JPH0238527A - Manufacture of grain-oriented silicon steel sheet with low iron loss free from deterioration in characteristic due to stress relief annealing - Google Patents

Manufacture of grain-oriented silicon steel sheet with low iron loss free from deterioration in characteristic due to stress relief annealing

Info

Publication number
JPH0238527A
JPH0238527A JP63186977A JP18697788A JPH0238527A JP H0238527 A JPH0238527 A JP H0238527A JP 63186977 A JP63186977 A JP 63186977A JP 18697788 A JP18697788 A JP 18697788A JP H0238527 A JPH0238527 A JP H0238527A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
silicon steel
iron loss
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63186977A
Other languages
Japanese (ja)
Other versions
JPH079041B2 (en
Inventor
Shigeko Sujita
筋田 成子
Ujihiro Nishiike
西池 氏裕
Hirotake Ishitobi
石飛 宏威
Tsutomu Kami
力 上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63186977A priority Critical patent/JPH079041B2/en
Publication of JPH0238527A publication Critical patent/JPH0238527A/en
Publication of JPH079041B2 publication Critical patent/JPH079041B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To stably and inexpensively manufacture a grain-oriented silicon steel sheet with low iron loss free from deterioration in characteristics even if subjected to stress relieving annealing by subjecting a finish-annealed silicon steel sheet to magnetic smoothing treatment by means of electrolysis and then removing the surface of the steel sheet linearly in a direction across the rolling direction. CONSTITUTION:A grain-oriented silicon steel sheet after decarburizing annealing and finish annealing is subjected to anodic electrolysis in an aqueous solution containing one or more kinds among water-soluble halides, such as NaCl, by which magnetic smoothing treatment is applied to the surface of the steel sheet. Subsequently, a part of the matrix on the above steel-sheet surface is removed into the state of continuous or intermittent lines extending in a direction across the rolling direction, or, metal plating into the state of the same lines as mentioned above may be applied to the steel-sheet surface. It is preferable that the width of the above linearly removed part or metal-plated part is regulated to about 0.1-0.4mm and also the spacing between respective linearly removed parts or metal-plated parts mentioned above is regulated to about 2.0-10.0mm. Then, an insulating film of tension-giving type is formed on the steel-sheet surface by means, e.g., of phosphate-type coating containing colloidal silica. By this method, the grain-oriented silicon steel sheet free from deterioration in characteristics even if subjected to subsequent stress relieving annealing and excellent in iron loss can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 数年前のエネルギー危機を境にして、電力損失のより少
ない電気機器を求める傾向が一段と強まり、それらの秋
心材利として、鉄損のより低い電磁鋼板が要請されるよ
うになった。
[Detailed Description of the Invention] (Industrial Application Field) After the energy crisis a few years ago, the trend for electrical equipment with lower power loss has become even stronger, and as a key advantage of these, the need for lower iron loss has increased. There was a demand for low-quality electrical steel sheets.

この発明υコ、上記の要請に有利に応えるもので、とく
に歪取り焼鈍を施しても鉄損特性が劣化しない低鉄損方
向性けい素鋼板の製造方法に関するものである。
The present invention advantageously satisfies the above requirements, and particularly relates to a method for producing a grain-oriented silicon steel sheet with low core loss whose core loss properties do not deteriorate even when subjected to strain relief annealing.

(従来の技術) けい素鋼板の鉄損は、うす電流積とヒステリシス損から
なる。けい素鋼板の鉄損を減少させる有効な手段として
板厚を減少させる方法かあり、この方法は主にうず電流
積を減少させるごとにより、鉄損の低減ひいては省エネ
ルギーに大きく貢献している。しかしながら板厚が1]
Llil以下になってくると全鉄損に占めるヒステリシ
ス損の割合かや激に増大してくる。ヒステリシス損に影
響する因子としては、結晶粒の方位、不純物の程度、表
面被膜の影響および鋼板表面の粗度等が挙げられる。
(Prior Art) Iron loss in silicon steel sheets consists of thin current product and hysteresis loss. An effective means of reducing the iron loss of silicon steel sheets is to reduce the sheet thickness, and this method contributes greatly to the reduction of iron loss and, in turn, to energy conservation, mainly by reducing the eddy current product. However, the plate thickness is 1]
When the value becomes less than Llil, the ratio of hysteresis loss to total iron loss increases considerably. Factors that affect hysteresis loss include the orientation of crystal grains, the degree of impurities, the influence of surface coatings, and the roughness of the steel sheet surface.

ヒステリシス損を低下させる方法とくに鋼板の表面性状
を改善することによるヒステリシス損の低減方法として
は、たとえば特公昭52−24499 ”4公報では、
仕上げ焼鈍後の方向性けい素鋼板を酸洗により表面酸化
物を除去した後、表面を鏡面状態に化学研磨あるいは電
解研磨する方法か提案されている。また特公昭56−4
150号公報には、一方向性けい素鋼板の表面の非金属
物質を除去し、次いてその表面を化学研磨あるいは電解
研磨した」二にセラミックス薄膜を施す技術が開示され
ている。
For example, Japanese Patent Publication No. 52-24499 ``4'' describes methods for reducing hysteresis loss, particularly by improving the surface properties of steel sheets.
A method has been proposed in which surface oxides are removed from a grain-oriented silicon steel sheet after finish annealing by pickling, and the surface is then chemically polished or electrolytically polished to a mirror-like state. Also, special public service 1986-4
Japanese Patent No. 150 discloses a technique for removing non-metallic substances from the surface of a grain-oriented silicon steel sheet, and then applying a ceramic thin film to the surface by chemically polishing or electrolytically polishing the surface.

さらに特開昭60−89589号公報には、アルミリ“
を主成分とする焼鈍分離剤を用いて行った2次再結晶後
の方向性けい素鋼板の表面酸化物を除去後、化学研磨あ
るいは電解研磨する技術が開示されている。またさらに
特開昭60−39123号公報には、アルミナを主成分
とする焼鈍分離剤を用いて表面の酸化物の量を規制した
上で、酸洗なしに直接化学研磨あるいは電解研磨を施す
技術が開示されている。
Furthermore, in Japanese Patent Application Laid-open No. 60-89589, Almiry “
A technique has been disclosed in which surface oxides of a grain-oriented silicon steel sheet are removed after secondary recrystallization using an annealing separator containing as a main component, followed by chemical polishing or electrolytic polishing. Furthermore, JP-A No. 60-39123 discloses a technique in which the amount of oxides on the surface is controlled using an annealing separator containing alumina as a main component, and then chemical polishing or electrolytic polishing is directly applied without pickling. is disclosed.

(発明が解決しようとする問題点) しかしながら、これらの技術はいずれも、鉄損低減効果
は非常に明確であるにもかかわらず、今日工業的に実施
されるまでには至っていない。
(Problems to be Solved by the Invention) However, none of these techniques has been industrially implemented today, although the effect of reducing iron loss is very clear.

その理由は、化学研磨の場合、研磨液として用いられる
IP +II zO□やII 3 P Op + II
□0□などが高価なためコスト高になるからである。同
しく電解研磨の場合も、研磨液として通常用いられるり
ん酸系浴、硫酸系浴、りん酸−硫酸系浴および過塩素酸
系浴などはいずれも、高濃度の酸を主成分とし、しがも
添加物としてクロム酸塩、ぶつ酸、有機化合物などを使
用するためコスト高となり、しかも大量に鋼板を処理す
るには、均質性、生産性および液の早期劣化など未解決
の問題も多いからである。
The reason for this is that in the case of chemical polishing, IP + II zO□ and II 3 P Op + II used as polishing liquid
This is because □0□ etc. are expensive, resulting in high costs. Similarly, in the case of electrolytic polishing, the phosphoric acid baths, sulfuric acid baths, phosphoric acid-sulfuric acid baths, and perchloric acid baths that are commonly used as polishing solutions all contain highly concentrated acids as their main component, The cost is high due to the use of chromate, butic acid, organic compounds, etc. as additives, and there are many unresolved problems in processing steel sheets in large quantities, such as homogeneity, productivity, and early deterioration of the liquid. It is from.

さらにもう一つの工業化を防げるおおきな欠点は、鏡面
研磨された表面には絶縁コートかのりにくいことである
Yet another major drawback that prevents industrialization is that it is difficult for insulating coats to adhere to mirror-polished surfaces.

すなわち従来知られているりん酸塩系コー1〜やセラミ
ソクコ−1・は鏡面故に密着性が悪く現実の使用に耐え
得なかったのである。
In other words, the conventionally known phosphate-based coatings 1 to 1 and ceramic coating 1 had poor adhesion due to their mirror surfaces and could not withstand actual use.

また特開昭61−1.83457号公報には、仕上げ焼
鈍後の方向性りい素鋼板の表面被膜を除去、ついでめっ
きにより侵入体を間隔をおいて形成するか、表面被膜を
間隔をおいて除去し、ついで可侵入体をめっきにより形
成し磁区細分化を図る方法が開示されている。
Furthermore, JP-A-61-1.83457 discloses that after finish annealing, the surface coating of a grain-oriented silicon steel sheet is removed, and then, by plating, penetrants are formed at intervals, or the surface coating is removed at intervals. A method has been disclosed in which the magnetic domain is removed by removing the magnetic material, and then a penetrant is formed by plating to refine the magnetic domain.

この方法は、鉄損の低減効果は期待できるか、鋼板表面
を鏡面状態にしてヒステリシス損を低下させる方法と比
較すると、鉄損の低減効果か小さいところに問題があっ
た。
This method has a problem in that the effect of reducing iron loss is small compared to the method of reducing hysteresis loss by making the surface of the steel plate mirror-like.

この発明は、」二記の問題を有利に解決するもので、電
解rIII磨あるいは化学研磨による鏡面化処哩を施こ
さすとも磁気的に平滑な而すなわちヒステリシス損の原
因となる磁壁の移動を妨害するよ・うなことがない面を
形成し、さらに磁区の細分化をはかることにより渦電流
損を下げて方向性けい素鋼板の低鉄損化を実現すること
を目的とする。
The present invention advantageously solves the problems described in 2. Even if mirror polishing is performed by electrolytic rIII polishing or chemical polishing, the magnetic wall remains magnetically smooth, which means that the movement of the domain wall, which causes hysteresis loss, is avoided. The purpose is to form a surface that does not cause interference and further subdivide the magnetic domains to reduce eddy current loss and realize low iron loss in grain-oriented silicon steel sheets.

(課題を解決するための手段) この発明番J、仕上げ焼鈍済めの方向性iJい素鋼板に
、水溶性のハロゲン化物を1種以」二含む水溶液中で電
解による磁気的平滑化処理を施した後、(1)鋼板表面
の地鉄の一部を圧延方向を横切って延びる連続又は断続
した線状に除去した後、この鋼板表面乙こ張力付与型の
絶縁被膜を被成する方法および (2)鋼板表面に圧延方向を横切って延びる連続又は断
続した線状の金属めっきを施した後、この鋼板表面に張
力付与型の絶縁被膜を被成する方法、である。
(Means for solving the problem) In this invention number J, a finish annealed grain-oriented steel sheet is subjected to magnetic smoothing treatment by electrolysis in an aqueous solution containing one or more water-soluble halides. After that, (1) a method of removing a part of the base iron on the surface of the steel plate in a continuous or discontinuous line extending across the rolling direction, and then coating the steel plate surface with a tension-applying insulating coating; 2) A method in which a continuous or discontinuous linear metal plating extending across the rolling direction is applied to the surface of a steel sheet, and then a tension-applying insulating coating is formed on the surface of the steel sheet.

(作 用) さてこの発明の基礎となった、種々の表面が鉄損に及ぼ
ず影響についで再検討した結果を以下に述べる。
(Function) The results of a re-examination of the effects of various surfaces on iron loss, which formed the basis of this invention, will be described below.

すなわちその第1は、ヒステリシス損に対して大きく影
響を与えているのは、主として表面酸化物であり、表面
の凹凸に関しては必ずしも鏡面状態である必要はないこ
とである。ここに鏡面状態とば光学的な概念であり、定
量的に定義つ(Jられてはいないか、通常表面平均鉗さ
Raて0.4μm以下好適乙こばQ、171m以下のこ
とを指す。
The first point is that it is mainly the surface oxide that has a large effect on the hysteresis loss, and the surface irregularities do not necessarily have to be mirror-like. The mirror state is an optical concept, and is not defined quantitatively, but usually refers to a surface average length Ra of 0.4 μm or less, preferably 171 m or less.

第2図に、酸化物か表面に存在する従来の方向性けい素
鋼板、その後に鏡面化処理を施した方111]性けい素
鋼板およびその後さらに酸洗を施して表面を荒らした方
向性けい素鋼板の各鉄tnを比較して示したか、同図か
ら明らかなように酸洗Gこよって鏡面が失われても、鉄
損ばさほど劣化していない。
Figure 2 shows a conventional grain-oriented silicon steel sheet with oxides present on the surface, a grain-oriented silicon steel sheet that has been subjected to mirror polishing treatment, and a grain-oriented silicon steel sheet that has been further pickled to roughen the surface. As is clear from the figure, even if the specular surface is lost due to pickling G, the iron loss has not deteriorated much.

このように低ヒステリシス1j、)のりい素鋼板を得る
ためには、必ずしも鏡面にする必要はなくいわゆる磁気
的に平滑な表面にすればよいねりであるから、電解研磨
や化学研19 +1必ずしも必要不可欠の条件ではなく
もっと自由に化学処理等が選択できるねりである。
In order to obtain a low hysteresis 1j) silicon steel sheet, it is not necessarily necessary to make it a mirror surface, but it is sufficient to have a so-called magnetically smooth surface, so electrolytic polishing and Kagakuken 19 +1 are not necessarily required. Rather than being an essential condition, chemical treatments, etc. can be selected more freely.

しかしながらりい素鋼板の磁気的平滑化のプロセス中に
、鋼板表面に歪のが入ることは秋+nを劣化させるため
に極力回避すべきであるごとi、1いうまでもない。
However, it goes without saying that during the process of magnetic smoothing of a silicon steel sheet, the introduction of strain on the surface of the steel sheet should be avoided as much as possible since it will deteriorate the fall+n.

ごごで電解研磨法を特徴つけている鏡面化現象についで
説明する。電解研磨においては被研磨面を陽極として、
強酸・強アルカリの電解液中で電流を通ずと、電解反応
によって金属は表面からイオンとなって溶出するが、金
属表面と電解液との間にυJ粘性膜か生じる。この粘性
膜か表面の凸部では薄いので、より多くの電流が流れる
ため、凸部か凹部より多く溶り出し、金属表面は凹凸の
ない鏡面に仕上げられるとされている。したかって化学
研磨や電解研磨は、結晶粒度や方位に全く依存せずに金
属表面を平滑にする方法であるともいえる。いいかえれ
ば化学研磨や電解研磨で得られる面は、下地の結晶に無
関係に平滑化することにより、高い光沢を有するという
ことで特徴づげられるものである。
Next, we will explain the mirror polishing phenomenon that characterizes the electrolytic polishing method. In electrolytic polishing, the polished surface is used as an anode.
When no current is passed in a strong acid or strong alkaline electrolyte, the metal elutes from the surface as ions due to an electrolytic reaction, but a υJ viscous film is formed between the metal surface and the electrolyte. Since this viscous film is thinner in the convex parts of the surface, more current flows through the convex parts, and more current is leached out in the convex parts than in the concave parts, and the metal surface is said to be finished to a mirror-like finish with no irregularities. Therefore, chemical polishing and electrolytic polishing can be said to be methods for smoothing metal surfaces, completely independent of crystal grain size and orientation. In other words, the surface obtained by chemical polishing or electrolytic polishing is characterized by having high gloss by smoothing it regardless of the underlying crystals.

次に第2の知見は、塩化物水溶液で4jい素鋼を電解処
理した場合に鋼板表面の結晶粒方位の違いによって表面
性状が大きく異なるごとである。
The second finding is that when 4J silicon steel is electrolytically treated with an aqueous chloride solution, the surface properties of the steel sheet vary greatly depending on the grain orientation of the surface of the steel sheet.

従来塩化物による電解処理は鏡面(iJt 1g面を得
るという点に関して実効に乏しいために実施されること
はなかったが、発明者らは前述した第1の知見によって
、広く電解処理の可能性を探っていたため、塩化物につ
いでもTI′Il′認実験を行ったどごろ上述の特異な
現象を見出すに至ったのである。
Conventionally, electrolytic treatment using chloride has not been carried out because it is not effective in obtaining a mirror surface (iJt 1g surface), but the inventors have widely recognized the possibility of electrolytic treatment based on the first finding mentioned above. As he was searching for it, he conducted TI'Il' recognition experiments on chlorides and discovered the above-mentioned peculiar phenomenon.

第2図に面方位の差異によって、電解処理後の結晶面の
モルボロシーが異なるごとを表わした顕微鏡&[i織刀
真を示す。
Fig. 2 shows a microscope & [i woven sword strand] showing that the morbosity of the crystal plane after electrolytic treatment differs depending on the difference in plane orientation.

第2図Aは、結晶粒の(no )面が圧延面Qこ対して
5°傾いている場合であり、独得の#Irl fFl状
表面表面モルホロジーしている。この8L14目状粒は
結晶粒の如くのえる窪みが粒内に分散隣接することによ
って形成され電解エッチンクによって得られるグレイニ
ング面に酷1以し−でいるのでグレイニング様面と呼称
する。
FIG. 2A shows the case where the (no) plane of the crystal grain is inclined by 5° with respect to the rolling plane Q, and has a unique #Irl fFl-like surface morphology. These 8L14 mesh grains are called graining-like surfaces because they are formed by dispersing and adjoining depressions in the grains, which resemble crystal grains, and are much worse than the graining surfaces obtained by electrolytic etching.

第2図Bは、同じ<11°傾いている場合であり、鱗状
モルボロン−を呈している。さらに第;うしICは、2
5°傾いている場合であって木肌状組織となっている。
FIG. 2B shows the same case of <11° inclination, exhibiting a scaly morboron. Furthermore, the cow IC is 2
This is a case where it is tilted by 5° and has a wood texture.

ごれらの特異なモルボロシーを有する面ば第2図へ〜C
にも見られるとおり網1]状&JI K、fllAてず
ら鏡面てばなく、マク1:I的外観ては、結晶粒界の出
現した酸洗面の様旧1を呈している。
Go to Figure 2 if you have a unique morbology.
As can be seen in the figure, it has a net 1]-like & JI K, fllA pattern with a mirror surface, and the Mac 1:I appearance has the appearance of a pickled surface with grain boundaries.

さらにt[j要なことは、かかる特異な31?I目状組
織を有する表面は+11.0)面を1丁するけい素鋼板
を塩化物水溶液を電解液として電解処理した時のめ得ら
れることであり、しかも上記の網目状組織Gンl磁性的
に平滑な面であることである。
Furthermore, t[j What is important is that such a peculiar 31? The surface having an I mesh structure is obtained when a silicon steel plate having one +11.0) surface is electrolytically treated using an aqueous chloride solution as an electrolyte, and the above network structure Gnl magnetic The surface must be perfectly smooth.

第1図(21)又は(b)に、主として(+、+0)面
のめによって114成された素キーをNaC1て電i1
’+:処理した時に得られた素(Aの鉄損の改善化につ
いで調へた結果を示す。また同図には比較のため、混酸
(CrO:+ 10%−1hl)(L)で電解研U I
rこより鏡面とした方向性けい素鋼板の鉄損改善代乙こ
ついでの調査結果も併−lでボした。
In Fig. 1 (21) or (b), a prime key formed mainly by (+, +0) face 114 is connected to NaC1 and charged to i1.
'+: Shows the results obtained after improving the iron loss of element (A) obtained when treated. Also, for comparison, the same figure shows the results obtained after treatment with mixed acid (CrO: + 10%-1hl) (L). Electrolytic Research U I
The results of a study on iron loss improvement in grain-oriented silicon steel sheets with a more mirror-like surface were also found.

同図より明らかなよ・うに、塩化物浴を用いたときの方
か鉄損の改善化は大きい。
As is clear from the figure, the improvement in iron loss is greater when a chloride bath is used.

なお1−記の実験は、N8C1電解液として71尺度2
0%のものを用い、電流密度・100A/dm”で10
秒間の条件で電解処理を施した。
Note that the experiment described in 1-1 was conducted using 71 scale 2 as an N8C1 electrolyte.
0%, current density: 100A/dm"
Electrolytic treatment was performed under conditions of seconds.

さらに電解処理又は鏡面化処理後の鋼板表面6ム電着タ
イヤモンI・やずりに超高波振動をイ・1加ずイ、こと
によって、地鉄の一部を圧延方向と直交して延びる溝状
に除去し、この溝を5mm間隔で形成し、その後イオン
ブレーティング処理にてTiN膜を被成したもの(同図
(a)参照)および、同様に電解又は鏡面化処理後の鋼
板表面に、511m間隔て幅0.15mmのスリットを
形成したスクリーンをそのスリットが圧延方向と直交す
るように密着させ、Sbを含有した電解液に鋼板を浸漬
して綿状にsbめっきを施し、ついでイオンブレーティ
ング処理にてTiN膜を被成したもの(同図(b)参照
)についでの調査を行った。比較のため、電解又は鏡面
化処理後の鋼板表面に直接TiN膜を被成したものも同
様にglfl査した。またTiN膜被成後、N4囲気中
で800°C13時間の歪取り焼鈍を施した後の鉄損に
ついでも調査した。
Furthermore, ultra-high wave vibration is applied to the 6mm electrodeposited tire coating on the surface of the steel plate after electrolytic treatment or mirror polishing treatment. grooves were formed at 5 mm intervals, and then a TiN film was formed by ion blating treatment (see figure (a)), and the steel plate surface was similarly electrolyzed or mirror-finished. A screen with 0.15 mm wide slits formed at 511 m intervals is placed in close contact with the slits so that the slits are perpendicular to the rolling direction, and the steel plate is immersed in an electrolytic solution containing Sb to apply sb plating in a cotton-like manner. A subsequent investigation was carried out on the one coated with a TiN film through the rating process (see FIG. 6(b)). For comparison, a steel plate in which a TiN film was directly formed on the surface of the steel plate after electrolysis or mirror polishing treatment was also subjected to GLFL examination. Further, after the TiN film was formed, the iron loss was also investigated after strain relief annealing was performed at 800° C. for 13 hours in a N4 atmosphere.

同図(a)および(b)から明らかなように、地鉄の一
部を溝状に除去した場合および、Sbめつきを綿状に施
した場合における鉄損の改善化が大きいことがわかり、
その後に歪取り焼鈍を施しても鉄損の劣化をまねくこと
もない。
As is clear from Figures (a) and (b), the iron loss is greatly improved when a part of the base iron is removed in a groove shape and when Sb plating is applied in a cotton shape. ,
Even if strain relief annealing is performed thereafter, iron loss does not deteriorate.

この発明に従う鋼板の鉄損が、従来法の電解研磨、化学
研磨等による鏡面を有する製品に比して良好な値を示す
物理的理由はまた完全に解明されたわけではないが、第
1に磁気的に平滑であるためには、幾何的な平滑度をそ
れほど高く要求されないこと、第2にこの発明では、粒
界か段差状あるいば溝状の凹部を形成するので、磁区の
細幅化が生じ、それにより鉄損の減少が望めること、第
3に電解研磨法によると鏡面に生しる酸化被膜による劣
化が生じると考えられるか、この発明鋼板でば生しない
ことなどによるものと推察される。
The physical reason why the iron loss of the steel sheet according to this invention is better than that of products with a mirror surface produced by conventional methods such as electrolytic polishing or chemical polishing has not been completely elucidated, but the first reason is magnetic In order to be visually smooth, geometric smoothness is not required to be very high.Secondly, in this invention, since grain boundaries or step-like or groove-like recesses are formed, the width of the magnetic domain can be narrowed. Thirdly, it is thought that electrolytic polishing would cause deterioration due to an oxide film that forms on the mirror surface, or that this would not occur with the steel sheet of this invention. be done.

また地鉄の一部の除去によって鉄損が改善されるのは、
局所的に存在する地鉄除去部が磁区を細分化し、さらに
除去部にTiNが異物質として入り込むことによって磁
性的に異質な部分が局所的に形成されるためと考えられ
る。同様に線状の金属めっきを施すことによる鉄損改善
の理由は、鋼板表面に局所的な異物質(めっき)が存在
することで磁性的な異質部を局所的に形成したことにな
るためと考えられる。
In addition, the iron loss is improved by removing part of the base iron.
This is thought to be because the locally existing base metal removed portion subdivides the magnetic domain, and furthermore, TiN enters the removed portion as a foreign substance, thereby locally forming a magnetically heterogeneous portion. Similarly, the reason why iron loss is improved by applying linear metal plating is that the presence of local foreign substances (plating) on the surface of the steel sheet results in the local formation of magnetic foreign parts. Conceivable.

これらの処理を経た鋼板」−に張力(’t ’j型の被
11ジを形成すれば、さらなる鉄損の低減を達成でき、
その後歪取り焼鈍を施しても鉄損が劣化することはない
By forming a tensile ('t'j-shaped) on the steel plate that has undergone these treatments, further reduction of iron loss can be achieved.
Even if strain relief annealing is performed thereafter, iron loss does not deteriorate.

以下この発明を具体的に説明する。This invention will be specifically explained below.

この発明では、常法に従ってLJい素鋼スラブに熱間圧
延を施し、次に中間焼鈍をはさむ冷間圧延を施して最終
板厚としたのぢ、脱炭焼鈍を施し次いで最終仕上げ焼鈍
を施す。
In this invention, an LJ raw steel slab is hot rolled according to a conventional method, then cold rolled with intermediate annealing to obtain the final plate thickness, decarburized annealed, and then final finish annealed. .

この最終仕上げ焼鈍の際の焼鈍分離剤としては、従来か
らフォルステライト被膜も同時に形成させるためにMg
Oを主成分とする焼鈍分離剤が主に用いられてきたか、
かかるフォルステラ・イ1−被膜を生成させない様に配
合された、たとえばAI!、z03等を主成分とし、こ
れに不活性MgOやCa、 Sr化合物を協力■した分
離剤を用いてもよい。
Conventionally, Mg was used as an annealing separator during final annealing to form a forsterite film at the same time.
Annealing separators mainly composed of O have been mainly used,
For example, AI! is formulated to prevent the formation of such Forstera I1 film. , z03, etc. as a main component, and an inert MgO, Ca, or Sr compound may be used as a separating agent.

次に最終仕上げ焼鈍板の表面酸化層を除去する。Next, the surface oxidation layer of the final annealed plate is removed.

除去方法としては、酸洗等の化学的方法とエメリー研磨
等の機械的手法があり、特に限定はしないが、機械的手
法で表面酸化層を除去した場合には、板内部に歪みが入
り易く、かかる歪は続く電解処理によっても解放できな
いので、表面酸化物の除去は酸洗処理で行う方が好まし
い。
Removal methods include chemical methods such as pickling and mechanical methods such as emery polishing. Although there are no particular limitations, if the surface oxide layer is removed by mechanical methods, distortion may easily occur inside the board. Since such strain cannot be relieved by subsequent electrolytic treatment, it is preferable to remove surface oxides by pickling treatment.

ついでこのように表面酸化層を除去した表面を陽極電解
処理によって磁気的平滑面化する。
Then, the surface from which the surface oxide layer has been removed is magnetically smoothed by anodic electrolytic treatment.

電解浴は水溶性のハロゲン化物を1種以上含む水溶液を
用いる。
The electrolytic bath uses an aqueous solution containing one or more water-soluble halides.

ここで水溶性のハロゲン化物とは、Ill、 Ni14
Cnおよび各種金属の塩化物又はF、Br、Iを陰イオ
ンとする酸、そのアルカリ、アルカリ土類、その他の金
属塩類およびアンモニウム塩のうちの水溶性のもの、さ
らに弗化物としては硼弗化物(upa塩)および珪弗化
物(SiF2塩)のうちの水溶性のものを意味する。水
溶性ハロゲン化物を例示すると、HCl2. NaCl
!、1KCj2. NHsCj2. MgCj2z、 
CaCj2zAj2CI2:+1肝、 NaF、 KF
、 N114FI llBr、 NaBr、 KBr。
Here, water-soluble halides include Ill, Ni14
Chlorides of Cn and various metals or acids with F, Br, I as anions, water-soluble ones among their alkali, alkaline earth, other metal salts and ammonium salts, and fluorides such as borofluorides. (upa salt) and silicofluoride (SiF2 salt), which are water-soluble. Examples of water-soluble halides include HCl2. NaCl
! , 1KCj2. NHsCj2. MgCj2z,
CaCj2zAj2CI2: +1 liver, NaF, KF
, N114FIllBr, NaBr, KBr.

MgBr2. CaBr2. NlI4Br、 III
、 Nal、 KI、 Nll、I、 CaI2゜Mg
h、t12.5iF6. MgSiF6.  (NH4
)zsiF6.1lBP4. N1148F4およびN
aBF4等である。これらはいずれも(110)面を有
する仕上げ焼鈍後の方向性けい素鋼板に対し磁気的平滑
化効果を持つものであるが、実燥業においては陰極への
金属析出の防止等を考慮して、これらの中から選択する
ことか望ましい。また、その濃度は、浴の電気伝導度を
僅゛保するうえから20 g / 1以上であることが
望ましい。なお、その組成および濃度からしてこの発明
では海水の利用も可能である。
MgBr2. CaBr2. NlI4Br, III
, Nal, KI, Nll, I, CaI2゜Mg
h, t12.5iF6. MgSiF6. (NH4
)zsiF6.1lBP4. N1148F4 and N
aBF4 etc. All of these have a magnetic smoothing effect on grain-oriented silicon steel sheets with (110) planes after final annealing, but in the drying industry, they are used in consideration of prevention of metal precipitation on the cathode, etc. , it is desirable to choose from these. Further, its concentration is desirably 20 g/1 or more in order to maintain the electrical conductivity of the bath. Note that seawater can also be used in this invention due to its composition and concentration.

また水?容性のハロゲン化物を含む水溶液にさらにポリ
エーテルを添加した浴を用いることも有利である。ここ
でポリエーテルとは、エーテル結合(−0−)を主鎖中
に含む線状分子であって、一般に〔問〕担体の繰返しに
より成る高分子化合物である。ここで¥1は普通メチレ
ン基またはポリメチレン基およびその誘導体である。例
えば、ポリエチレングリコール−ficlI□CIl□
Ohはその1例である。
Water again? It is also advantageous to use baths in which polyether is further added to an aqueous solution containing a compatible halide. Here, polyether is a linear molecule containing an ether bond (-0-) in its main chain, and is generally a polymer compound formed by repeating carriers. Here, ¥1 usually represents a methylene group or a polymethylene group and its derivatives. For example, polyethylene glycol-ficlI□CIl□
Oh is one example.

ここにポリエーテルの添加量は2 g/1.以」二とす
るごとが望ましく、一方濃度は関すきると浴の電気型導
度が低下する上、添加量に見合・う効果がル1待できな
いため2〜300g/ff程度の範囲が適当である。
The amount of polyether added here is 2 g/1. On the other hand, if the concentration is too high, the electrical conductivity of the bath will decrease, and the effect commensurate with the amount added cannot be expected, so a range of about 2 to 300 g/ff is appropriate. .

浴温ば常温以上で任意に選ぶことができるが、あまり高
温では水の蒸発が著しく、常温ないし90°C程度が適
当である。電流密度は5 A/dm2程度から数百A/
dm”の範囲で設定できる。しかし、浴温か低いときに
1.0OA/dm2をこえるような高電流密度とすると
表面の処理むらを生しやすいので、電流密度の範囲をよ
り広くしようとずれば、浴温を40°C以上にした方が
よい。
The bath temperature can be arbitrarily selected from room temperature or above, but if the temperature is too high, water will evaporate significantly, so room temperature to about 90°C is suitable. The current density ranges from about 5 A/dm2 to several hundred A/dm2.
dm". However, if the bath temperature is low and the current density is high enough to exceed 1.0 OA/dm2, it tends to cause uneven surface treatment, so if you try to widen the current density range, It is better to keep the bath temperature above 40°C.

なお鉄損を低下させる見地から、この発明における電解
の電気量および電解除去量はそれぞれ300C/dm2
以」二、片面当り1μ川以上にすることが好ましい。
In addition, from the viewpoint of reducing iron loss, the amount of electricity in electrolysis and the amount of electrolytic removal in this invention are each 300C/dm2.
Second, it is preferable that the thickness be 1μ or more per side.

以上のようにこの発明においては従来の方法にくらへて
きわめて広範囲な条件下で磁気的平滑化効果を得ること
ができ、この点もこの発明か工業的に実施されるうえで
有利であることの重要な根1処となるものである。
As described above, in this invention, magnetic smoothing effects can be obtained under an extremely wide range of conditions compared to conventional methods, and this point is also advantageous for industrial implementation of this invention. This is one of the important roots of this.

ここで電解反応による浴の変化をNaCE水溶液を例に
とって示すと次のとおりである。
Here, the changes in the bath caused by the electrolytic reaction are shown below, taking an NaCE aqueous solution as an example.

陽極: Fe−1−2C,C−→FeCff 2 + 
2e−・−(1)] 6 陰極: 2Na’ +211zO+2e−−>2NaO
1l−1−11□↑ハルり: PeCj22+2NaO
II −>2NaCp!+Fe(Oll)z  ↓すな
わち(1)式によって生成したFeCρ2と、(2)式
で生成したNa0IIとは、(3)式に示した反応によ
って自動的にNaCj2を再生する。したがって浴f;
l−1成の制御は、基本的には(3)式で生成するFe
(叶)2の沈澱の除去と、水の補給、および鋼板が系外
へ持ち出ずtJacf!、の補給を行えばよいことにな
り、従来の化学研磨あるいは電解研磨にくらべ、はるか
に容易かつ低コス1−なものとなる。この点もこの発明
方法が工業的に優れたものであることのひとつの理由で
ある。
Anode: Fe-1-2C, C-→FeCff 2 +
2e-・-(1)] 6 Cathode: 2Na'+211zO+2e-->2NaO
1l-1-11□↑Haru: PeCj22+2NaO
II ->2NaCp! +Fe(Oll)z ↓ That is, FeCρ2 generated by the formula (1) and Na0II generated by the formula (2) automatically regenerate NaCj2 by the reaction shown in the formula (3). Therefore the bath f;
The control of the l-1 formation is basically based on the Fe generated using equation (3).
(Ko) Removal of the precipitate in step 2, replenishment of water, and preventing the steel plate from being taken out of the system! , which is much easier and lower cost than conventional chemical polishing or electrolytic polishing. This point is also one of the reasons why the method of this invention is industrially superior.

次に上記に従って磁気的平滑面化した鋼板表面に対して
、(1)地鉄の一部を除去する、(2)局所的に金属め
っきを施す、処理を行う。具体的には(1)ボールペン
やペン等で罫書きをする要領で行うか又は超音波振動を
付加して行う等の研削手段、あるいはレーザーやプラズ
マ照射のような鋼板に非接触で高エネルギーをイ」加す
る手段等が有利に適合する。
Next, the surface of the steel plate that has been magnetically smoothed according to the above process is subjected to treatments such as (1) removing a portion of the base metal, and (2) locally applying metal plating. Specifically, (1) Grinding methods such as scribing with a ballpoint pen or pen, or adding ultrasonic vibration, or non-contact high energy application to the steel plate such as laser or plasma irradiation. A means for adding "A" is advantageously suitable.

(2)フォトレジスト 後めっき処理するフォトレジスト法、マスキングした後
めっきするマスキング法、又は、ペスト状めっき剤を用
いてスクリーン印刷、オフセy I□印刷する等の手段
が有利に適合する。
(2) A photoresist method in which plating is performed after photoresist, a masking method in which plating is performed after masking, or means such as screen printing or offset I□ printing using a paste-like plating agent are advantageously suitable.

また地鉄除去部又は金属めっき部の存在状態は、圧延方
向に対して直角方向が最も有利であるか、斜め方向や正
弦波状などてもよく、連続又は断続した線状であること
が好ましい。また幅は、0.1〜0.4mmが好ましく
、地鉄除去部同士又は金属めっき部同士の間隔は2.0
〜10.0mmが好ましい。
Further, the state of existence of the bare metal removed part or the metal plating part is most advantageously perpendicular to the rolling direction, or may be diagonal or sinusoidal, and is preferably continuous or discontinuously linear. In addition, the width is preferably 0.1 to 0.4 mm, and the interval between bare metal removed parts or metal plated parts is 2.0 mm.
~10.0 mm is preferred.

なお上記したハロゲン化物水溶液中ての陽極電解が終っ
たあと、水洗によって鋼板表面のハロゲン化物を洗い流
してから、表面清浄化による被膜の密着性確保のために
炭酸水素塩の水懸濁液もしくは水溶液を用いてブラシン
グ処理を施すことも有効である。ここて、炭酸水素塩と
は、炭酸水素すトリウム、炭酸水素アンモニウム、炭酸
水素カリウム等を意味する。このとき、水/’J ?P
j.を用いる場合の濃度ばIOg/ff以」二とするこ
とか望ましく、10 g / p、未満ては表面清浄化
効果が十分てない。
After the above-mentioned anodic electrolysis in the halide aqueous solution is completed, the halide on the surface of the steel plate is washed away with water, and then an aqueous suspension or solution of hydrogen carbonate is applied to ensure the adhesion of the coating by surface cleaning. It is also effective to perform a brushing process using. Here, hydrogen carbonate means thorium hydrogen carbonate, ammonium hydrogen carbonate, potassium hydrogen carbonate, and the like. At this time, water/'J? P
j. It is desirable that the concentration be less than 10 g/ff, and if it is less than 10 g/p, the surface cleaning effect will not be sufficient.

なお清浄化効果は濃度か高いはと人きく、懸濁液がもっ
とも顕著であるか、10g/ff以上で、単なる水によ
るブラシング処理にくらべて、明瞭な効果を得ることが
できる。ブラシングの方法としては合成繊翰あるいは天
然繊組を用いたブラシ1′Jルや不織布ロール等が有利
に適用できろ。ブラシンクを終ったあとは直しに水洗、
乾燥するごとにより清浄な表面が維持される。
The cleaning effect depends on the concentration, and is most noticeable when using a suspension, or when the concentration is 10 g/ff or more, a clear effect can be obtained compared to simple brushing treatment with water. As a brushing method, a brush made of synthetic fibers or natural fibers, a nonwoven fabric roll, etc. can be advantageously applied. After finishing the brush sink, wash it with water to fix it.
A cleaner surface is maintained with each drying.

さらにハロゲン化物水溶液中で陽極電解した後の方向性
珪素鋼板の表面は極めて活性なため、大気中に曝露され
ると容易に銹を発生ずる。
Furthermore, the surface of a grain-oriented silicon steel sheet after anodic electrolysis in an aqueous halide solution is extremely active and therefore easily generates rust when exposed to the atmosphere.

銹が生しると外観の劣化とともに、その後のコーチイン
クの密着性の劣化をもたらし、ひいてし、1磁気特性の
劣化を招くことになる。これを防止するにば電解浴中に
腐食防止剤(インヒビクー)を添加することか有効とな
る。インヒビターの種類は大別して無機系と有(幾系に
区別されるがこの発明ではいずれでもよい。例を挙りれ
ば無機系としては、クロム酸塩、亜硝酸塩、りん酸塩等
、また有機系としては有機硫黄化合物や分子構造中に極
性基のアミノ基(−Nlh)を有するとごろのアミン類
等が適用できる。
The formation of rust causes deterioration of the appearance and subsequent deterioration of the adhesion of the coach ink, which in turn leads to deterioration of the magnetic properties. To prevent this, it is effective to add a corrosion inhibitor to the electrolytic bath. The types of inhibitors can be broadly classified into inorganic and organic (although they can be classified into several types, in this invention, any inhibitor may be used. Examples of inorganic inhibitors include chromates, nitrites, phosphates, etc.), and organic inhibitors. As the system, organic sulfur compounds and amines having a polar amino group (-Nlh) in the molecular structure can be used.

その濃度はインヒビクーの種類によって効果の程度が異
なるので一層には言えないか、0.1〜50g/i!程
度が適当である。
Since the degree of effectiveness varies depending on the type of inhibitor, it is difficult to say more about the concentration, or it is 0.1 to 50 g/i! The degree is appropriate.

また、ハロゲン化物水/8?r9.中で方向性珪素鋼板
を陽極電解していくと浴中にFe(011)zの沈澱が
多量に生成し、ごれが約2%を超えると液の粘性が上り
過ぎて正常な電解が不可能になる。
Also, halide water/8? r9. When a grain-oriented silicon steel sheet is subjected to anodic electrolysis in the bath, a large amount of Fe(011)z precipitate is formed in the bath, and if the dirt exceeds about 2%, the viscosity of the solution increases too much and normal electrolysis is not carried out. It becomes possible.

特にアルカリ金属のハロゲン化物を主成分とした電解液
を用いる場合、Fe(Olllzの沈澱中に一定量のハ
ロゲンイオンが捕捉されるため、浴pl+は」二昇傾向
を示す。そしてpHが13を超えると均一な電解表面は
得られなくなる。これらの問題の発生を防止するにはp
l+緩衝剤、あるいばFeイオンをキレ−1〜化するキ
レ−1・剤の添加が有効である。p++緩衝剤としては
りん酸、クエン酸、硼酸、酢酸、グリシン、マレイン酸
等およびそれらの塩等が有効であり、また、Feイオン
のキレ−1・剤としてばクエン酸、酒石酸、グリコール
酸等のオキシ酸、各種アミン類、あるいはIEDTAな
どのポリアミノカルボン酸類、ポリりん酸塩等が有効で
ある。それらの添加量はおおむね1〜100g//2の
範囲が良い。
In particular, when using an electrolytic solution containing an alkali metal halide as a main component, a certain amount of halogen ions are captured during the precipitation of Fe(Ollz), so that the bath pl+ shows a tendency to increase. If the electrolytic surface is exceeded, a uniform electrolytic surface will not be obtained.To prevent these problems from occurring,
It is effective to add a l+ buffer, or in other words, a clear-1 agent that converts Fe ions to clear-1. Phosphoric acid, citric acid, boric acid, acetic acid, glycine, maleic acid, etc., and their salts are effective as p++ buffering agents, and citric acid, tartaric acid, glycolic acid, etc. are effective as Fe ion kill-1 agents. Oxy acids, various amines, polyaminocarboxylic acids such as IEDTA, polyphosphates, etc. are effective. The amount of addition thereof is preferably in the range of approximately 1 to 100 g/2.

また、電解中の浴pl+の上昇を防止するには、浴中の
Fe (OH) zの沈澱をFe(Oil)3に酸化す
ることも有効であり、その具体的な方法としては浴と空
気の接触を強制的に強める空気酸化あるいは1120□
等の酸化物を浴に添加するとよい。
In addition, to prevent the rise in bath pl+ during electrolysis, it is also effective to oxidize the precipitate of Fe(OH)z in the bath to Fe(Oil)3. Air oxidation or 1120□ that forcibly strengthens the contact between
It is recommended to add oxides such as oxides to the bath.

かかる一連の処理を施したあと、磁気特性のより一層の
向上を図るために、鋼板表面に張力付加型の被膜が適用
される。張カイ」加振被膜は従来より知られるコロイダ
ルシリカを含有するりん酸塩系コーティングでもよいし
、l′ライあるいはつエンI・のめつきで形成してもよ
い。
After performing this series of treatments, a tension-applying coating is applied to the surface of the steel sheet in order to further improve the magnetic properties. The vibration coating may be a conventionally known phosphate-based coating containing colloidal silica, or may be formed by plating with 1'-ly or 2'-I.

すなわちCVD法やPVD法(イオンブレーティングや
イオンインブランティジョン)などの蒸着法又はめっき
等によってTi、 Nb、 Si、  V、 Cr  
AI  MnB、 Ni、 Co、 Mo、 Zr+ 
Ta、 Iff、 Wの窒化物および/又は炭化物なら
びにAI+ !;+、 Mn、 l’1g+ Zn、 
Tiの酸化物のうちから選んだ少なくとも1種より主と
して成る極薄被膜を鋼板表面に強固に被成するのである
That is, Ti, Nb, Si, V, and Cr are deposited by vapor deposition methods such as CVD methods and PVD methods (ion blating and ion implantation), or by plating.
AI MnB, Ni, Co, Mo, Zr+
Nitride and/or carbide of Ta, Iff, W and AI+! ;+, Mn, l'1g+ Zn,
An ultra-thin coating consisting mainly of at least one selected from Ti oxides is firmly formed on the surface of the steel sheet.

なおかかる被膜の材質としては、上掲したもののほか、
熱膨脹係数が低く鋼板に強固に付着するものであれば何
であってもよい。
In addition to the materials listed above, the materials for such coatings include:
Any material may be used as long as it has a low coefficient of thermal expansion and firmly adheres to the steel plate.

さらに必要により常法に従って張力付与型低熱膨張の上
塗り絶縁被膜を被成することもできる。
Furthermore, if necessary, a tension-applied low-thermal-expansion top insulating film can be formed by a conventional method.

(実施例) 災巖拠上 C: o、oa%、Si:3.3%、Mn:0.06%
、Se:0.02%およびSb : 0.022%を含
む組成になる熱延鋼板を、中間焼鈍を含む2回の冷間圧
延により0.23mm厚の冷延板とした。ついでこの鋼
板に、830″Cの湿水素中で脱炭・1次再結晶焼鈍を
施した後、A j2203を主成分とする焼鈍分離剤を
塗布してから、コイル状に巻取り、850°Cで50時
間の2次再結晶焼鈍及び1200°Cで5時間の純化焼
鈍を施した。
(Example) C: o, oa%, Si: 3.3%, Mn: 0.06%
, Se: 0.02%, and Sb: 0.022%. A hot rolled steel sheet having a composition containing 0.02% of Se and 0.022% of Sb was cold rolled twice including intermediate annealing to obtain a cold rolled sheet with a thickness of 0.23 mm. This steel plate was then subjected to decarburization and primary recrystallization annealing in wet hydrogen at 830"C, coated with an annealing separator containing A j2203 as the main component, wound into a coil, and then annealed at 850°. Secondary recrystallization annealing was performed at C for 50 hours and purification annealing was performed at 1200°C for 5 hours.

その後、未反応の焼鈍分離剤を除去し、平坦化焼鈍を施
してコイルの巻きくせを矯正し、供試材とした。
Thereafter, the unreacted annealing separator was removed, flattening annealing was performed to correct the winding of the coil, and a test material was obtained.

かかる供試材の表面の酸化物被膜を酸洗により除去し、
ついで表1に示す条件の塩化物水溶液中で電解処理を行
った後、鉄損(L7zs。)を測定した。比較のために
りん酸とクロム酸を用いて行う鏡面研磨法(比較例8)
とi械研磨法(エメリー#1.000+ハフ仕上げ:比
較例9)とを行った。
The oxide film on the surface of the test material was removed by pickling,
Then, after electrolytic treatment was performed in a chloride aqueous solution under the conditions shown in Table 1, the iron loss (L7zs.) was measured. Mirror polishing method using phosphoric acid and chromic acid for comparison (Comparative Example 8)
and i-machine polishing method (Emery #1.000 + Huff finish: Comparative Example 9).

その後、超音波加工機を用いて、地鉄の除去部を0.2
mm幅、間隔4 mmにて圧延方向に直角に形成した。
After that, using an ultrasonic processing machine, the removed portion of the base iron is cut by 0.2
They were formed perpendicular to the rolling direction with a width of 4 mm and an interval of 4 mm.

なお、振動体としては、先端径1. mmの電着ダイヤ
モノl−棒を使用し、振動数30kllz 、振動スI
・ローフ40μmとした。ついで、イオンブレーティン
グ処理にてTiN膜を1μm厚で蒸着し、TiN膜被成
後800 ’Cて2時間の歪取り焼鈍を行った。
Note that the vibrating body has a tip diameter of 1. Using a mm electrodeposited diamond rod, the vibration frequency was 30kllz, the vibration speed was
・The loaf was 40 μm. Next, a TiN film was deposited to a thickness of 1 μm by ion blating treatment, and after the TiN film was formed, strain relief annealing was performed at 800° C. for 2 hours.

各段階ての鉄損のN11l定結果を表1に示す。Table 1 shows the results of N11l determination of iron loss at each stage.

同表から明らかなように、この発明に従ってj′1られ
た適合例はいずれも鉄損の向上度か大きく、これに対し
′ζ比較例G、)いずれも鉄11の改11′言、!わず
かなものでしかなかった。
As is clear from the same table, all of the conforming examples according to the present invention have a large improvement in iron loss, whereas the comparative example G, ) are all modified iron 11, ! It was only a small amount.

災勝叫2− C: 0.058  %、Si  : 3.3  %、
IO・008%、 八10.025%、S:0.02%
およびI刈+0.008%を含イ」−Jる熱延鋼板をO
,:1mm厚まて冷間圧延し7た移、脱炭焼鈍を施し、
ついで肝0を主成分とした焼鈍分離剤を塗布後、イ」−
1−り焼鈍を119だ。イ(、上りぢけI!後の銖1f
iは(’117/!、。て105しi/kgであった。
Disaster Scream 2-C: 0.058%, Si: 3.3%,
IO・008%, 810.025%, S:0.02%
and 0.008% of hot rolled steel sheet.
, : 1mm thick, cold rolled, transferred, decarburized annealed,
Then, after applying an annealing separator mainly composed of liver 0,
1-1 annealing is 119. I (, go up! I! 1st floor afterward)
i was ('117/!,. 105 i/kg.

さ♂」に鋼板表面のフォルステライI・被1模を酸洗て
除去した後、KCp:50 g / 1..40’C〕
水溶液中で、供tit: +、]を陽極として75A/
dm” 、3000ク一ロン/dm2の条件下にて電解
処理を施した。得られた鋼板の銖1ft 4:l: l
々177、。
KCp: 50 g/1. .. 40'C]
In an aqueous solution, 75A/
Electrolytic treatment was carried out under the conditions of 3,000 corons/dm2 and 3,000 corons/dm2.
177.

=082しi/kgてあった。=082 i/kg.

ついで振動体として先☆:11か60°の角度をもつ1
辺か8 manの# 1000焼粘り・イヤモントの二
角柱を使用し、振動数25ktl?、振動スiし】−り
20/1mとして、幅0.3mm、間隔3mmで圧延方
向との171度+1[]。
Next, as a vibrating body ☆: 1 with an angle of 11 or 60°
I used a square cylinder of #1000 Yakuten and Earmont of 8 man, and the frequency was 25ktl? , Vibration switch] - 20/1 m, width 0.3 mm, interval 3 mm, 171 degrees with the rolling direction + 1 [].

の綿状の地鉄除去部を形成した。このときの鉄損ば、W
+775o=0.75W/kgてあった。
A cotton-like base iron removed portion was formed. The iron loss at this time is W
+775o=0.75W/kg.

さらに、Si3N4膜をイオンブレーティング処理でコ
ーティング(厚め1μm)したとごろ、鉄損はW+7/
5o=0.65W/kgまで低減した。
Furthermore, when the Si3N4 film was coated with ion blating treatment (1 μm thick), the iron loss was W+7/
It was reduced to 5o=0.65W/kg.

次に800 ’C:て3時間の歪取り焼111!を施し
たか、鉄損は凱775o=0.64ty/kgと劣化し
なかった。
Next, 800'C: 3 hours of strain relief grilling 111! However, the iron loss was 0.64ty/kg, which was 0.64ty/kg.

尖廉班ユ C: 0.045%、 Si : 3.25%、 Mn
 : 0.072%、 SeO,01,9%およびSb
 : 0.020%を含む組成になる熱延鋼板を、中間
焼鈍を含む2回の冷間圧延により0.23mm厚の冷延
板とした。ついでこの鋼板に、830°Cの湿水素中て
脱炭・1次再結晶焼鈍を施した後、A E 203を主
成分とする焼鈍分離剤を塗布してから、コイル状に巻取
り、850 ’Cで50時間の2次再結晶焼鈍及び12
00°Cで5時間の純化焼鈍を施した。
Sharpness C: 0.045%, Si: 3.25%, Mn
: 0.072%, SeO, 01.9% and Sb
: A hot-rolled steel sheet having a composition containing 0.020% was cold-rolled twice including intermediate annealing to obtain a cold-rolled sheet with a thickness of 0.23 mm. This steel plate was then subjected to decarburization and primary recrystallization annealing in wet hydrogen at 830°C, coated with an annealing separator containing A E 203 as a main component, and wound into a coil shape. Secondary recrystallization annealing for 50 hours at 'C and 12
Purification annealing was performed at 00°C for 5 hours.

その後、未反応の焼鈍分離剤を除去し、平坦化焼鈍を施
してコイルの巻きく一已を矯正し、供試材とした。
Thereafter, the unreacted annealing separator was removed, flattening annealing was performed to straighten the winding edge of the coil, and a test material was obtained.

かかる供試材の表面の酸化物被膜を酸洗により除去し、
ついで表2に示す条件の塩化物水溶液中で電解処理を行
った後、鉄損(L7zso)を測定した。比較のために
りん酸とクロム酸を用いて行う鏡面研磨法(比較例6)
と機械研磨法(エメリー41000+ハフ仕上げ:比較
例7)とを行った。
The oxide film on the surface of the test material was removed by pickling,
Then, after performing electrolytic treatment in a chloride aqueous solution under the conditions shown in Table 2, the iron loss (L7zso) was measured. Mirror polishing method using phosphoric acid and chromic acid for comparison (Comparative Example 6)
and a mechanical polishing method (Emery 41000+Hough finish: Comparative Example 7).

その後、フォトレジスト法によりT#rLt浴(硫酸ニ
ッケル240g/42、塩化ニッケル45g/ff、硼
酸30 g/ ffi、温度60°C)中でIOA/d
mtの電流密度で10秒間N1メブキを施した。
After that, IOA/d was applied using a photoresist method in a T#rLt bath (nickel sulfate 240 g/42, nickel chloride 45 g/ff, boric acid 30 g/ffi, temperature 60°C).
N1 coating was applied for 10 seconds at a current density of mt.

ついでイオンブレーティング処理にてTiN膜を1μm
厚で蒸着し、TiN膜被成後800°Cで2時間の歪取
り焼鈍を行った。各段階での鉄損の測定結果を表2に示
す。
Then, the TiN film was formed to a thickness of 1 μm by ion blating treatment.
After the TiN film was formed, strain relief annealing was performed at 800° C. for 2 hours. Table 2 shows the measurement results of iron loss at each stage.

27〜 同表から明らかなように、この発明に従って得られた適
合例はいずれも鉄損の向上度が太き(、これに対して比
較例はいずれも鉄損の改4へはわずかなものでしかなか
った。
27~ As is clear from the same table, all of the conforming examples obtained according to the present invention have a large degree of improvement in iron loss (on the other hand, all of the comparative examples have only a slight improvement in iron loss. It was just that.

実茄割1 C:0.057%、Si:3.3%、 Mn : 0.
08%、5O302%、Aj2 : 0.025%およ
びN : 0.008%を含イ1する熱延鋼板を0.3
0mmJ!7−まで冷間圧延した後、IIQ炭焼錬を施
し、ついでMにoを主成分とする焼鈍分乱剤を塗布後、
仕トげ焼鈍を行った。仕上げ焼鈍後の鉄損はW+7zs
o−1,04W八4gてあった。さらムこ鋼板表面のフ
ォルステライI・被膜を酸洗で除去した後、KCf!A
50 g、/I1..40°C(7)水溶液中で供試(
号を陽極として100八/dm2.3000C/dm2
の条1イ1下Gこて電解処理を施した。得られた鋼板の
鉄11)はしI+7z5o−0,8!J/kgであった
Fruit split 1 C: 0.057%, Si: 3.3%, Mn: 0.
A hot rolled steel plate containing 0.08%, 5O302%, Aj2: 0.025% and N: 0.008% was heated to 0.3%.
0mmJ! After cold rolling to 7-, subjected to IIQ charcoal sintering, and then applied to M with an annealing disrupter mainly composed of o,
Finish annealing was performed. Iron loss after finish annealing is W+7zs
There was 84g of o-1,04W. After removing the Forsterei I coating on the surface of the Saramuko steel plate by pickling, KCf! A
50 g, /I1. .. Test in aqueous solution at 40°C (7)
1008/dm2.3000C/dm2 with No. as anode
Article 1-1 Lower G trowel electrolytic treatment was performed. Obtained steel plate iron 11) Chopper I+7z5o-0,8! J/kg.

さらに、マスキング法によりSnめっきを0.25mm
幅、厚み0.002 mmにて圧延方向に直角に、めっ
き部同士の間隔8mmで施した。このときの鉄I員は匈
(7/5o−0,7ハムgであった。
Furthermore, by masking method, Sn plating was applied to 0.25mm.
The plating was applied perpendicularly to the rolling direction with a width and thickness of 0.002 mm, and an interval of 8 mm between the plated parts. The iron weight at this time was 匈 (7/5 o - 0.7 ham g).

さらにコロイダルシリカ−りん酸マグネシウム無水クロ
ム酸になる組成の張)j付与型コーティング膜を被成し
たところ、鉄損はW17zso=0.69t’l/kg
まで低減した。
Furthermore, when a tension-imparting coating film with a composition of colloidal silica-magnesium phosphate chromic acid anhydride was formed, the iron loss was W17zso=0.69t'l/kg.
It was reduced to

次に800°Cで3時間の歪取り焼鈍を施したが、鉄損
は1./、。−0,69Ill/kgと劣化しなかった
Next, strain relief annealing was performed at 800°C for 3 hours, but the iron loss was 1. /,. There was no deterioration at -0.69 Ill/kg.

尖旌拠立 C: 0.042%、 Si : 3.20%、 Mn
 : 0.068%、 Se: 0.017%およびS
b : 0.019%を含有する組成になる熱延鋼板を
、中間焼鈍を含む2回の冷間圧延により、0.20mm
厚の冷延板とした。ついでこの鋼板に、830°Cの湿
水素中で脱炭・1次再結晶焼鈍を施した後、Aρ203
を主成分とする焼鈍分離剤を塗布してから、コイル状に
巻き取り、850°Cで50時間の2次再結晶焼鈍及び
1200°Cで5時間の純化焼鈍を施した。
C: 0.042%, Si: 3.20%, Mn
: 0.068%, Se: 0.017% and S
b: A hot rolled steel sheet having a composition containing 0.019% is cold rolled twice including intermediate annealing to a thickness of 0.20 mm.
It was made into a thick cold-rolled plate. This steel plate was then subjected to decarburization and primary recrystallization annealing in wet hydrogen at 830°C.
After applying an annealing separator mainly composed of , it was wound into a coil shape and subjected to secondary recrystallization annealing at 850°C for 50 hours and purification annealing at 1200°C for 5 hours.

その後、未反応の焼鈍分離剤を除去し、平坦化焼鈍を施
してコイルの巻きぐせを強制し、供試材とした。
Thereafter, the unreacted annealing separator was removed, and flattening annealing was performed to force the winding of the coil to form a test material.

かかる供試材の表面の酸化物被膜を酸洗により除去し、
ついで表3に示す条件の水溶液中で電解処理を行った後
、鉄損(W+7zso)を測定した。比較のためにりん
酸とクロム酸を用いて行う鏡面研摩法(比較例8)と機
械研磨法(エメIJ −# 1.000十ハフ仕上げ:
比較例9)とを行った。
The oxide film on the surface of the test material was removed by pickling,
Then, after electrolytic treatment was performed in an aqueous solution under the conditions shown in Table 3, the iron loss (W+7zso) was measured. For comparison, a mirror polishing method using phosphoric acid and chromic acid (Comparative Example 8) and a mechanical polishing method (Eme IJ-# 1.000 ten-hough finish:
Comparative Example 9) was conducted.

その後、超音波加工機を用いて、地鉄の除去部を0.0
5mm幅、間隔5mmにて圧延方向と直角に形成した。
After that, using an ultrasonic processing machine, the removed portion of the base iron is 0.0
They were formed perpendicular to the rolling direction with a width of 5 mm and an interval of 5 mm.

なお、振動体としては、先端径0.8mmのダイヤモン
[を電着した針子を用い、振動数20kllz、振動ス
トローク10μmとした。ついで、イオンブレーティン
グ処理にて、TiN膜を0.971m厚で蒸着した。T
iN被成後800°Cて3時間の歪取り焼鈍を行った。
As the vibrating body, a needle electrodeposited with diamond having a tip diameter of 0.8 mm was used, and the vibration frequency was 20 kllz and the vibration stroke was 10 μm. Then, a TiN film was deposited to a thickness of 0.971 m by ion blating treatment. T
After the iN deposition, strain relief annealing was performed at 800°C for 3 hours.

各段階の鉄損の測定結果を表3に示す。Table 3 shows the measurement results of iron loss at each stage.

(発明の効果) かくしてこの発明によれば、鉄損の極めて低い、特に歪
取り焼鈍によっても鉄損が劣化しない方向性けい素鋼板
を安定にしかも安価に得ることかできる。
(Effects of the Invention) Thus, according to the present invention, it is possible to stably and inexpensively obtain a grain-oriented silicon steel sheet that has extremely low iron loss, and in particular does not deteriorate in iron loss even after strain relief annealing.

【図面の簡単な説明】 第1図(a) (b)はこの発明に従う処理を施したり
い素鋼板の鉄損改善化を示すグラフ、 第2図は面方位の異なる結晶面を示す金属組織写真であ
る。 特許(」」願人  川崎製鉄株式会社
[Brief explanation of the drawings] Figures 1 (a) and (b) are graphs showing the improvement in iron loss of silicon steel sheets treated according to the present invention. Figure 2 is a metal structure showing crystal planes with different orientations. It's a photo. Patent ('') Applicant Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】 1、仕上げ焼鈍済みの方向性けい素鋼板に、水溶性のハ
ロゲン化物を1種以上含む水溶液中で電解による磁気的
平滑化処理を施し、ついで鋼板表面の地鉄の一部を圧延
方向を横切って延びる連続又は断続した線状に除去した
後、この鋼板表面に張力付与型の絶縁被膜を被成するこ
とを特徴とする歪取り焼鈍によって特性が劣化しない低
鉄損方向性けい素鋼板の製造方法。 2、仕上げ焼鈍済みの方向性けい素鋼板に、水溶性のハ
ロゲン化物を1種以上含む水溶液中で電解による磁気的
平滑化処理を施し、ついで鋼板表面に圧延方向を横切っ
て延びる連続又は断続した線状の金属めっきを施した後
、この鋼板表面に張力付与型の絶縁被膜を被成すること
を特徴とする歪取り焼鈍によって特性が劣化しない低鉄
損方向性けい素鋼板の製造方法。
[Claims] 1. A grain-oriented silicon steel sheet that has been finish annealed is subjected to magnetic smoothing treatment by electrolysis in an aqueous solution containing one or more water-soluble halides, and then one of the base irons on the surface of the steel sheet is smoothed. Strain relief annealing, which is characterized by removing parts in a continuous or discontinuous line extending across the rolling direction and then forming a tension-applying insulating film on the surface of the steel sheet, results in a low core loss direction in which the characteristics do not deteriorate. manufacturing method of silicon steel sheet. 2. A finish-annealed grain-oriented silicon steel sheet is subjected to magnetic smoothing treatment by electrolysis in an aqueous solution containing one or more water-soluble halides, and then a continuous or intermittent pattern extending across the rolling direction is applied to the surface of the steel sheet. A method for producing a grain-oriented silicon steel sheet with low iron loss whose properties do not deteriorate due to strain relief annealing, the method comprising applying linear metal plating and then forming a tension-applying insulating film on the surface of the steel sheet.
JP63186977A 1988-07-28 1988-07-28 Method for producing low iron loss grain-oriented silicon steel sheet whose characteristics are not deteriorated by stress relief annealing Expired - Lifetime JPH079041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63186977A JPH079041B2 (en) 1988-07-28 1988-07-28 Method for producing low iron loss grain-oriented silicon steel sheet whose characteristics are not deteriorated by stress relief annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63186977A JPH079041B2 (en) 1988-07-28 1988-07-28 Method for producing low iron loss grain-oriented silicon steel sheet whose characteristics are not deteriorated by stress relief annealing

Publications (2)

Publication Number Publication Date
JPH0238527A true JPH0238527A (en) 1990-02-07
JPH079041B2 JPH079041B2 (en) 1995-02-01

Family

ID=16198039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63186977A Expired - Lifetime JPH079041B2 (en) 1988-07-28 1988-07-28 Method for producing low iron loss grain-oriented silicon steel sheet whose characteristics are not deteriorated by stress relief annealing

Country Status (1)

Country Link
JP (1) JPH079041B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202450A (en) * 1992-01-27 1993-08-10 Nippon Steel Corp Super low iron loss grain-oriented magnetic steel sheet and its manufacture
JPH06279027A (en) * 1993-02-10 1994-10-04 Rhone Poulenc Chim Composition based on mixture of zirconium oxide and cerium oxide and method for synthetic production and use thereof
WO2012147487A1 (en) * 2011-04-25 2012-11-01 住友電気工業株式会社 Method for producing compressed powder compact, compressed powder compact, reactor, converter, and power conversion device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202450A (en) * 1992-01-27 1993-08-10 Nippon Steel Corp Super low iron loss grain-oriented magnetic steel sheet and its manufacture
JPH06279027A (en) * 1993-02-10 1994-10-04 Rhone Poulenc Chim Composition based on mixture of zirconium oxide and cerium oxide and method for synthetic production and use thereof
WO2012147487A1 (en) * 2011-04-25 2012-11-01 住友電気工業株式会社 Method for producing compressed powder compact, compressed powder compact, reactor, converter, and power conversion device

Also Published As

Publication number Publication date
JPH079041B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
KR100447048B1 (en) Grain-oriented electrical steel sheet in film adhesion and extremely low in core loss and its production method
EP0307163B1 (en) Silicon steel sheets having low iron loss and method of producing the same
JPH0238527A (en) Manufacture of grain-oriented silicon steel sheet with low iron loss free from deterioration in characteristic due to stress relief annealing
JPH08222423A (en) Grain oriented silicon steel plate of low core loss and its manufacture
KR960006448B1 (en) Method of manufacturing low iron loss grain oriented electromagnetic steel
JP2703604B2 (en) Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties
JPH0230779A (en) Production of grain-oriented silicon steel sheet having low iron loss
JPH1112755A (en) Super-low core loss grain-oriented silicon steel sheet
JPH1180909A (en) Low iron loss grain-oriented silicon steel sheet good in adhesion of tension-applied type coating
JPH11236682A (en) Superlow core loss grain oriented silicon steel sheet and its production
JPH01259199A (en) Manufacture of grain-oriented silicon steel sheet with low iron loss
JPH04308093A (en) Silicon steel sheet having electrolytic-treated insulating film and its production
JPH09118923A (en) Manufacture of grain-oriented silicon steel sheet having low core loss
JPH02163397A (en) Method for surface-finishing stainless steel sheet
JPH01259200A (en) Electrolytic treatment for grain-oriented silicon steel sheet
JPH11181576A (en) Rain oriented silicon steel sheet good in film adhesion and extremely low in core loss value
JPS6386894A (en) Surface treatment of amorphous alloy material
JP3272802B2 (en) Method for producing grain-oriented silicon steel sheet having homogeneous forsterite coating
KR100848622B1 (en) METHOD FOR MANUFACTURING NICKEL-Flash TREATED STEEL SHEET HAVING GOOD CORROSION RESISTANCE AND SURFACE TREATMENT CHARACTERISTICS
JPH0637694B2 (en) Silicon-containing steel plate with low iron loss
JP2752682B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
JP2023139177A (en) Electroplated steel plate with excellent surface appearance and production method thereof
JPH05320947A (en) Manufacture of cylinder rod
JPH02232399A (en) Production of low-iron-loss unidirectionally-oriented silicon steel sheet having extremely high magnetic flux density
JPH11181557A (en) Grain oriented silicon steel sheet with extremely low core loss, and its production