とエメリー研磨
等の機械的手法があり、特に限定はしないが、機械的手
法で表面酸化層を除去した場合には、板内部に歪みが入
り易く、かかる歪は続く電解処理によっても解放できな
いので、表面酸化物の除去は酸洗処理で行う方が好まし
い。
Removal methods include chemical methods such as pickling and mechanical methods such as emery polishing. Although there are no particular limitations, if the surface oxide layer is removed by mechanical methods, distortion may easily occur inside the board. Since such strain cannot be relieved by subsequent electrolytic treatment, it is preferable to remove surface oxides by pickling treatment.

ついでこのように表面酸化層を除去した表面を陽極電解
処理によって磁気的平滑面化する。
Then, the surface from which the surface oxide layer has been removed is magnetically smoothed by anodic electrolytic treatment.

電解浴は水溶性のハロゲン化物を1種以−に含む水溶液
または少なくとも1種の水溶性のハロゲン化物とポリエ
ーテルとを含む水溶液を用いる。
The electrolytic bath uses an aqueous solution containing one or more water-soluble halides or an aqueous solution containing at least one water-soluble halide and polyether.

ここで水溶性のハロゲン化物とは、lICρ、 NH,
C/2および各種金属の塩化物又はF、Br、Iを陰イ
オンとする酸、そのアルカリ、アルカリ土類、その他の
金属塩類およびアンモニウム塩のうちの水溶性のもの、
さらに弗化物としては硼弗化物(BP。
Here, the water-soluble halides are lICρ, NH,
C/2 and various metal chlorides or acids with F, Br, and I as anions; water-soluble ones among their alkali, alkaline earth, and other metal salts and ammonium salts;
Furthermore, borofluoride (BP) is a fluoride.

塩)および珪弗化物(SiF6塩)のうちの水溶性のも
のを意味する。水溶性ハロゲン化物を例示すると、1(
CL NaC1,KCffi、 NH4Cl!、、 M
gCjL、 CaCEz。
SiF6 salt) and silicofluoride (SiF6 salt), which are water-soluble. Examples of water-soluble halides include 1 (
CL NaC1, KCffi, NH4Cl! ,, M
gCjL, CaCEz.

Aj2CI23. HF、 Nap、 KF、 NH,
F、 HBr、 NaBr、 KBrMgBrz、 C
aBrz、 NHnBr、旧、 Nal、 Kl、 N
IInI、 Ca1z+Mg1z、II□SiF6+ 
Mg5iF6I(NHn)zSiF6. HBF4. 
NH4BF4およびNaBF、等である。これらはいず
れも(110)面を有する仕上げ焼鈍後の方向性けい素
鋼板に対し磁気的平滑化効果を持つものであるが、実操
業においては陰極への金属析出の防止等を考慮して、こ
れらの中から選択することが望ましい。また、その濃度
は、浴の電気伝導度を確保するうえから20g/1以上
であることが望ましい。なお、その組成および濃度から
してこの発明では海水の利用も可能である。
Aj2CI23. HF, Nap, KF, NH,
F, HBr, NaBr, KBrMgBrz, C
aBrz, NHnBr, old, Nal, Kl, N
IInI, Ca1z+Mg1z, II□SiF6+
Mg5iF6I(NHn)zSiF6. HBF4.
NH4BF4 and NaBF, etc. All of these have a magnetic smoothing effect on grain-oriented silicon steel sheets with (110) planes after finish annealing, but in actual operation, taking into consideration prevention of metal precipitation on the cathode, etc. It is desirable to choose from these. Further, the concentration is desirably 20 g/1 or more in order to ensure the electrical conductivity of the bath. Note that seawater can also be used in this invention due to its composition and concentration.

またポリエーテルとは、エーテル結合(−0−)を主鎖
中に含む線状分子であって、一般に〔間〕担体の繰返し
により成る高分子化合物である。ここで門は普通メチレ
ン基またはポリメチレン基およびそのaA R体である
。例えば、ポリエチレングリコール+Cl12CH2f
l−9はその1例である。
Polyether is a linear molecule containing an ether bond (-0-) in its main chain, and is generally a polymer compound formed by repeating carriers. Here, the group is usually a methylene group or a polymethylene group and its aAR form. For example, polyethylene glycol + Cl12CH2f
l-9 is one example.

ここにポリエーテルの添加量は2g/ρ以上とすること
が望ましく、一方濃度は高すぎると浴の電気型導度が低
下する上、添加量に見合う効果が期待てきないため2〜
300 g/ E程度の範囲が適当である。
It is desirable that the amount of polyether added is 2 g/ρ or more; on the other hand, if the concentration is too high, the electrical type conductivity of the bath will decrease and the effect commensurate with the amount added cannot be expected.
A range of about 300 g/E is appropriate.

浴温は常温以上で任意に選ぶことができるが、あまり高
温では水の蒸発が著しく、常温ないし90°C程度が適
当である。電流密度は5 A/dm2程度から数百A/
dm2の範囲で設定できる。しかし、浴温か低いときに
100A/dm”をこえるような高電流密度とすると表
面の処理むらを生じやすいので、電流密度の範囲をより
広くしようとすれば、浴温を40°C以」二にした方が
よい。
The bath temperature can be arbitrarily selected from room temperature or above, but if the temperature is too high, water will evaporate significantly, so room temperature to about 90°C is appropriate. The current density ranges from about 5 A/dm2 to several hundred A/dm2.
It can be set within the range of dm2. However, if the bath temperature is low and the current density exceeds 100 A/dm, it tends to cause uneven surface treatment. It is better to

なお鉄損を低下させる見地から、この発明における電解
の電気量および電解除去量はそれぞれ300C/dm2
以上、片面当り1μm以上にすることが好ましい。
In addition, from the viewpoint of reducing iron loss, the amount of electricity in electrolysis and the amount of electrolytic removal in this invention are each 300C/dm2.
As mentioned above, it is preferable that the thickness be 1 μm or more per side.

以トのようにこの発明においては従来の方法にくらべて
きわめて広範囲な条件下で磁気的平滑化効果を得ること
ができ、この点もこの発明が工業的に実施されるうえで
有利であることの重要な根(処となるものである。
As described above, in this invention, the magnetic smoothing effect can be obtained under a much wider range of conditions than in the conventional method, and this point is also advantageous for the industrial implementation of this invention. It is the important root of

ここで電解反応による浴の変化をNaCl水溶液を例に
とって示すと次のとおりである。
Here, the changes in the bath caused by the electrolytic reaction are shown below, taking an NaCl aqueous solution as an example.

陽極: Fe+ 2Cffi −→FeCff z +
 2e−−(1)・・・(2) ・・・(3) 陰極: 2Na”+211zO+2e−→2NaOIl
+llz↑ハルり: FeCf z−1−2NaOH→
2NaCf +Pe(011)z ↓すなわち(1)弐
によって生成したFeC1zと、(2)弐で生成したN
 a Otlとは、(3)式に示した反応によって自動
的にNaCp、を再生する。したがって浴組成の制御は
、基本的には(3)式で生成するFe(OH)zの沈澱
の除去と、水の補給、および鋼板が系外へ持ち出すNa
Clの補給を行えばよいことになり、従来の化学研磨あ
るいは電解研磨にくらべ、はるかに容易かつ低コストな
ものとなる。どの点もこの発明方法が工業的に優れたも
のであることのひとつの理由である。
Anode: Fe+ 2Cffi −→FeCff z +
2e--(1)...(2)...(3) Cathode: 2Na"+211zO+2e-→2NaOIl
+llz↑Haruori: FeCf z-1-2NaOH→
2NaCf + Pe(011)z ↓ That is, FeC1z generated by (1) Ni and N generated by (2) Ni
a Otl automatically regenerates NaCp by the reaction shown in equation (3). Therefore, the control of the bath composition basically consists of removing the Fe(OH)z precipitate produced by equation (3), replenishing water, and reducing the amount of Na carried out of the system by the steel plate.
All that is needed is to replenish Cl, making it much easier and less costly than conventional chemical polishing or electrolytic polishing. All of these points are one of the reasons why the method of this invention is industrially superior.

また第3および4発明では、上記したハロゲン化物水溶
液中での陽極電解が終ったあと、水洗によって鋼板表面
のハロゲン化物を洗い流したあと、表面清浄化による被
膜の密着性確保のために炭酸水素塩の水懸濁液もしくは
水溶液を用いてブラシング処理が施される。ここで、炭
酸水素塩とは、炭酸水素ナトリウム、炭酸水素アンモニ
ウム、炭酸水素カリウム等を意味する。このとき、水溶
液を用いる場合の濃度はLog/42以上とすることが
望ましく、10g/Q未満では表面清浄化効果が十分で
ない。なお清浄化効果は濃度が高いほど大きく、懸濁液
がもっとも顕著であるが、10g/l、以上で、単なる
水によるブラシング処理にくらべて、明瞭な効果を得る
ことができる。プラシングの方法としては合成繊維ある
いは天然繊維を用いたブラシロールや不織布ロール等が
有利に適用できる。
In addition, in the third and fourth inventions, after the anodic electrolysis in the aqueous halide solution described above is finished, the halide on the surface of the steel sheet is washed away by water washing, and then hydrogen carbonate is added to ensure the adhesion of the coating by surface cleaning. Brushing treatment is performed using an aqueous suspension or solution of. Here, hydrogen carbonate means sodium hydrogen carbonate, ammonium hydrogen carbonate, potassium hydrogen carbonate, and the like. At this time, when using an aqueous solution, it is desirable that the concentration be at least Log/42, and if it is less than 10 g/Q, the surface cleaning effect will not be sufficient. The cleaning effect increases as the concentration increases, and is most noticeable in suspensions; however, at 10 g/l or more, a clearer effect can be obtained compared to simple brushing treatment with water. Brush rolls, non-woven fabric rolls, etc. using synthetic fibers or natural fibers can be advantageously applied as a method of adding the material.

ブラシングを終ったあとは直ちに水洗、乾燥することに
より清浄な表面が維持される。
After brushing, immediately rinse with water and dry to maintain a clean surface.

さらにハロゲン化物水溶液中で陽極電解した後の方向性
珪素鋼板の表面ば極めて活性なため、大気中に曝露され
ると容易に銹を発生する。
Furthermore, the surface of a grain-oriented silicon steel sheet after anodic electrolysis in an aqueous halide solution is extremely active and therefore easily generates rust when exposed to the atmosphere.

銹が生じると外観の劣化とともに、その後のコーティン
グの密着性の劣化をもたらし、ひいては磁気特性の劣化
を招くことになる。これを防止するには電解浴中に腐食
防止剤(インヒビター)を添加することが有効となる。
When rust occurs, not only does the appearance deteriorate, but also the adhesion of the subsequent coating deteriorates, which in turn leads to deterioration of the magnetic properties. To prevent this, it is effective to add a corrosion inhibitor to the electrolytic bath.

インヒビターの種類は大別して無機系と有機系に区別さ
れるがこの発明ではいずれでもよい。例を挙げれば無機
系としては、クロム酸塩、亜硝酸塩、りん酸塩等、また
有機系としては有機硫黄化合物や分子構造中に極性基の
アミノ基(−N11□)を有するところのアミン類等が
適用できる。
The types of inhibitors can be broadly classified into inorganic and organic types, but in this invention, either type may be used. Examples of inorganic systems include chromates, nitrites, phosphates, etc., and organic systems include organic sulfur compounds and amines that have a polar amino group (-N11□) in their molecular structure. etc. can be applied.

その濃度はインヒビターの種類によって効果の程度が異
なるので一概には言えないが、0.1〜50gIQ程度
が適当である。
The concentration cannot be determined unconditionally since the degree of effectiveness varies depending on the type of inhibitor, but approximately 0.1 to 50 gIQ is appropriate.

また、ハロゲン化物水溶液中で方向性珪素鋼板を陽極電
解していくと浴中にFe(Off)zの沈澱が多量に生
成し、これが約2%を超えると液の粘性が上り過ぎて正
常な電解が不可能になる。
Furthermore, when a grain-oriented silicon steel sheet is anodically electrolyzed in an aqueous halide solution, a large amount of Fe(Off)z precipitate is generated in the bath, and if this exceeds about 2%, the viscosity of the solution increases too much and the normal Electrolysis becomes impossible.

特にアルカリ金属のハロゲン化物を主成分とした電解液
を用いる場合、F e (OH) zの沈澱中に一定量
のハロゲンイオンが捕捉されるため、浴pHは上昇傾向
を示す。そしてpHが13を超えると均一な電解表面は
得られなくなる。これらの問題の発生を防止するにはp
H緩衝剤、あるいはFeイオンをキレ−1−化するキレ
ート剤の添加が有効である。pH緩衝剤としてはりん酸
、クエン酸、硼酸、酢酸、グリシン、マレイン酸等およ
びそれらの塩等が有効であり、また、Feイオンのキレ
ート剤としてはクエン酸、酒石酸、グリコール酸等のオ
キシ酸、各種アミン類、あるい番よEDT八なと゛のポ
リアミノカルボン酸類、ポリりん酸塩等が有効である。
In particular, when an electrolytic solution containing an alkali metal halide as a main component is used, a certain amount of halogen ions are captured during the precipitation of Fe (OH) z, so the bath pH tends to increase. If the pH exceeds 13, a uniform electrolytic surface cannot be obtained. To prevent these problems from occurring, p.
It is effective to add an H buffer or a chelating agent that chelates Fe ions. Phosphoric acid, citric acid, boric acid, acetic acid, glycine, maleic acid, and their salts are effective as pH buffering agents, and oxyacids such as citric acid, tartaric acid, and glycolic acid are effective as chelating agents for Fe ions. , various amines, polyaminocarboxylic acids such as EDT, polyphosphates, etc. are effective.

それらの添加量はおおむね1〜loog//2の範囲が
良い。
The amount of these additions is preferably in the range of approximately 1 to log//2.

また、電解中の浴pHの上昇を防止するには、浴中のF
e(OH)zの沈澱をFe(Off)iに酸化すること
も有効であり、その具体的な方法としては浴と空気の接
触を強制的に強める空気酸化あるいはI+ 、02等の
酸化物を浴に添加するとよい。
In addition, in order to prevent the bath pH from increasing during electrolysis, it is necessary to
It is also effective to oxidize the precipitate of e(OH)z to Fe(Off)i, and specific methods include air oxidation that forcibly strengthens the contact between the bath and air, or oxidation of oxides such as I+ and 02. Good to add to bath.

(作 用) 主として(110)面のみによって構成されたけい素鋼
板をNaClの水溶液で電解処理した後の鉄損の改善代
について調べた結果を第1図に示す。また同図には比較
として、混酸(Cr(h 10%H3P04)での電解
研磨(100A/dm” X 20秒)により鏡面化し
た方向性けい素鋼素材の鉄損改善代も併記した。
(Function) Figure 1 shows the results of an investigation into the improvement in iron loss after electrolytically treating a silicon steel sheet mainly composed of only (110) planes with an aqueous solution of NaCl. For comparison, the figure also shows the iron loss improvement amount of grain-oriented silicon steel material that was mirror-finished by electrolytic polishing (100 A/dm" x 20 seconds) with mixed acid (Cr (h 10% H3P04)).

同図から、ハロゲン化物浴を用いた方が、鉄損の改善代
が大きいことがわかる。
From the figure, it can be seen that the improvement in iron loss is greater when a halide bath is used.

また(110)面から10°以内の結晶面の占有率が低
い電解処理後の木目状組織を主とする試料の電解処理前
後の保磁力Hcを測定したところ、処理後ticは5%
劣化した。なおこの実験は濃度20%のNaC1電解液
を用いて、電流密度100A/dm2で10秒間電解処
理を施したものである。
In addition, when we measured the coercive force Hc before and after electrolytic treatment of a sample mainly having a grain-like structure after electrolytic treatment with a low occupation rate of crystal planes within 10° from the (110) plane, the tic after treatment was 5%.
Deteriorated. In this experiment, an electrolytic treatment was performed for 10 seconds at a current density of 100 A/dm2 using a NaCl electrolyte with a concentration of 20%.

さらに第1図には、イオンブレーティングでTiNを成
膜した場合の鉄損の改善代をも併せて示している。
Furthermore, FIG. 1 also shows the amount of improvement in iron loss when TiN is formed by ion blating.

第1図に示したように、第1発明に従うことで鉄…の低
減をはかれることが確認できたが、さらに鉄損の改善代
を大きくするには少ない溶解量でもハロゲン化物の水溶
液中での陽極電解による鉄損改善効果を十分なものにす
る必要がある。かかる観点からハロゲン化物の水溶液へ
の種々の添加物を検討したところ、ポリエーテルを添加
した電解浴を用いることが有効であるとの知見を得た。
As shown in Figure 1, it has been confirmed that iron can be reduced by following the first invention, but in order to further improve the iron loss, even a small amount of dissolved halide in an aqueous solution is required. It is necessary to make the iron loss improvement effect by anodic electrolysis sufficient. From this point of view, we investigated various additives to an aqueous halide solution and found that it is effective to use an electrolytic bath containing polyether.

第4図はNaClの100 g / ffi水溶液(浴
温60°C)を電解浴として0.23mm厚のフォルス
テライト被膜のない仕上げ焼鈍済みの方向性けい素鋼板
を電流密度100A/dm2で陽極電解した場合の、電
解による鋼板の溶解厚さと鉄tM (W+wzs。)の
低下量の関係を示したものである。なお、溶解厚さは電
解時間を変えることで変化させた。また、電解浴は添加
物を加えないもの、分子量約600のポリエチレングリ
コールを25 g / ffi添加したもの、および分
子量約2000のポリエチレングリコールを25 g 
/ ffi添加したもの、の3種において比較した。
Figure 4 shows a 0.23 mm thick finish-annealed grain-oriented silicon steel sheet without a forsterite coating using a 100 g/ffi aqueous solution of NaCl (bath temperature 60°C) as an electrolytic bath at a current density of 100 A/dm2. This figure shows the relationship between the melting thickness of the steel plate due to electrolysis and the amount of decrease in iron tM (W+wzs.) when Note that the melt thickness was varied by changing the electrolysis time. In addition, the electrolytic baths include one without additives, one with 25 g/ffi of polyethylene glycol with a molecular weight of about 600, and one with 25 g of polyethylene glycol with a molecular weight of about 2000.
A comparison was made between three types: / one with ffi added.

第4図から、ポリエチレングリコールの添加によって同
じ鉄損低下量を、得るのに必要な鋼板の溶解厚さは、無
添加の約1/2に減少していることがわかる。ちなみに
必要溶解量の減少は、電力コストの低減、製品歩留りの
向上、生産性の向上、浴中Fe分の増加率減少にともな
う浴メンテナンス費用の減少等、工業的に大きなメリン
トをもたらすものである。なお、第4図には分子量60
0と2000のものの効果を示したが、これ以外の分子
量のポリエチレングリコールでも同様の効果が得られる
ことを確認している。したがって第2発明ではポリエー
テルの分子量はとくに規定しない。
From FIG. 4, it can be seen that by adding polyethylene glycol, the melted thickness of the steel plate required to obtain the same reduction in iron loss is reduced to about 1/2 of that without the addition. Incidentally, a reduction in the required amount of dissolution brings about great industrial benefits, such as lower power costs, higher product yields, higher productivity, and lower bath maintenance costs due to a lower rate of increase in Fe content in the bath. . In addition, in Figure 4, the molecular weight is 60.
Although the effects were shown for polyethylene glycols with molecular weights of 0 and 2000, it has been confirmed that similar effects can be obtained with polyethylene glycols of other molecular weights. Therefore, in the second invention, the molecular weight of the polyether is not particularly defined.

またハロゲン化物の水溶液にポリエーテルを添加した電
解浴を用いた場合の鉄…の改善代について、第1図に結
果を示した実験に準して調べた結果を第5図に示す。な
お電解浴には分子量600のポリエチレングリコールを
25g/ffi含むNaCQの水溶液(e度100g/
ff1)を用い、100A/dm2X 20秒の条件で
電解処理に供した。またその他の条件は上記した実験と
同様である。さらに第5図には、イオンブレーティング
でTiNを成膜した場合の鉄損の改善代をも併せて示し
た。
Furthermore, Fig. 5 shows the results of an investigation based on the experiment shown in Fig. 1 regarding the improvement in iron when an electrolytic bath containing polyether added to an aqueous halide solution is used. In addition, the electrolytic bath contained an aqueous solution of NaCQ containing 25 g/ffi of polyethylene glycol with a molecular weight of 600 (e degree 100 g/ffi).
ff1) and subjected to electrolytic treatment under the conditions of 100 A/dm2×20 seconds. Other conditions were the same as in the experiment described above. Furthermore, FIG. 5 also shows the improvement in iron loss when a TiN film is formed by ion blating.

ポリエーテル添加による鉄損改善度向上の機構について
は今のところ不明であるが、その効果が分子量のいかん
にかかわらず発揮されるところを見ると、単なる浴の粘
度上昇などによるものではなく、何らかの表面活性を示
して、塩素イオンによるwA仮の磁気的平滑化を助長す
るものと考えられる。
The mechanism of improving iron loss by adding polyether is currently unknown, but seeing that the effect is exhibited regardless of the molecular weight, it is not due to a simple increase in the viscosity of the bath, but rather due to some kind of It is thought that it exhibits surface activity and promotes the temporary magnetic smoothing of wA by chlorine ions.

ところでけい素鋼板においてはその表面には絶縁コート
を具備して用いることが多く、また磁歪、鉄損などの磁
気特性を更に良好にするために、絶縁コートに張力性を
付与したり、あるいは、張力コートと絶縁コートの2重
コーティングを行ったりする。しかしながら従来の磁気
的平滑面を得る手段である鏡面研磨によって得られた表
面は、これらのコーティングを施し難いだけでなく、コ
ートの密着性が不良であった。
By the way, silicon steel sheets are often used with an insulating coat on their surface, and in order to further improve magnetic properties such as magnetostriction and iron loss, tensile properties are added to the insulating coat, or Double coating of tension coat and insulation coat is applied. However, surfaces obtained by mirror polishing, which is a conventional means of obtaining magnetically smooth surfaces, are not only difficult to apply these coatings to, but also have poor adhesion.

この点この発明の鋼板の表面は、網目状粒を有し、その
境界に凸部を有するだけでなく、結晶粒界が段差や溝状
の凹部を形成しているのでコーティング被膜の密着性は
極めて良好である。
In this regard, the surface of the steel sheet of the present invention has mesh grains, and not only does the grain boundary have convex portions, but also the grain boundaries form steps and groove-like recesses, so the adhesion of the coating film is low. Very good.

なおこの発明に従って得られる製品の鉄損が、従来法の
電解研磨、化学研摩等によって得られた鏡面を有する製
品に比して良好な値を示す物理的理由は完全には解明さ
れたわけではないが、第1に磁気的に平滑であるために
は幾何的な平滑度をそれほど高く要求されないこと、第
2に本発明法では粒界が段差状あるいは溝状に凹部を形
成するので、磁区の細巾化が生じそれによる鉄損の減少
が望めること、第3に電解研磨法によると鏡面に不均質
に生じる酸化被膜による劣化が生じると考えられるが本
発明製品では生じないこと、によるものと推察される。
Note that the physical reason why the iron loss of the product obtained according to this invention is better than that of products with a mirror surface obtained by conventional methods such as electrolytic polishing and chemical polishing has not been completely elucidated. However, firstly, geometric smoothness is not required to be very high in order to be magnetically smooth, and secondly, in the method of the present invention, the grain boundaries form recesses in the shape of steps or grooves, so the magnetic domain This is due to the fact that thinning occurs and a reduction in iron loss can be expected as a result, and thirdly, deterioration is thought to occur due to an oxide film that is formed non-uniformly on the mirror surface with the electrolytic polishing method, but this does not occur with the product of the present invention. It is inferred.

また、電解処理後の炭酸水素塩を用いたブラシング処理
によって被膜の密着性が向上するのは先にも述べたよう
に、鋼板表面が清浄化されるからである。電解後の表面
は、前述の(3)式の反応が、鋼板表面上でも起るため
に、非晶質の水和酸化鉄が全面に薄く生成していて、こ
れは地鉄とのゆるやかな化学結合をもつためか単なるブ
ラシング処理では完全にはとれない。さらに素材の方向
性けい素鋼板はSiを多く含有する故にきわめて酸化し
易い上、表面に吸着した微量の塩素イオンが常に表面の
腐食を促進する傾向にある。このような理由で電解後の
表面は完全にメタリックな面ではなく、水和酸化鉄にお
おわれた汚れた表面となっている。ところで鋼板の清浄
化効果は、単に電解後の鋼板を、炭酸水素塩の水溶液も
しくは怒濁液に浸漬するだけでは得られることはない。
Further, as mentioned above, the reason why the brushing treatment using hydrogen carbonate after the electrolytic treatment improves the adhesion of the coating is that the surface of the steel sheet is cleaned. After electrolysis, the reaction of equation (3) above also occurs on the surface of the steel plate, so a thin layer of amorphous hydrated iron oxide is formed over the entire surface, and this is due to the gradual interaction with the base iron. Perhaps because it has chemical bonds, it cannot be completely removed by simple brushing. Furthermore, since the grain-oriented silicon steel sheet material contains a large amount of Si, it is extremely susceptible to oxidation, and a trace amount of chlorine ions adsorbed on the surface always tends to promote corrosion of the surface. For this reason, the surface after electrolysis is not a completely metallic surface, but a dirty surface covered with hydrated iron oxide. By the way, the cleaning effect of a steel plate cannot be obtained simply by immersing the steel plate after electrolysis in an aqueous solution or a turbid solution of hydrogen carbonate.

−刃型なる水でプラシング処理しても、表面の汚れを完
全に除くことは困難である。したがって炭酸水素塩は何
らかの機構によって、表面の水和酸化鉄を除去しやすい
形態に変化させ、その状態のもとでブラシング処理を行
うことによって、表面が十分に清浄化されるものと考え
られる。
- It is difficult to completely remove dirt from the surface even if the blade is treated with water. Therefore, it is thought that by some mechanism, hydrogen carbonate changes the hydrated iron oxide on the surface into a form that is easy to remove, and by performing the brushing treatment under this condition, the surface is sufficiently cleaned.

かかる一連の処理を施したあと、表面にコーティング被
膜を形成する。被膜の種類としては従来から知られてい
るりん酸塩系あるいはクロム酸塩系被膜、もしくは磁気
特性のより一層の向上を図るための張力付加型の被膜が
適用される。張力付加型被膜は従来より知られるコロイ
ダルシリカを含有するりん酸塩系コーティングでもよい
し、ドライあるいはウェットのめっきで形成してもよい
After performing this series of treatments, a coating film is formed on the surface. As the type of coating, a conventionally known phosphate-based or chromate-based coating, or a tension-applied coating for further improving magnetic properties is applied. The tension-applied coating may be a conventionally known phosphate coating containing colloidal silica, or may be formed by dry or wet plating.

すなわらCVD法やPvD法(イオンブレーティングや
イオンインブランティジョン)などの薫着法又はめっき
等によってTi、 Nb、 Si、  V、 Cr、^
I、 Mn。
In other words, Ti, Nb, Si, V, Cr, ^, etc. are deposited by a smoked method such as CVD method or PvD method (ion blating or ion implantation) or by plating.
I, Mn.

B、 Ni、 Co、 Mo、 Zr、 Ta、 If
f、 Wの窒化物および/又は炭化物ならびにAI、 
Si、 Mn、 Mg、 Zn+ Tiの酸化物のうち
から選んだ少な(とも1種より主として成る極薄被膜を
鋼板表面に強固に被成するのである。
B, Ni, Co, Mo, Zr, Ta, If
f, W nitride and/or carbide and AI,
An extremely thin film consisting mainly of one of the oxides of Si, Mn, Mg, and Zn+Ti is firmly formed on the surface of the steel sheet.

なおかかる被膜の材質としては、上掲したもののほか、
熱膨張係数が低く@仮に強固に付着するものであれば何
であってもよい。
In addition to the materials listed above, the materials for such coatings include:
Any material may be used as long as it has a low coefficient of thermal expansion and can be firmly attached.

さらに必要により常法に従って張力付与型低熱膨脂の上
塗り絶縁被膜を被成することもできる。
Furthermore, if necessary, an overcoat insulation film of a tension-applied low thermal expansion resin can be applied in accordance with a conventional method.

(実施例) 即扛 C:  0.043  %、  Si  :  3.3
5 %、 Se  二 0.018 %、Mo:0.0
13%およびSb : 0.025%を含む組成になる
熱延板を、中間焼鈍を含む2回の冷間圧延により0.2
3mm厚の冷延板とした。ついでこの鋼板に、830°
Cの湿水素中で脱炭・1次再結晶焼鈍を施した後、Mg
OとA 1203を主成分とする焼鈍分離剤を塗布して
から、コイル状に巻取り、850°Cで50時間の2次
再結晶焼鈍及び1200°Cで5時間の純化焼鈍を施し
た。
(Example) Instant C: 0.043%, Si: 3.3
5%, Se2 0.018%, Mo: 0.0
A hot-rolled sheet having a composition containing 13% and Sb: 0.025% was cold-rolled twice including intermediate annealing to reduce the
It was made into a cold-rolled plate with a thickness of 3 mm. Next, on this steel plate, 830°
After decarburization and primary recrystallization annealing in wet hydrogen of C, Mg
After applying an annealing separator mainly composed of O and A 1203, it was wound into a coil and subjected to secondary recrystallization annealing at 850°C for 50 hours and purification annealing at 1200°C for 5 hours.

その後、未反応の焼鈍分離剤を除去し、平坦化焼鈍を施
してコイルの巻きぐせを矯正し、供試材とした。
Thereafter, the unreacted annealing separator was removed, and flattening annealing was performed to correct the winding curls of the coil, resulting in a test material.

かかる供試材の表面の酸化物被膜を酸洗により除去し、
ついで表1に示す条件の塩化物水溶液中で電解処理を行
った後、鉄+R(W+t7.oJを測定した。第1発明
法に比較するためにりん酸とクロム酸を用いて行う鏡面
研磨法(比較例14)とりん酸のみを用いる鏡面研磨法
(比較例15)と機械研磨法(エメリー#1000仕上
げ:比較例16)とを行った。りん酸とクムロ酸を用い
る方法は、従来から知られているごとく大幅に鉄損の向
上が認められるものの、第1発明法の方がすくれている
。またりん酸で電解研磨鏡面化したものは、はるかに第
1発明法に比して鉄損が劣る。機械研磨法はかえって鉄
損が劣化する。これらの仮の研磨後の表面にTiNを張
力コートとしてイオンブレーティングし20mmφ棒に
よる曲げ密着性テストを行ったところ、第1発明に従う
No、 1〜13はいずれも良好(100%剥離なし)
No、14はやや劣り(20%剥離) No、15゜1
6は劣っていた(No、15.80% No、16.1
00%剥離)。
The oxide film on the surface of the test material was removed by pickling,
Next, after performing electrolytic treatment in a chloride aqueous solution under the conditions shown in Table 1, iron + R (W + t7.oJ) was measured. In order to compare with the first invention method, a mirror polishing method using phosphoric acid and chromic acid was used. (Comparative Example 14) A mirror polishing method using only phosphoric acid (Comparative Example 15) and a mechanical polishing method (Emery #1000 finish: Comparative Example 16) were performed. As is known, although a significant improvement in iron loss is recognized, the first invention method is thinner.Furthermore, the mirror-finished products electrolytically polished with phosphoric acid are far better than the first invention method. The iron loss is inferior. Mechanical polishing actually deteriorates the iron loss. When the surface after these temporary polishing was ion-blated with TiN as a tension coating and a bending adhesion test with a 20 mm diameter rod was performed, it was found that it complies with the first invention. No. 1 to 13 are all good (100% no peeling)
No. 14 is slightly inferior (20% peeling) No. 15°1
6 was inferior (No, 15.80% No, 16.1
00% peeling).

測定結果を比較例の結果とともに表1に併記する。The measurement results are listed in Table 1 together with the results of comparative examples.

同表から明らかなように第1発明に従って得られた適合
例はいずれも鉄損の向上度が大きかった。
As is clear from the table, all of the conforming examples obtained according to the first invention showed a large improvement in iron loss.

これに対してこの発明の請求の範囲外の条件で処理した
比較例はいずれも電解処理効果も小さく、鉄損の改善も
わずかなものでしかなかった。
On the other hand, in all comparative examples treated under conditions outside the scope of the claims of the present invention, the electrolytic treatment effect was small and the improvement in iron loss was only slight.

災嫡1m C: 0.059%、Si  : 3.35%、Mn 
: o、o’77%、 八1 :0.024%、S :
 0.023%、Cu : 0.1%およびSn : 
0.015%を含有する熱延板を、中間焼鈍を含む2回
の冷間圧延により、0.23mm厚の冷延板とした。つ
いでこの鋼板に840°Cの湿水素中で脱炭・1次再結
晶焼鈍を施した後、A1□03とMgOを主成分とした
焼鈍分離剤を塗布してから、コイル状に巻取り、850
°Cから1050まで10°C/hで昇温しで2次再結
晶させた後、1200’Cの飽水素中で5時間の純化焼
鈍を施した。その後、未反応の焼鈍分離剤を除去し、平
坦化焼鈍を施して、コイルの巻きぐせを矯正し、供試材
とした。かかる供試材の表面の酸化物皮膜を酸洗により
除去したのち、表2に示す条件の塩化物水溶液で電解処
理を行った後、鉄損(W+77.。)を測定した。この
測定結果を表2に併記する。
Disaster 1m C: 0.059%, Si: 3.35%, Mn
: o, o'77%, 81: 0.024%, S:
0.023%, Cu: 0.1% and Sn:
A hot-rolled sheet containing 0.015% was cold-rolled twice including intermediate annealing to obtain a cold-rolled sheet with a thickness of 0.23 mm. Next, this steel plate was subjected to decarburization and primary recrystallization annealing in wet hydrogen at 840°C, and then coated with an annealing separator mainly composed of A1□03 and MgO, and then wound into a coil shape. 850
After secondary recrystallization by raising the temperature from °C to 1050 °C at a rate of 10 °C/h, purification annealing was performed in saturated hydrogen at 1200 °C for 5 hours. Thereafter, the unreacted annealing separator was removed, and flattening annealing was performed to correct the winding curls of the coil, resulting in a test material. After removing the oxide film on the surface of the sample material by pickling, it was electrolytically treated with an aqueous chloride solution under the conditions shown in Table 2, and then the iron loss (W+77..) was measured. The measurement results are also listed in Table 2.

条件No、21はりん酸とクロム酸の電解研磨により鏡
面化した比較例であり、従来より知られている如く大幅
な鉄損の改善が図れるものの本発明法には及ばない。ま
たNo、22はりん酸による電解研磨鏡面化法であるが
、特性の改善幅はさらに小さい。
Condition No. 21 is a comparative example in which a mirror surface was obtained by electrolytic polishing with phosphoric acid and chromic acid, and although the iron loss can be significantly improved as conventionally known, it is not as good as the method of the present invention. No. 22 is an electrolytic polishing method using phosphoric acid, but the improvement in characteristics is even smaller.

丈施J[支 実施例1と同じ供試材を準備し、かかる供試材の表面の
酸化物被膜を酸洗により除去し、ついで表3に示す条件
のポリエチレングリコールを含有する塩化物水溶液中で
電解処理を行った後、鉄損(Wltys。)を測定した
。第2発明法に比較するためにりん酸とクロム酸を用い
る電解研磨処理(条件No、 14 )も併せて行った
。鉄損の測定結果を比較例の結果とともに表3に示す。
Jose J After electrolytic treatment, the iron loss (Wltys.) was measured. For comparison with the second invention method, an electrolytic polishing treatment (condition No. 14) using phosphoric acid and chromic acid was also performed. The measurement results of iron loss are shown in Table 3 together with the results of comparative examples.

同表から、第2発明に従って得られた製品は、従来から
知られているりん酸−クロム酸による電解研磨処理での
製品に比し、鉄損の向上度が大きいことがわかる。
From the same table, it can be seen that the product obtained according to the second invention has a greater degree of improvement in iron loss than the product obtained by the conventionally known electrolytic polishing treatment using phosphoric acid-chromic acid.

また、これらの板の電解後の表面にTiNを張力コート
としてイオンブレーティングし20ffffIlφ棒に
よる曲げ密着性テストを行ったところ、本発明条件であ
るNo、 1〜13はいずれも良好(剥離なし)でNo
、14は劣っていた。
In addition, when the surface of these plates after electrolysis was ion-blated with TiN as a tension coating, and a bending adhesion test was performed using a 20ffffIlφ rod, all Nos. 1 to 13, which are the conditions of the present invention, were good (no peeling). And no
, 14 was inferior.

力缶遺( 実施例2と同じ供試材を準備し、かかる供試材の表面の
酸化物被膜を酸洗により除去し、その後表4に示す条件
の塩化物水溶液で電解処理を行った後、鉄損(W、□7
5o)を測定した。この測定結果を表4に併記する。な
お条件No、 9はりん酸とクロム酸の電解研磨により
鏡面化した比較例である。
After preparing the same test material as in Example 2, removing the oxide film on the surface of the test material by pickling, and then electrolytically treating it with an aqueous chloride solution under the conditions shown in Table 4. , iron loss (W, □7
5o) was measured. The measurement results are also listed in Table 4. Condition No. 9 is a comparative example in which a mirror surface was obtained by electropolishing with phosphoric acid and chromic acid.

同表から、第2発明に従うNo、 1〜8の鉄損値がN
o、 9に比し低減されていることがわかる。
From the same table, the iron loss values of No. 1 to 8 according to the second invention are N
It can be seen that this is reduced compared to 0 and 9.

実J1片i 実施例1と同じ供試材を準備し、かかる供試材の表面の
酸化物被膜を酸洗により除去し、ついで表5に示す条件
の塩化物水溶液中での陽極電解を行った。その後水洗し
、引き続き炭酸水素塩の水溶液あるいは水懸濁液をかけ
つつ、ナイロン類のブラシロールによるブラシング処理
を行った。次に、水洗、乾燥した後表5に示すコーティ
ング被膜を形成し、その後、800”Cで3時間の歪取
り焼鈍を行った。得られた製品の磁気特性および被膜の
密着性を評価した結果を表5に示す。第3発明法に比較
するために、ブラシング処理を行わなかった場合(条件
No、 8 ) 、ブラシング処理を水のみで行った場
合(条件No、 9 ) 、および電解処理をりん酸と
クロム酸を用いて行う電解研摩とした場合(条件Nα1
0)についても同様に測定した。これらの測定結果も表
5に併記する。本発明の適合例はいずれも優れた被膜密
着性を示し、また鉄損も良好であるが、炭酸水素塩によ
るブラシング処理を行わなかったNo、8.9は被膜密
着性が悪く、磁性もやや劣っており、りん酸−クロム酸
液による電解研磨(条件No、 10 )は被膜密着性
、鉄損ともにさらに劣っていた。
Actual J1 Piece i The same test material as in Example 1 was prepared, the oxide film on the surface of the test material was removed by pickling, and then anodic electrolysis was performed in a chloride aqueous solution under the conditions shown in Table 5. Ta. Thereafter, it was washed with water, and then brushed with a nylon brush roll while applying an aqueous solution or suspension of bicarbonate. Next, after washing with water and drying, a coating film shown in Table 5 was formed, and then strain relief annealing was performed at 800"C for 3 hours. Results of evaluating the magnetic properties of the obtained product and the adhesion of the film. are shown in Table 5. In order to compare with the third invention method, the results are shown in Table 5. In the case of electrolytic polishing using phosphoric acid and chromic acid (conditions Nα1
0) was similarly measured. These measurement results are also listed in Table 5. All of the examples conforming to the present invention show excellent film adhesion and good iron loss, but No. 8.9, which was not brushed with hydrogen carbonate, has poor film adhesion and slightly less magnetism. Electrolytic polishing using a phosphoric acid-chromic acid solution (condition No. 10) was even worse in both film adhesion and iron loss.

実画l汁疾 実施例2と同し供試材を準備し、かかる供試材の表面の
酸化物被膜を酸洗により除去したのち、表6に示す条件
の塩化物水溶液中で陽極電解処理を行った。
The same test material as in Example 2 was prepared, and after removing the oxide film on the surface of the test material by pickling, it was subjected to anodic electrolysis treatment in a chloride aqueous solution under the conditions shown in Table 6. I did it.

その後水洗し、引き続き炭酸水素塩の水溶液あるいは水
懸濁液をかけつつ、ナイロン製のブラシロールによるプ
ラシング処理を行った。次に、水洗、乾燥した後表6に
示すコーティング被膜を形成し、その後、800°Cで
3時間の歪取り焼鈍を行った。得られた製品の磁気特性
および被膜の密着性を評価した結果を表6に示す。第3
発明法に比較するために、ブラシング処理を行わなかっ
た場合(条件No、 8 ) 、ブラシング処理を水の
みで行った場合(条件No、 9 ) 、および電解処
理の代りに+120□とIIFの混合液による化学研磨
を行った場合(条件No、lO)についても同様に測定
した。これらの測定結果も表6に併記する。
Thereafter, it was washed with water, and then an aqueous solution or suspension of hydrogen carbonate was applied thereto, and a nylon brush roll was used to perform a plus treatment. Next, after washing with water and drying, a coating film shown in Table 6 was formed, and then strain relief annealing was performed at 800°C for 3 hours. Table 6 shows the results of evaluating the magnetic properties and film adhesion of the obtained product. Third
In order to compare with the invention method, the cases where no brushing treatment was performed (condition No. 8), the case where the brushing treatment was performed only with water (condition No. 9), and the case where +120□ and IIF were mixed instead of electrolytic treatment were examined. Measurements were made in the same manner when chemical polishing using a liquid was performed (condition No., IO). These measurement results are also listed in Table 6.

本発明の適合例はいずれもすくれた被膜密着性を示し、
また、鉄損も良好であるが、炭酸水素塩によるプラシン
グ処理を行わなかったNo、 18 、19は被膜密着
性が悪く、磁性もやや劣っており、また11□0□とH
Pの混合液による化学研磨(条件No、20)は被膜密
着性、鉄損ともにさらに劣っていた。
All of the examples conforming to the present invention exhibit excellent film adhesion;
In addition, iron loss was also good, but No. 18 and No. 19, which were not subjected to the hydrogen carbonate plus treatment, had poor film adhesion and slightly inferior magnetism.
Chemical polishing using a P mixed solution (condition No. 20) was even worse in both film adhesion and iron loss.

実Jヒ拠工 実施例1および実施例2と同じ供試材を準備し、かかる
供試材の表面の酸化物被膜を酸洗により除去し、ついで
表7に示す条件のポリエチレングリコールを含有する塩
化物水溶液中での陽極電解処理を行った。その後水洗し
、引き続き炭酸水素ナトリウムの水溶液あるいは水懸濁
液をかけつつ、ナイロン製のブラシロールによるブラシ
ング処理を行った。次に、水洗、乾燥した後表7に示す
コーティング被膜を形成し、その後、800”Cで3時
間の歪取り焼鈍を行った。得られた製品の磁気特性およ
び被膜の密着性を評価した結果を表7に示す。第4発明
法に比較するために、ブラシング処理を水のみで行った
場合(条件No、 9 、10) 、および電解処理を
りん酸とクロム酸を用いて行う電解研磨とした場合(条
件No、11.12)についても同様に測定した。これ
らの測定結果も表7に併記する。
The same test materials as in Example 1 and Example 2 were prepared, the oxide film on the surface of the test materials was removed by pickling, and then polyethylene glycol was added under the conditions shown in Table 7. Anodic electrolysis treatment was performed in a chloride aqueous solution. Thereafter, it was washed with water, and then brushed with a nylon brush roll while applying an aqueous solution or suspension of sodium bicarbonate. Next, after washing with water and drying, a coating film shown in Table 7 was formed, and then strain relief annealing was performed at 800"C for 3 hours. Results of evaluating the magnetic properties of the obtained product and the adhesion of the film. are shown in Table 7. In order to compare with the fourth invention method, the brushing treatment was performed with water only (conditions No. 9, 10), and the electrolytic treatment was performed with electrolytic polishing using phosphoric acid and chromic acid. Measurements were made in the same manner for the case (condition No. 11.12).These measurement results are also listed in Table 7.

本発明の適合例はいずれも優れた被膜密着性を示し、ま
た鉄損も良好であるが、炭酸水素ナトリウムによるブラ
シング処理を行わなかったNo、9.10は被膜密着性
が悪く、磁性もやや劣っており、りん酸−クロム酸液に
よる電解研磨(条件No、 11 、12 )は被膜密
着性、鉄損ともにさらに劣っていた。
All of the examples conforming to the present invention show excellent film adhesion and good iron loss, but No. 9.10, which was not brushed with sodium bicarbonate, has poor film adhesion and slightly less magnetism. Electrolytic polishing using a phosphoric acid-chromic acid solution (conditions Nos. 11 and 12) was even worse in both film adhesion and iron loss.

11d飢影 実施例1と同じ供試材を準備し、かかる供試材の表面の
酸化物皮膜を酸洗により除去し、ついで表8に示す条件
のハロゲン化物水溶液中で陽極電解処理を行った後、鉄
…(W+tzs。)を測定した。
11d Starvation The same test material as in Example 1 was prepared, the oxide film on the surface of the test material was removed by pickling, and then anodic electrolysis treatment was performed in an aqueous halide solution under the conditions shown in Table 8. Afterwards, iron...(W+tzs.) was measured.

また、比較のためにりん酸とクロム酸を用いる電解研摩
処理(条件No、9)も併せて行った。鉄損の測定結果
を比較例の結果とともに表8に示す。
For comparison, an electrolytic polishing treatment (condition No. 9) using phosphoric acid and chromic acid was also performed. The measurement results of iron loss are shown in Table 8 together with the results of comparative examples.

同表から明らかなようにこの発明に従う適合例は、いず
れも鉄1nの向上度が大きいのに対し比較例の鉄損向上
度は少ない。
As is clear from the table, all of the conforming examples according to the present invention have a large degree of improvement in iron 1n, whereas the comparative example has a small degree of improvement in iron loss.

力U殊l 実施例1と同じ供試材を準備し、かかる供試材の表面の
酸化物皮膜を酸洗により除去し、ついで表9に示す条件
のポリエチレングリコールを含有するハロゲン化物水溶
液中で陽極電解処理を行った後、鉄損(W+7z5o)
を測定した。また、比較のためりん酸とクロム酸を用い
る電解研磨処理(条件No、 7 )も併せて行った。
The same test material as in Example 1 was prepared, the oxide film on the surface of the test material was removed by pickling, and then the test material was washed in an aqueous halide solution containing polyethylene glycol under the conditions shown in Table 9. After anodic electrolysis treatment, iron loss (W+7z5o)
was measured. For comparison, an electrolytic polishing treatment (condition No. 7) using phosphoric acid and chromic acid was also performed.

鉄損の測定結果を比較例の結果とともに表9に示す。The measurement results of iron loss are shown in Table 9 together with the results of comparative examples.

同表からこの発明に従って得られた製品は、従来から知
られているりん酸−クロム酸による電解研磨処理での製
品に比し、鉄損の向上度が大きいことがわかる。
From the same table, it can be seen that the products obtained according to the present invention have a greater degree of improvement in core loss than products obtained by the conventionally known electrolytic polishing treatment using phosphoric acid-chromic acid.

″JJJ1殊則 実施例1と同じ供試材を準備し、かかる供試材の表面の
酸化物皮膜を酸洗により除去し、ついで表10に示す条
件のハロゲン化物水溶液中での陽極電解処理を行った。
``JJJ1 Special Conditions The same test material as in Example 1 was prepared, the oxide film on the surface of the test material was removed by pickling, and then anodic electrolysis treatment was performed in an aqueous halide solution under the conditions shown in Table 10. went.

その後水洗し、炭酸水素ナトリウムの水?容?Fiをか
けつつナイロン製のフ゛ラシロールによるブラシング処
理を行った。次に水洗、乾燥した後、表10に示すコー
ティング皮膜を形成し、その後、800 ’Cで3時間
の歪取り焼鈍を施した。得れらた製品の磁気特性および
皮膜の密着性について評価した結果を表10に示す。ま
た、ブラシング処理を行わなかった場合(条件No、 
6 ) 、プラシング処理を水のみで行った場合(条件
No、 7 )についても同様の評価を行った。これら
の結果も表10に併記する。
Then wash with water and use sodium bicarbonate water? Yong? Brushing treatment was performed using a nylon brush roll while applying Fi. Next, after washing with water and drying, a coating film shown in Table 10 was formed, and then strain relief annealing was performed at 800'C for 3 hours. Table 10 shows the results of evaluating the magnetic properties and film adhesion of the obtained product. In addition, when the brushing process is not performed (condition No.
6), the same evaluation was performed for the case where the plush treatment was performed using only water (condition No. 7). These results are also listed in Table 10.

この発明に従うプラシング処理例はいずれも優れた皮膜
密着性を示し、 また鉄損も良好である。
All of the plascing treatment examples according to the present invention show excellent film adhesion and also have good iron loss.

丈新I靴■ 実施例1と同じ供試材を準備し、かかる供試材の表面の
酸化物皮膜を酸洗によって除去し、ついで表11に示す
条件のインヒビターを含むハロゲン化物水?8 ?r9
.中で陽極電解処理を行った後、水洗、乾燥し、鉄1員
(WI715G)を測定するとともに湿潤大気中での耐
食性を調べた。また、インヒビターを含まない浴で処理
したもの(条件No、6.7)についても同様の調査を
行った。それぞれの結果を表11に示す。
Joshin I Shoes ■ The same test material as in Example 1 was prepared, the oxide film on the surface of the test material was removed by pickling, and then halogenated water containing an inhibitor under the conditions shown in Table 11 was added. 8? r9
.. After performing anodic electrolysis treatment in the chamber, it was washed with water, dried, and the iron 1 member (WI715G) was measured and the corrosion resistance in a humid atmosphere was examined. Further, a similar investigation was conducted for those treated with a bath containing no inhibitor (condition No. 6.7). The results are shown in Table 11.

同表から明らかなように、浴にインヒビターを添加した
場合は鉄…の向上度は問題なく、特に耐食性に優れ、銹
が発生しにくいことがわかる。
As is clear from the same table, when the inhibitor was added to the bath, there was no problem in improving the iron content, and it was found that the corrosion resistance was particularly excellent and rust was less likely to occur.

裏庭努は 実hjfi例1と同じ供試材を準備し、かかる供試材の
表面の酸化物皮膜を酸洗によって除去し、ついで表12
シこ示す条件のpH緩衝剤またはキレート剤を含むハロ
ゲン化物水溶液中で陽極電解処理を行った後、鉄損(W
I?/S。)を測定するとともに、表面が不均一で光沢
が少なくなる、すなわち電解処理能力が化工するまでの
全電解時間を調べた。また、pH緩iII剤やキレート
剤を含まない浴(条件No、 67)6二ついても同様
の調査を行った。それぞれの結果を表12に示す。
Tsutomu Yagawa prepared the same test material as in Actual HJFI Example 1, removed the oxide film on the surface of the test material by pickling, and then performed Table 12.
After performing anodic electrolysis treatment in an aqueous halide solution containing a pH buffer or chelating agent under the conditions shown, iron loss (W
I? /S. ), and the total electrolysis time until the surface becomes uneven and less glossy, that is, the electrolytic processing ability deteriorates, was investigated. In addition, the same investigation was conducted using 6 baths (condition No. 67) that did not contain a pH-lowering agent or a chelating agent. The results are shown in Table 12.

同表から明らかなように、キレート剤やpH緩衝剤を添
加した場合は鉄損の向上度は問題なく、特に長時間の安
定的な電解が実現できることがわかる。
As is clear from the same table, when a chelating agent or a pH buffering agent is added, there is no problem in improving the core loss, and it can be seen that stable electrolysis can be achieved particularly over a long period of time.

力1糺U 実施例1と同じ供試材を準備し、かかる供試材の表面の
酸化物皮膜を酸洗によって除去し、ついで表13に示す
条件のインヒビターまたはpH緩衝剤を含むハロゲン化
物水溶液中での陽極電解を行った。その後水洗し、炭酸
水素ナトリウムの水溶液をかけつつナイロン製のブラシ
ロールによるブラシング処理を行った。次に水洗、乾燥
した後、表13に示すコーティング皮膜を形成し、その
後、800゛Cで3時間の歪取り焼鈍を施した。得られ
た製品の磁気特性、皮膜の密着性、耐食性および電解時
間について評価した結果を、表13に示す。またブラシ
ング処理を行わない場合(条件No、11)、ブラシン
グ処理を水のみで行った場合(条件No、 12 )に
ついても同様の評価を行った。これらの評価結果も表1
3に併記する。この発明に従ってブラシング処理を実施
した場合はいずれも特に優れた皮膜密着性を示し、また
鉄損も良好である。さらにインヒビター添加の場合は特
に耐食性が良好であり、pl+緩衝剤やキレート剤の添
加を行った場合は特に長時間の安定的な電解ができるこ
とがわかる。
The same test material as in Example 1 was prepared, the oxide film on the surface of the test material was removed by pickling, and then a halide aqueous solution containing an inhibitor or pH buffer under the conditions shown in Table 13 was added. Anodic electrolysis was carried out inside. Thereafter, it was washed with water and brushed with a nylon brush roll while applying an aqueous solution of sodium hydrogen carbonate. After washing with water and drying, a coating film shown in Table 13 was formed, and then strain relief annealing was performed at 800°C for 3 hours. Table 13 shows the results of evaluating the magnetic properties, film adhesion, corrosion resistance, and electrolysis time of the obtained product. Similar evaluations were also conducted in the case where the brushing treatment was not performed (condition No. 11) and the case where the brushing treatment was performed only with water (condition No. 12). These evaluation results are also shown in Table 1.
Also listed in 3. In all cases where the brushing treatment was carried out according to the present invention, particularly excellent film adhesion was exhibited, and iron loss was also good. Furthermore, it can be seen that the corrosion resistance is particularly good when an inhibitor is added, and stable electrolysis can be performed for a particularly long time when a pl+buffer or a chelating agent is added.

(発明の効果) この発明の方法は仕上げ焼鈍後の方向性けい素鋼板の鉄
損低下を目的とした低コストの電解処理方法としてきわ
めて有利であり、従来は困難であった工業化の実現を容
易にし得る。また、鉄損の改善幅も大きく絶縁コーティ
ング等の密着性も良好である。
(Effects of the Invention) The method of the present invention is extremely advantageous as a low-cost electrolytic treatment method for reducing iron loss of grain-oriented silicon steel sheets after finish annealing, and facilitates industrialization, which was previously difficult. It can be done. In addition, the improvement in iron loss is large and the adhesion of insulating coatings, etc. is also good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電解処理したけい素鋼板の鉄損改善化を示すグ
ラフ、 第2図は表面状態と鉄損との関係を示すグラフ、第3回
は面方位の異なる結晶面を示す金属組織写真、 第4および5図は電解処理したけい素鋼板の鉄損改善化
を示すグラフである。 第4図 電賃ダに8片面づり溶解Iさ(μmン
Figure 1 is a graph showing the iron loss improvement of electrolytically treated silicon steel sheets, Figure 2 is a graph showing the relationship between surface conditions and iron loss, and Part 3 is metallographic photographs showing crystal planes with different orientations. , Figures 4 and 5 are graphs showing the improvement in iron loss of electrolytically treated silicon steel sheets. Figure 4: 8 single-sided melting I (μm)

Claims (1)

【特許請求の範囲】 1、仕上げ焼鈍済みの方向性けい素鋼板に、水溶性のハ
ロゲン化物を1種以上含む水溶液中で電解による磁気的
平滑化処理を施すことを特徴とする低鉄損方向性けい素
鋼板の製造方法。 2、仕上げ焼鈍済みの方向性けい素鋼板に、少なくとも
1種の水溶性のハロゲン化物とポリエーテルとを含む水
溶液中で電解による磁気的平滑化処理を施すことを特徴
とする低鉄損方向性けい素鋼板の製造方法。 3、仕上げ焼鈍済みの方向性けい素鋼板に、水溶性のハ
ロゲン化物を1種以上含む水溶液中で電解による磁気的
平滑化処理を施し、ついで鋼板表面に炭酸水素塩の水溶
液または水懸濁液を用いるブラシング処理を施すことを
特徴とする低鉄損方向性けい素鋼板の製造方法。 4、仕上げ焼鈍済みの方向性けい素鋼板に、少なくとも
1種の水溶性のハロゲン化物とポリエーテルとを含む水
溶液中で電解による磁気的平滑化処理を施し、ついで鋼
板表面に炭酸水素塩の水溶液または水懸濁液を用いるブ
ラシング処理を施すことを特徴とする低鉄損方向性けい
素鋼板の製造方法。 5、電解水溶液は腐食防止剤を含むものである請求項1
ないし4項のいずれか1項に記載の製造方法。
[Claims] 1. A direction toward low iron loss characterized by subjecting a finish-annealed grain-oriented silicon steel sheet to magnetic smoothing treatment by electrolysis in an aqueous solution containing one or more water-soluble halides. manufacturing method of silicon steel sheet. 2. Low iron loss directionality characterized by subjecting a finish-annealed grain-oriented silicon steel sheet to magnetic smoothing treatment by electrolysis in an aqueous solution containing at least one water-soluble halide and polyether. Method of manufacturing silicon steel sheet. 3. A grain-oriented silicon steel sheet that has been finish annealed is subjected to magnetic smoothing treatment by electrolysis in an aqueous solution containing one or more water-soluble halides, and then an aqueous solution or suspension of hydrogen carbonate is applied to the surface of the steel sheet. 1. A method for producing a grain-oriented silicon steel sheet with low iron loss, characterized by applying a brushing treatment using. 4. A grain-oriented silicon steel sheet that has been finish annealed is subjected to magnetic smoothing treatment by electrolysis in an aqueous solution containing at least one water-soluble halide and polyether, and then a hydrogen carbonate aqueous solution is applied to the surface of the steel sheet. Alternatively, a method for producing a grain-oriented silicon steel sheet with low core loss, which comprises performing a brushing treatment using a water suspension. 5.Claim 1, wherein the electrolytic aqueous solution contains a corrosion inhibitor.
4. The manufacturing method according to any one of items 4 to 4.
JP63164873A 1987-09-10 1988-07-04 Production of grain-oriented silicon steel sheet having low iron loss Granted JPH0230779A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63164873A JPH0230779A (en) 1987-09-10 1988-07-04 Production of grain-oriented silicon steel sheet having low iron loss
EP88308226A EP0307163B1 (en) 1987-09-10 1988-09-06 Silicon steel sheets having low iron loss and method of producing the same
DE88308226T DE3886146T2 (en) 1987-09-10 1988-09-06 Low iron loss silicon steel sheet and method of manufacturing the same.
CA000576999A CA1332345C (en) 1987-09-10 1988-09-09 Silicon steel sheets having low iron loss and method of producing the same
KR1019880011737A KR930009390B1 (en) 1987-09-10 1988-09-10 Silicon steel steet having low iron loss and method of producing the same
US07/600,136 US5125991A (en) 1987-09-10 1990-10-19 Silicon steel sheets having low iron loss and method of producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP62-225148 1987-09-10
JP22514887 1987-09-10
JP63-87366 1988-04-11
JP63164873A JPH0230779A (en) 1987-09-10 1988-07-04 Production of grain-oriented silicon steel sheet having low iron loss

Publications (2)

Publication Number Publication Date
JPH0230779A true JPH0230779A (en) 1990-02-01
JPH0472920B2 JPH0472920B2 (en) 1992-11-19

Family

ID=26489812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63164873A Granted JPH0230779A (en) 1987-09-10 1988-07-04 Production of grain-oriented silicon steel sheet having low iron loss

Country Status (1)

Country Link
JP (1) JPH0230779A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245391A (en) * 2012-05-28 2013-12-09 Ishitobi Seisakusho:Kk Electrolyte for electrolytic polishing
JP2014043596A (en) * 2012-08-24 2014-03-13 Taseto:Kk Electrolytic solution

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725711B2 (en) * 2004-12-28 2011-07-13 Jfeスチール株式会社 Manufacturing method of low iron loss grain oriented electrical steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245391A (en) * 2012-05-28 2013-12-09 Ishitobi Seisakusho:Kk Electrolyte for electrolytic polishing
JP2014043596A (en) * 2012-08-24 2014-03-13 Taseto:Kk Electrolytic solution

Also Published As

Publication number Publication date
JPH0472920B2 (en) 1992-11-19

Similar Documents

Publication Publication Date Title
US3932236A (en) Method for producing a super low watt loss grain oriented electrical steel sheet
KR930009390B1 (en) Silicon steel steet having low iron loss and method of producing the same
US6849138B1 (en) Method for surface treatment of aluminum alloy high-temperature processed articles
JPH0230779A (en) Production of grain-oriented silicon steel sheet having low iron loss
KR101568477B1 (en) Method for annealing-pickling ferritic stainless steel having high silicon content
JPH03130376A (en) Production of unidirectionally oriented silicon steel sheet excellent in magnetic characteristic
JPH02213483A (en) Production of grain oriented silicon steel sheet excellent in magnetic characteristic
JPS63277793A (en) Anodic oxidizing solution for magnesium or alloy thereof
JP3921199B2 (en) Method for producing unidirectional silicon steel sheet excellent in film adhesion of tension imparting insulating film
JPH0238527A (en) Manufacture of grain-oriented silicon steel sheet with low iron loss free from deterioration in characteristic due to stress relief annealing
JPH0474899A (en) Production of cold rolled ferritic stainless steel strip having excellent corrosion resistance
JPH09118923A (en) Manufacture of grain-oriented silicon steel sheet having low core loss
JPH0587597B2 (en)
JPH0551711A (en) Production of high temperature-worked product of aluminum alloy
JPH0587570B2 (en)
JPH0587600B2 (en)
JP2749723B2 (en) Method for producing stainless cold rolled steel strip with excellent gloss, whiteness and corrosion resistance
JPH1180909A (en) Low iron loss grain-oriented silicon steel sheet good in adhesion of tension-applied type coating
JPH02101200A (en) Cold-rolled steel sheet having excellent corrosion resistance and property to be phosphated
JPH0718466A (en) Production of stainless steel material finished by polishing
JPS6159399B2 (en)
JPH02163397A (en) Method for surface-finishing stainless steel sheet
KR19990060967A (en) Manufacturing method of zinc-nickel alloy coated steel sheet
JPH06235092A (en) Method for electrolytically chromating steel sheet excellent in color tone stability
JPH052752B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees