JPH02213483A - Production of grain oriented silicon steel sheet excellent in magnetic characteristic - Google Patents
Production of grain oriented silicon steel sheet excellent in magnetic characteristicInfo
- Publication number
- JPH02213483A JPH02213483A JP1032809A JP3280989A JPH02213483A JP H02213483 A JPH02213483 A JP H02213483A JP 1032809 A JP1032809 A JP 1032809A JP 3280989 A JP3280989 A JP 3280989A JP H02213483 A JPH02213483 A JP H02213483A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- silicon steel
- oriented silicon
- grain
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000976 Electrical steel Inorganic materials 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000000137 annealing Methods 0.000 claims abstract description 24
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 23
- 239000010959 steel Substances 0.000 claims abstract description 23
- 150000004820 halides Chemical class 0.000 claims abstract description 12
- 238000001953 recrystallisation Methods 0.000 claims abstract description 11
- 238000005507 spraying Methods 0.000 claims abstract description 10
- 230000001070 adhesive effect Effects 0.000 claims abstract description 4
- 238000000576 coating method Methods 0.000 claims description 34
- 239000011248 coating agent Substances 0.000 claims description 29
- 238000009413 insulation Methods 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 5
- 239000000853 adhesive Substances 0.000 claims description 3
- 238000011282 treatment Methods 0.000 abstract description 19
- 238000000034 method Methods 0.000 abstract description 18
- 239000000126 substance Substances 0.000 abstract description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 abstract description 8
- 238000005554 pickling Methods 0.000 abstract description 5
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 abstract description 4
- 239000011780 sodium chloride Substances 0.000 abstract description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 3
- 150000004767 nitrides Chemical class 0.000 abstract description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract 2
- 229910052581 Si3N4 Inorganic materials 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 230000001590 oxidative effect Effects 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 37
- 238000005498 polishing Methods 0.000 description 22
- 229910052742 iron Inorganic materials 0.000 description 17
- 239000010408 film Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 13
- 229910019142 PO4 Inorganic materials 0.000 description 8
- 239000010452 phosphate Substances 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000007751 thermal spraying Methods 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 229910052839 forsterite Inorganic materials 0.000 description 4
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 108091006629 SLC13A2 Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- 238000005098 hot rolling Methods 0.000 description 3
- 235000011007 phosphoric acid Nutrition 0.000 description 3
- 238000007750 plasma spraying Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- 238000004134 energy conservation Methods 0.000 description 2
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000010297 mechanical methods and process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910017971 NH4BF4 Inorganic materials 0.000 description 1
- 229910005091 Si3N Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- -1 alkaline earth Substances 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000011888 autopsy Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000000866 electrolytic etching Methods 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- YXJYBPXSEKMEEJ-UHFFFAOYSA-N phosphoric acid;sulfuric acid Chemical compound OP(O)(O)=O.OS(O)(=O)=O YXJYBPXSEKMEEJ-UHFFFAOYSA-N 0.000 description 1
- QVLTXCYWHPZMCA-UHFFFAOYSA-N po4-po4 Chemical compound OP(O)(O)=O.OP(O)(O)=O QVLTXCYWHPZMCA-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
Landscapes
- Chemical Treatment Of Metals (AREA)
- Coating By Spraying Or Casting (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
数年前のエネルギー危機を境にして、電力損失のより少
ない電気機器を求める傾向が一段と強まり、それらの鉄
心材料として、鉄損のより低い電m鋼板が要請されてい
る。[Detailed Description of the Invention] (Industrial Application Field) After the energy crisis a few years ago, the trend for electrical equipment with lower power loss became even stronger. Electric steel sheets are requested.
この発明は、上記の要請に有利に応えるもので、磁気特
性はもとよりのこと被膜密着性にも優れる方向性けい素
鋼板の有利な製造方法に関するものである。The present invention advantageously meets the above requirements and relates to an advantageous method for manufacturing grain-oriented silicon steel sheets that have excellent not only magnetic properties but also film adhesion.
(従来の技術)
従来の一方向性けい素鋼板の製造方法は、たとえばSi
を2.0〜4,O wt%(以下単に%で示す)含有さ
せた素材を、熱間圧延したのち、1回または2回の冷間
圧延によって最終板厚とし、脱炭焼鈍後、MgOを主成
分とする焼鈍分離剤を塗布してからコイルに巻き取り、
ついで2次再結晶焼鈍および純化焼鈍を行い、しかるの
ち必要に応じてりん酸塩系絶縁コーティングを施す方法
が通常行われている.さらにこのりん酸塩系絶縁コーテ
ィングに張力付与機能を付加することによって、磁歪や
鉄損の一層の改善を図っている。(Prior art) A conventional method for manufacturing a unidirectional silicon steel sheet includes, for example, Si
After hot rolling, a material containing 2.0 to 4,0 wt% (hereinafter simply expressed in %) of MgO After applying an annealing separator mainly composed of
Next, secondary recrystallization annealing and purification annealing are performed, and then, if necessary, a phosphate-based insulating coating is applied. Furthermore, by adding a tensioning function to this phosphate-based insulating coating, magnetostriction and iron loss are further improved.
なお上記の純化焼鈍の際には、脱炭焼鈍時に鋼板表面に
生成したSiO□を主成分とする酸化層と焼鈍分離剤中
のMgOとが反応してフォルステライト(MggSi0
4 )被膜が形成されるが、このフォルステライト被膜
はそれ自体絶縁性を有するだけでなく、重ねて被成され
る絶縁コーティングとの密着性を保つバインダーとして
の役割もはたしている。In addition, during the above purification annealing, the oxide layer mainly composed of SiO□ generated on the surface of the steel sheet during decarburization annealing reacts with MgO in the annealing separator to form forsterite (MggSi0
4) A film is formed, and this forsterite film not only has insulating properties itself, but also serves as a binder to maintain adhesion with the overlying insulating coating.
一方向性けい素鋼板は、上記の工程を通じて製品の2次
再結晶粒を(110) (001)すなわちゴス方位に
集積させたもので、主として変圧器その他の電気機器の
鉄心として使用される。このため一方向性けい素鋼板の
特性としては、磁束密度(B+。Unidirectional silicon steel sheets are products in which secondary recrystallized grains are accumulated in the (110) (001) or Goss orientation through the above process, and are mainly used as iron cores for transformers and other electrical equipment. For this reason, the characteristics of unidirectional silicon steel sheets include magnetic flux density (B+).
値で代表される)が高いこと、ならびに鉄損(WI?/
S。値で代表される)が低いことが要求される。特に最
近では省エネルギーの見地から、変圧器等の電力損失を
少なくするためより一層の鉄損の低減が望まれている。) is high, as well as iron loss (WI?/
S. (represented by the value) is required to be low. Particularly recently, from the standpoint of energy conservation, further reduction of iron loss has been desired in order to reduce power loss in transformers and the like.
ところでけい素鋼板の鉄損は、渦電流損とヒステリシス
損とからなる。けい素鋼板の鉄損を減少させる有効な手
段として板厚を減少させる方法があり、この方法は主に
渦電流損を減少させることにより、鉄損の低減ひいては
省エネルギーに大きく貢献している。しかしながら板厚
が11 mi1以下になってくると全鉄損に占めるヒス
テリシス損の割合が急激に増大してくる。ヒステリシス
損に影響する因子としては、結晶粒の方位、不純物の程
度、表面被膜の影響および鋼板表面の粗度などが挙げら
れる。これらの因子のうち表面粗度に関しては、鋼板の
表面を鏡面にすればヒステリシス損は低下することは良
(知られている。By the way, the iron loss of silicon steel sheets consists of eddy current loss and hysteresis loss. An effective means of reducing the iron loss of silicon steel sheets is to reduce the sheet thickness, and this method mainly reduces eddy current loss, which greatly contributes to the reduction of iron loss and thus to energy conservation. However, when the plate thickness becomes 11 mil or less, the ratio of hysteresis loss to the total iron loss increases rapidly. Factors that affect hysteresis loss include the orientation of crystal grains, the degree of impurities, the influence of surface coatings, and the roughness of the steel sheet surface. Among these factors, regarding surface roughness, it is well known that hysteresis loss can be reduced if the surface of the steel plate is mirror-finished.
鋼板の表面を改善してヒステリシス損を低減させる方法
としては、たとえば特公昭52−24499号公報では
、仕上げ焼鈍後の方向性けい素鋼板表面の酸化物を酸洗
により除去したのち、表面を化学研磨または電解研磨に
よって鏡面状態に仕上げ、ついでこの鏡面仕上げ表面に
金属の薄めつきを施す技術が開示されている。As a method for improving the surface of a steel sheet and reducing hysteresis loss, for example, Japanese Patent Publication No. 52-24499 discloses that after final annealing, oxides on the surface of a grain-oriented silicon steel sheet are removed by pickling, and then the surface is chemically treated. A technique has been disclosed in which a mirror finish is achieved by polishing or electrolytic polishing, and then the mirror finish surface is thinned with metal.
また特公昭56−4150号公報には、一方向性けい素
鋼板表面の非金属物質を除去したのち、その表面を化学
研磨または電解研磨によって鏡面状態に仕上げ、ついで
この鏡面仕上げ表面にセラミックス薄膜を被成する技術
が開示されている。Furthermore, Japanese Patent Publication No. 56-4150 discloses that after removing non-metallic substances from the surface of a grain-oriented silicon steel sheet, the surface is finished to a mirror-like state by chemical polishing or electrolytic polishing, and then a ceramic thin film is applied to the mirror-finished surface. A technique for producing the same is disclosed.
さらに特開昭60−89589号公報には、アルミナを
主成分とする焼鈍分離剤を用いて行った2次再結晶後の
方向性けい素鋼板の表面酸化物を除去後、化学研磨また
は電解研磨を施す技術が開示されている。Furthermore, JP-A No. 60-89589 discloses that after removing surface oxides from a grain-oriented silicon steel sheet after secondary recrystallization using an annealing separator mainly composed of alumina, chemical polishing or electrolytic polishing is performed. A technique for applying this has been disclosed.
またさらに特開昭60−39123号公報には、アルミ
ナを主成分とする焼鈍分離剤を用いて鋼板表面の酸化物
量を規制した上で、酸洗なしに直接化学研磨または電解
研磨を施す技術が開示されている。Furthermore, JP-A No. 60-39123 discloses a technology that uses an annealing separator containing alumina as a main component to control the amount of oxides on the surface of a steel sheet, and then directly applies chemical polishing or electrolytic polishing without pickling. Disclosed.
(発明が解決しようとする課題)
しかしながらこれらの技術はいずれも鉄損低減効果は非
常に明確であるにもかかわらず、未だ工業的に実施され
るまでには至っていない。(Problem to be Solved by the Invention) However, although all of these techniques have a very clear effect of reducing iron loss, they have not yet been implemented industrially.
その第一の理由は、鏡面に仕上げた表面ならびにその上
に金属をめっきした表面では、方向性けい素鋼板にとっ
て必要な絶縁コーティングとの密着性を保ち得ず、絶縁
コーティングあるいは張力コーティングがはく離してし
まうからである。また特公昭56−4150号公報のよ
うにセラミックス薄膜を被成した場合には、このセラミ
ックス薄膜と地鉄表面との密着性が悪いだけでなく、セ
ラミックス膜には可とう性がないため、被膜がはく離し
てしまうという致命的な欠陥を有していた。The first reason is that mirror-finished surfaces and surfaces plated with metal cannot maintain the adhesion with the insulation coating required for grain-oriented silicon steel sheets, and the insulation coating or tension coating may peel off. This is because Furthermore, when a ceramic thin film is formed as in Japanese Patent Publication No. 56-4150, not only is the adhesion between the ceramic thin film and the surface of the steel base poor, but also the ceramic film has no flexibility. It had a fatal flaw in that it would peel off.
また第二の理由は、化学研磨の場合、研磨液として用い
られるup+ttgo□やH3PO4+HtO□などが
高価なためコスト高になることである。同じく電解研磨
の場合も、研磨液として通常用いられるりん酸系浴、硫
酸系浴、りん酸−硫酸系浴および過塩素酸系浴などはい
ずれも高濃度の酸を主成分とし、しかも添加物としてク
ロム酸塩、ふっ酸、有機化合物等を使用するためコスト
高となり、しかも大量に鋼板を処理するには、均質性、
生産性および液の早期劣化など未解決の問題も多い。The second reason is that in the case of chemical polishing, the polishing liquid used as up+ttgo□, H3PO4+HtO□, etc. is expensive, resulting in high costs. Similarly, in the case of electrolytic polishing, the phosphoric acid baths, sulfuric acid baths, phosphoric acid-sulfuric acid baths, and perchloric acid baths that are commonly used as polishing solutions all have high concentration acids as their main component, and they do not contain additives. The use of chromate, hydrofluoric acid, organic compounds, etc. increases costs, and in order to process large quantities of steel sheets, uniformity,
There are many unresolved issues such as productivity and early deterioration of the liquid.
この発明は、上記の問題を有利に解決するもので、電解
研磨または化学研磨による鏡面化処理を施さずとも、磁
気的に平滑な面すなわちヒステリシス損の原因となる磁
壁の移動を妨害するようなことがない面を形成し、磁性
的には勿論のこと被膜密着性にも優れた表面状態になる
方向性けい素鋼板の有利な製造方法を提案することを目
的とする。The present invention advantageously solves the above-mentioned problem, and eliminates the need for mirror polishing by electrolytic polishing or chemical polishing, which is a magnetically smooth surface, which prevents the movement of domain walls that cause hysteresis loss. The object of the present invention is to propose an advantageous manufacturing method for grain-oriented silicon steel sheets that form a surface that is free from scratches and has a surface state that is excellent not only in magnetic properties but also in film adhesion.
(課題を解決するための手段) この発明は、以下の知見に基づく。(Means for solving problems) This invention is based on the following findings.
すなわちその第1は、ヒステリシス損に対して大きく影
響を与えているのは、主として表面酸化物であり、表面
の凹凸に関しては必ずしも鏡面状態とする必要はないこ
とである。ここに鏡面状態とは光学的な概念であり、定
量的に定義づけられていないが表面粗さが中心線平均粗
さで0.4μm以下望むらくは0.1μm以下のことを
指す。The first point is that it is mainly the surface oxide that has a large effect on the hysteresis loss, and that the surface irregularities do not necessarily have to be mirror-like. Here, the specular state is an optical concept, and although it is not quantitatively defined, it refers to a surface roughness of 0.4 μm or less, preferably 0.1 μm or less in center line average roughness.
第3図に、酸化物が表面に存在する方向性けい素鋼板、
鏡面化処理を施した方向性けい素鋼板およびその後さら
に酸洗を施して表面が荒れた方向性けい素鋼板の各鉄損
を比較して示したが、同図から明らかなように酸洗によ
って鏡面が失われても鉄損はさほど劣化していない。Figure 3 shows a grain-oriented silicon steel sheet with oxides on its surface.
The graph shows a comparison of the iron losses of a grain-oriented silicon steel sheet that has been subjected to mirror polishing treatment and a grain-oriented silicon steel sheet that has been further pickled and has a rough surface. Even if the mirror surface is lost, the iron loss does not deteriorate much.
このように低ヒステリシス損のけい素鋼板を得るために
は、必ずしも鏡面にする必要はなく、鋼板の表面を磁気
的に平滑な面、すなわちヒステリシス損の原因となる磁
壁の移動を妨害することがない表面にすればよい。した
がって電解研磨や化学研磨は必要不可欠の条件ではなく
、もっと自由に表面処理手段を選択できることになる。In order to obtain a silicon steel sheet with low hysteresis loss in this way, it is not necessarily necessary to make the surface of the steel sheet a mirror surface.In other words, it is necessary to make the surface of the steel sheet a magnetically smooth surface, that is, to prevent the movement of the domain walls that cause hysteresis loss. It is sufficient to use a surface with no surface. Therefore, electrolytic polishing and chemical polishing are not indispensable conditions, and surface treatment means can be selected more freely.
そこで発明者らは、従来、けい素鋼板に対して実施され
ることがなかった処理も含めて種々の表面処理について
検討したところ、ハロゲン化物浴中で電解処理すること
が所期した目的の達成に関し、極めて有効であることの
知見を得た。Therefore, the inventors investigated various surface treatments, including treatments that had not been previously applied to silicon steel sheets, and found that electrolytic treatment in a halide bath would achieve the intended purpose. We have obtained knowledge that this method is extremely effective.
すなわち方向性けい素鋼板を、ハロゲン化物水溶液中で
陽極電解処理した場合に、鏡面とは異なる独特の網目状
文様を呈する表面(電解エツチングの際に得られるグレ
イニング(graining) 面に酷似しているので
、以下グレイニング様面という)が得られ、しかもかか
るグレイニング様面をそなえる鋼板は、ヒステリシス損
が極めて小さいことを究明したのである。In other words, when a grain-oriented silicon steel sheet is subjected to anodic electrolysis treatment in an aqueous halide solution, the surface exhibits a unique mesh pattern different from a mirror surface (very similar to the graining surface obtained during electrolytic etching). Therefore, they found that a steel sheet with such a graining-like surface (hereinafter referred to as a graining-like surface) has an extremely small hysteresis loss.
次に、知見の第2は、絶縁コーティングの被成手段とし
ては、溶射法がとりわけ好適で、母材表面の磁気的平滑
性を損なうことなくすなわちヒステリシス損の増大を招
く不利なしに、密着性に富む被膜を被成し得ることであ
る。とくにグレイニング様面に対しては溶射効果が優れ
ていたが、この理由は、グレイニング様面の凹凸によっ
て被膜の機械的密着性が一層向上した結果と考えられる
。The second finding is that the thermal spraying method is particularly suitable as a means of applying an insulating coating, and it is possible to achieve good adhesion without impairing the magnetic smoothness of the base material surface, that is, without the disadvantage of increasing hysteresis loss. It is possible to form a coating rich in . The thermal spraying effect was particularly excellent on the graining-like surface, and the reason for this is thought to be that the mechanical adhesion of the coating was further improved by the unevenness of the graining-like surface.
さらに溶射被膜においては、その上に重ねてたとえばり
ん酸塩系の絶縁張力被膜を被成した場合であっても、密
着性の良い絶縁被膜が得られることである。従って好ま
しくは溶射被膜を極薄目付として、その上に重ねてりん
酸塩系の絶縁張力コーティングを施せば、密着性が良好
でしかも張力付与効果にも優れた絶縁被膜が得られるわ
けである。Furthermore, in the case of a thermally sprayed coating, even when a phosphate-based insulating tension coating is formed on top of the thermally sprayed coating, an insulating coating with good adhesion can be obtained. Therefore, if the thermal spray coating is preferably made to have an extremely thin basis weight and a phosphate-based insulating tension coating is applied thereon, an insulating coating with good adhesion and excellent tension imparting effect can be obtained.
すなわちこの発明は、2次再結晶焼鈍後の方向性けい素
鋼板を、水溶性のハロゲン化物を1種以上含む水溶液中
で電解処理したのち、該鋼板表面に密着性の強い被膜を
溶射被覆することからなる磁気特性の良好な方向性けい
素鋼板の製造方法(第1発明)である。That is, this invention electrolytically treats a grain-oriented silicon steel sheet after secondary recrystallization annealing in an aqueous solution containing one or more water-soluble halides, and then thermally sprays the surface of the steel sheet with a highly adhesive coating. A method for manufacturing a grain-oriented silicon steel sheet with good magnetic properties (first invention).
またこの発明は、上記した溶射被膜の被成後、さらに該
被膜の表面に絶縁性をそなえる張力付与被膜を被成する
ことからなる磁気特性の良好な方向性けい素鋼板の製造
方法(第2発明)である。The present invention also provides a method for producing a grain-oriented silicon steel sheet with good magnetic properties (Second Embodiment), which comprises, after forming the thermal spray coating described above, further coating the surface of the coating with a tension imparting coating that provides insulation. invention).
以下、この発明を具体的に説明する。This invention will be specifically explained below.
この発明では、2次再結晶済の方向性けい素鋼・板すべ
てを対象素材とする。かかる素材は、けい素鋼用スラブ
を常法に従って熱間圧延し、次に中間焼鈍を挟む冷間圧
延を施して最終板厚としたのち、脱炭焼鈍ついで最終仕
上げ焼鈍を施すことによって得られる。In this invention, all secondary recrystallized grain-oriented silicon steels and plates are targeted. Such a material is obtained by hot rolling a slab for silicon steel according to a conventional method, then cold rolling with intermediate annealing to obtain the final thickness, decarburizing the slab, and final finish annealing. .
この最終仕上げ焼鈍の際の焼鈍分離剤としては、従来か
らフォルステライト被膜も同時に形成させるために用い
られてきたMgOを主成分とする焼鈍分離剤も勿論使用
できるが、かかるフォルステライト被膜を生成させない
様に配合された、たとえばAlKO3等を主成分とし、
これに不活性のMgOやCa、 Sr化合物を添加した
分離剤がとりわけ有利である。As an annealing separator during this final annealing, an annealing separator containing MgO as a main component, which has traditionally been used to simultaneously form a forsterite film, can of course be used, but it is not possible to form such a forsterite film. For example, the main component is AlKO3 etc.
Particularly advantageous are separation agents to which inert MgO, Ca, and Sr compounds are added.
次に最終仕上げ焼鈍板の表面酸化層を必要に応じて除去
する。除去方法としては、酸洗等の化学釣力法とエメリ
ー研磨等の機械的手法とがあり、特に限定はしないが、
機械的手法で表面酸化層を除去した場合には、鋼板内部
に歪みが入り易く、かかる歪は続く電解処理によっても
完全には解放できないので、表面酸化物の除去は酸洗処
理で行う方が好ましい。Next, the surface oxidation layer of the final annealed plate is removed as necessary. Removal methods include chemical fishing methods such as pickling and mechanical methods such as emery polishing, but are not particularly limited.
When the surface oxide layer is removed by mechanical methods, distortion tends to occur inside the steel sheet, and such distortion cannot be completely released by the subsequent electrolytic treatment, so it is better to remove the surface oxide by pickling treatment. preferable.
ついでこのように表面酸化層を除去した表面を陽極電解
処理によって磁気的平滑面、すなわち結晶粒界がRsm
xで0.4μm以上の段差状または溝状の凹部を形成す
るとともに、結晶粒の表面が凸部の境界を介して窪みが
隣接したいわゆるグレイニング様面とする。Next, the surface from which the surface oxide layer has been removed is subjected to anodic electrolysis treatment to form a magnetically smooth surface, that is, a grain boundary with Rsm
Step-like or groove-like recesses with x of 0.4 μm or more are formed, and the surface of the crystal grains has a so-called graining-like surface in which the recesses are adjacent to each other via the boundaries of the protrusions.
ここに磁気的に平滑面なグレイニング様面は、水溶性の
ハロゲン化物を1種以上含む水溶液を電解液とする陽極
電解処理によって容易に得ることができる。A magnetically smooth grained surface can be easily obtained by an anodic electrolytic treatment using an aqueous solution containing one or more water-soluble halides as an electrolyte.
ここで水溶性のハロゲン化物とは、HCl、 NH,C
Iおよび各種金属の塩化物又はF、Br、Iを陰イオン
とする酸、そのアルカリ、アルカリ土類、その他の金属
塩類およびアンモニウム塩のうちの水溶性のもの、さら
にはほうふつ化物(BP、塩)およびけいふっ化物(S
in、塩)のうちの水溶性のものを意味する。その代表
例を例示すると、HCI、 NaC1+ KC1+ N
H4Cl、 MgCh+ CaC1z+ AlCl31
HFI NaF。Here, water-soluble halides include HCl, NH, C
I and various metal chlorides or acids with F, Br, and I as anions, their alkali, alkaline earth, and other metal salts and ammonium salts, water-soluble ones, and also fluorides (BP, salts) ) and silica fluoride (S
(in, salt) refers to water-soluble ones. Typical examples are HCI, NaC1+ KC1+ N
H4Cl, MgCh+ CaC1z+ AlCl31
HFI NaF.
KFI NH4FI HBr、 NaBr、 KBr、
MgBrt、CaBrz、 NH4Br+HI+ N
aI、 KI+ NH411Ca1z、 MgIz+
H2SIF61 Mg5iFh。KFI NH4FI HBr, NaBr, KBr,
MgBrt, CaBrz, NH4Br+HI+N
aI, KI+ NH411Ca1z, MgIz+
H2SIF61 Mg5iFh.
(NI+4)zsiF61118F41 NH4BF4
およびNaBFi等であるUこれらはいずれも(110
)面を有する仕上げ焼鈍後の方向性けい素鋼板に対し磁
気的平滑化効果を持つものであるが、実操業においては
陰極への金属析出の防止等を考慮して、これらの中から
適宜に選択して使用することが望ましい。またその濃度
は、浴の電気伝導度を確保するうえから20 g /
1以上であることが望ましい。なお上記のその組成およ
び濃度からしてこの発明では海水の利用も可能である。(NI+4)zsiF61118F41 NH4BF4
and NaBFi etc. These are all (110
) has a magnetic smoothing effect on grain-oriented silicon steel sheets after finish annealing, but in actual operation, considering prevention of metal precipitation on the cathode, etc. It is desirable to select and use them. In addition, the concentration is 20 g /
It is desirable that it is 1 or more. Note that seawater can also be used in the present invention due to its composition and concentration described above.
浴温は常温以上で任意に選ぶことができるが、あまり高
温では水の蒸発が著しいので、常温ないし90゛C程度
が適当である。電流密度は5 A/dm2程度から数百
A/dm”の範囲で設定できる。しかし、浴温か低いと
きに100A/dm”をこえるような高電流密度とする
と表面の処理むらを生じやすいので、電流密度の範囲を
より広くしようとすれば、浴温を40°C以上にする方
が好ましい。The bath temperature can be arbitrarily selected from room temperature or higher, but if the temperature is too high, the water will evaporate significantly, so a temperature between room temperature and about 90°C is appropriate. The current density can be set in the range from about 5 A/dm2 to several hundred A/dm''. However, if the current density is set to a high current density exceeding 100 A/dm when the bath temperature is low, it is likely to cause uneven surface treatment. In order to widen the range of current density, it is preferable to set the bath temperature to 40°C or higher.
なお鉄損を低下させる見地から、この発明における電解
の電気量および電解除去量はそれぞれ300C/dm”
以上、片面当り1μm以上にすることが好ましい。In addition, from the viewpoint of reducing iron loss, the amount of electricity in electrolysis and the amount of electrolytic removal in this invention are each 300 C/dm.
As mentioned above, it is preferable that the thickness be 1 μm or more per side.
以上のようにこの発明においては従来の方法にくらべて
きわめて広範囲な条件下で磁気的平滑化効果を得ること
ができ、この点もこの発明が工業的に実施されるうえで
有利であることの重要な根拠とである。As described above, in this invention, the magnetic smoothing effect can be obtained under a much wider range of conditions than in the conventional method, and this point is also advantageous for the industrial implementation of this invention. This is an important basis.
ここで電解反応による浴の変化をNaCl水溶液を例に
とって示すと次のとおりである。Here, the changes in the bath caused by the electrolytic reaction are shown below, taking an NaCl aqueous solution as an example.
陽極: Pe+2CI−−+ FeC1z+2e−”(
1)陰極: 2Na”+211zO+2e−−2NaO
H+IIz↑ −(2)バルク: FeC1z +
2NaOH→2NaC1+ Fe(OH) z ↓ ・
(3)すなわち(1)式によって生成したFeC1,と
、(2)式で生成したNaOHとは、(3)弐に示した
反応によって自動的にNaC1を再生する。したがって
浴組成の制御は、基本的には(3)式で生成するFe(
OH)zの沈澱の除去と、水の補給、および鋼板が系外
へ持ち出すNaC1の補給を行えばよいことになり、従
来の化学研磨あるいは電解研磨にくらべ、はるかに容易
かつ低コストなものとなる。この点もこの発明方法が工
業的に優れたものであることの一つの理由である。Anode: Pe+2CI--+ FeC1z+2e-"(
1) Cathode: 2Na"+211zO+2e--2NaO
H+IIz↑ −(2) Bulk: FeC1z +
2NaOH→2NaC1+ Fe(OH) z ↓ ・
(3) That is, FeC1 produced by equation (1) and NaOH produced by equation (2) automatically regenerate NaCl by the reaction shown in (3) 2. Therefore, the bath composition is basically controlled by Fe(
All you need to do is remove the OH)z precipitate, replenish water, and replenish NaC1, which the steel plate carries out of the system, making it much easier and cheaper than conventional chemical polishing or electrolytic polishing. Become. This point is also one of the reasons why the method of this invention is industrially superior.
上記の磁気的平滑化処理を施すことによって、磁気特性
の効果的な向上を図ることができるが、処理後の調板表
面ば地鉄が露出しているので積層時における眉間抵抗が
ない。従って鋼板の表面には絶縁コーティングを施す必
要がある。その際、絶縁被膜として鋼板表面に対し、引
っ張り応力を付与できるものを用いれば、渦電流損の低
下による鉄損の低減が期待でき、とくにこの発明のよう
なグレイニング様面においてはその効果が著しい。By carrying out the above-mentioned magnetic smoothing treatment, it is possible to effectively improve the magnetic properties, but since the base iron is exposed on the surface of the tone plate after the treatment, there is no glabellar resistance during lamination. Therefore, it is necessary to apply an insulating coating to the surface of the steel plate. At that time, if an insulating coating that can apply tensile stress to the surface of the steel plate is used, it can be expected to reduce iron loss due to a reduction in eddy current loss, and this effect is particularly effective in the case of graining-like surfaces as in this invention. Significant.
かかる絶縁被膜としては、従来、りん酸塩系被膜やセラ
ミック被膜が知られているが、これらの被膜は鏡面仕上
げ表面に対しては充分な密着性を確保することができな
い、この点、グレイニング様面では密着性の改善が図れ
るとはいえ、その効果は充分とは言えなかった。Phosphate-based coatings and ceramic coatings are conventionally known as such insulating coatings, but these coatings cannot ensure sufficient adhesion to mirror-finished surfaces. Although it was possible to improve adhesion in some respects, the effect could not be said to be sufficient.
そこで発明者らは、密着性に富みしかもヒステリシス損
の増大を招くことのない絶縁被膜を得る方法についても
種々検討した結果、Alg(h+ ZrOx+Tie、
、 Cr、Off、 MgOなとの酸化物やSi3N、
、 AINなどの窒化物を溶射被覆することが、所期し
た目的の達成に関し極めて有効であることを究明したの
である。Therefore, the inventors investigated various ways to obtain an insulating film that has good adhesion and does not increase hysteresis loss.
, Cr, Off, oxides such as MgO, Si3N,
It has been found that thermal spray coating with nitrides such as AIN is extremely effective in achieving the desired objectives.
ここに溶射法としては、プラズマ溶射やガス溶射など従
来公知のもの何れもが適合する。また溶射の際に使用す
る粉末の粒度は、キャリアガス中で搬送し得る限り細か
い方が好ましく、とくに好適には10μ階以下である。Any conventionally known thermal spraying method such as plasma spraying or gas spraying is suitable here. The particle size of the powder used during thermal spraying is preferably as fine as possible so that it can be transported in the carrier gas, and is particularly preferably on the order of 10 μm or less.
そして上記した溶射被膜の上に重ねてさらに張力付与型
のりん酸塩系コーティングを施すことにより、−層大き
な張力付与効果および絶縁効果を得ることができる。By further applying a tension-applying phosphate coating on top of the above-mentioned thermal spray coating, a greater tension-applying effect and insulation effect can be obtained.
その際、溶射被膜としては、AlzOsなどのような密
着性の良好な物質をmく(0,5μm厚程度)被覆する
ことが好ましく、かくして張力付与型絶縁被膜の本来そ
なえる張力付与効果を十分に発揮させることが可能にな
ったのである。In this case, it is preferable to coat the thermal sprayed coating with a material with good adhesion such as AlzOs to a thickness of about 0.5 μm, and in this way, the tension imparting effect inherent to the tension imparting type insulation coating can be fully exerted. It has now become possible to perform.
なお溶射材としては、上掲したちの以外でも熱膨張係数
が低く密着性のに冨むのであれば、単独あるいは複合で
使用することができる。It should be noted that thermal spraying materials other than those listed above can be used alone or in combination as long as they have a low coefficient of thermal expansion and good adhesion.
(作 用)
2次再結晶焼鈍後のけい素鋼板を、NaC1:200g
/ 1を含むハロゲン化物浴中にて電解処理してグレイ
ニング様面とした場合、およびりん酸とクロム酸の混合
液(クロム酸:200g)!・りん酸)を用いて電解研
磨して鏡面とした場合、さらにはその後にそれぞれ2μ
I厚程度の5iJ4膜を溶射した場合の鉄損値および磁
束密度の改善化について調査した結果を、第1図a、b
にそれぞれ示す。(Function) A silicon steel plate after secondary recrystallization annealing was heated with NaC1:200g.
/ When a graining-like surface is obtained by electrolytic treatment in a halide bath containing 1, and a mixed solution of phosphoric acid and chromic acid (chromic acid: 200 g)!・When electrolytically polished using phosphoric acid (phosphoric acid) to obtain a mirror surface, furthermore, after that, each
Figures 1a and b show the results of an investigation into improvements in iron loss and magnetic flux density when spraying a 5iJ4 film with a thickness of about I.
are shown respectively.
同図より明らかなように、この発明法に従えば磁気特性
の一層の向上が達成されている。As is clear from the figure, further improvement in magnetic properties is achieved according to the method of this invention.
次に、上記のグレイニング様面に種々の厚みでA1□0
.のプラズマ溶射を行ったのち、さらに張力付与型のり
ん酸塩系コーティング(目付は量:約10g/ lを施
したときの密着性不良発生率について調査した結果を、
第2図に示す。Next, A1□0 was applied to the above graining surface at various thicknesses.
.. After plasma spraying of
Shown in Figure 2.
同図より明らかなように、張力付与型のりん酸塩系コー
ティングに先立って0.3μI厚以上のAhos膜を溶
射被覆することにより、密着性不良の発生が完全に防止
されている。As is clear from the figure, by thermally spraying an Ahos film with a thickness of 0.3 μI or more prior to the tension-applying phosphate coating, the occurrence of poor adhesion is completely prevented.
(実施例)
Si :3.2%を含み、かつインヒビターとしてMn
S。(Example) Contains Si: 3.2% and Mn as an inhibitor
S.
MnSeおよびsbを含有するけい素鋼用スラブを、常
法に従って熱間圧延、冷間圧延、脱炭・1次再結晶焼鈍
、ついで最終仕上げ焼鈍して得た2次再結晶後の方向性
けい素鋼板を素材とした。Directional grain after secondary recrystallization obtained by hot rolling, cold rolling, decarburization/first recrystallization annealing, and final finish annealing of a slab for silicon steel containing MnSe and sb according to conventional methods. Made of raw steel plate.
この素材に、表1に示す種々の条件で電解処理、溶射処
理および上塗り絶縁コーティングを施したときの、被膜
密着性ならびに鉄損および磁束密度の改善効果について
調べた結果を、表1に併記する。Table 1 also lists the results of investigating the effects of improving film adhesion, iron loss, and magnetic flux density when this material was subjected to electrolytic treatment, thermal spraying, and top insulating coating under the various conditions shown in Table 1. .
適合例1〜3は、NaC1またはMCIを用いて電解処
理を施したのち、0.5μm厚の膜を溶射被覆したもの
、また適合例4〜6はさらに上塗りコーティングを施し
たものである。これらの適合例1〜6についてはいずれ
も、良好な密着性を有するコーティングが得られ、しか
も鉄損および磁束密度とも大幅に向上している。Compatible Examples 1 to 3 were subjected to electrolytic treatment using NaCl or MCI and then thermally sprayed with a 0.5 μm thick film, and Compatible Examples 4 to 6 were further coated with a top coat. In all of these Compatible Examples 1 to 6, coatings with good adhesion were obtained, and both core loss and magnetic flux density were significantly improved.
これに対し、同じくハロゲン化物による電解処理後、直
接りん酸塩のコーティングを施した比較例1〜2はいず
れも、40%に近いはく離が発生した。On the other hand, in Comparative Examples 1 and 2, in which phosphate coating was applied directly after electrolytic treatment with a halide, peeling of close to 40% occurred.
(発明の効果)
かくしてこの発明によれば、磁気特性に優れるのは勿論
のこと被膜密着性に優れた方向性けい素鋼板を、低コス
トの下で安定して得ることができる。(Effects of the Invention) Thus, according to the present invention, it is possible to stably obtain a grain-oriented silicon steel sheet that not only has excellent magnetic properties but also excellent film adhesion at a low cost.
第1図a、bはそれぞれ、2次再結晶焼鈍後のけい素鋼
板をグレイニング様面または鏡面に仕上げたのちSi3
N、膜を溶射被覆したときの鉄損および磁束密度の改善
化を比較して示したグラフ、第2図は、グレイニング様
面に種々の厚みでAhOffのプラズマ溶射を行ったと
きの溶射膜厚と密着性不良発生率との関係を示したグラ
フ、第3図は、酸化物が表面に存在する方向性けい素鋼
板、鏡面化処理を施した方向性けい素鋼板およびその後
さらに酸洗を施して表面が荒れた方向性けい素鋼板の各
鉄損を比較して示したグラフである。
11嵌!g翳ε4く −
徊−理】づ紅曝剖恍iFigures 1a and b show silicon steel sheets after secondary recrystallization annealing, which are finished with a graining-like surface or a mirror surface.
A graph comparing the improvements in iron loss and magnetic flux density when thermally sprayed N and films. Figure 2 shows the results of thermally sprayed films obtained by plasma spraying AhOff at various thicknesses on grained surfaces. Figure 3, a graph showing the relationship between thickness and adhesion defect incidence rate, shows grain-oriented silicon steel sheets with oxides on the surface, grain-oriented silicon steel sheets that have been subjected to mirror polishing treatment, and grain-oriented silicon steel sheets that have been further pickled afterwards. It is a graph showing a comparison of various iron losses of grain-oriented silicon steel sheets with roughened surfaces. 11 pieces! g 翳ε4ku - 徊 - ri】zu red exposure autopsy i
Claims (1)
ハロゲン化物を1種以上含む水溶液中で電解処理したの
ち、該鋼板表面に密着性の強い被膜を溶射被覆すること
を特徴とする磁気特性の良好な方向性けい素鋼板の製造
方法。 2、2次再結晶焼鈍後の方向性けい素鋼板を、水溶性の
ハロゲン化物を1種以上含む水溶液中で電解処理したの
ち、該鋼板表面に密着性の強い被膜を溶射被覆し、つい
でさらに該被膜の表面に絶縁性をそなえる張力付与被膜
を被成することを特徴とする磁気特性の良好な方向性け
い素鋼板の製造方法。[Claims] 1. A grain-oriented silicon steel sheet after secondary recrystallization annealing is electrolytically treated in an aqueous solution containing one or more water-soluble halides, and then a highly adhesive coating is formed on the surface of the steel sheet. A method for producing a grain-oriented silicon steel sheet with good magnetic properties characterized by thermal spray coating. 2. After secondary recrystallization annealing, the grain-oriented silicon steel sheet is electrolytically treated in an aqueous solution containing one or more water-soluble halides, and then a highly adhesive coating is thermally sprayed on the surface of the steel sheet, and then further A method for producing a grain-oriented silicon steel sheet with good magnetic properties, which comprises forming a tension-applying film with insulation properties on the surface of the film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1032809A JP2703604B2 (en) | 1989-02-14 | 1989-02-14 | Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1032809A JP2703604B2 (en) | 1989-02-14 | 1989-02-14 | Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02213483A true JPH02213483A (en) | 1990-08-24 |
JP2703604B2 JP2703604B2 (en) | 1998-01-26 |
Family
ID=12369162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1032809A Expired - Lifetime JP2703604B2 (en) | 1989-02-14 | 1989-02-14 | Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2703604B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02243754A (en) * | 1989-03-15 | 1990-09-27 | Nippon Steel Corp | Production of grain-oriented silicon steel sheet reduced in iron loss |
JPH0347957A (en) * | 1989-07-14 | 1991-02-28 | Nippon Steel Corp | Production of grain-oriented silicon steel sheet reduced in iron loss |
JPH03294470A (en) * | 1990-04-12 | 1991-12-25 | Nippon Steel Corp | Production of grain-oriented silicon steel sheet having small iron loss |
JPH03294469A (en) * | 1990-04-12 | 1991-12-25 | Nippon Steel Corp | Production of grain-oriented silicon steel sheet having small iron loss |
US5411808A (en) * | 1992-02-13 | 1995-05-02 | Nippon Steel Corporation | Oriented electrical steel sheet having low core loss and method of manufacturing same |
-
1989
- 1989-02-14 JP JP1032809A patent/JP2703604B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02243754A (en) * | 1989-03-15 | 1990-09-27 | Nippon Steel Corp | Production of grain-oriented silicon steel sheet reduced in iron loss |
JPH0347957A (en) * | 1989-07-14 | 1991-02-28 | Nippon Steel Corp | Production of grain-oriented silicon steel sheet reduced in iron loss |
JPH03294470A (en) * | 1990-04-12 | 1991-12-25 | Nippon Steel Corp | Production of grain-oriented silicon steel sheet having small iron loss |
JPH03294469A (en) * | 1990-04-12 | 1991-12-25 | Nippon Steel Corp | Production of grain-oriented silicon steel sheet having small iron loss |
US5411808A (en) * | 1992-02-13 | 1995-05-02 | Nippon Steel Corporation | Oriented electrical steel sheet having low core loss and method of manufacturing same |
US5679177A (en) * | 1992-02-13 | 1997-10-21 | Nippon Steel Corporation | Oriented electrical steel sheet having low core loss and method of manufacturing same |
US5753051A (en) * | 1992-02-13 | 1998-05-19 | Nippon Steel Corporation | Oriented electrical steel sheet having low core loss and method of manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
JP2703604B2 (en) | 1998-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7040888B2 (en) | Method of forming a tension insulating film for grain-oriented electrical steel sheets and grain-oriented electrical steel sheets | |
JP3552501B2 (en) | Grain-oriented electrical steel sheet with extremely low iron loss and method for producing the same | |
JP2020111814A (en) | Grain oriented electromagnetic steel sheet and method for manufacturing the same | |
JPH05311453A (en) | Production of ultralow iron loss grain-oriented electrical steel sheet | |
EP0307163B1 (en) | Silicon steel sheets having low iron loss and method of producing the same | |
JP3551517B2 (en) | Oriented silicon steel sheet with good magnetic properties and method for producing the same | |
US6849138B1 (en) | Method for surface treatment of aluminum alloy high-temperature processed articles | |
KR102577485B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JPH08222423A (en) | Grain oriented silicon steel plate of low core loss and its manufacture | |
JPH02213483A (en) | Production of grain oriented silicon steel sheet excellent in magnetic characteristic | |
JPH03130376A (en) | Production of unidirectionally oriented silicon steel sheet excellent in magnetic characteristic | |
JP3921199B2 (en) | Method for producing unidirectional silicon steel sheet excellent in film adhesion of tension imparting insulating film | |
WO2020149326A1 (en) | Method for manufacturing grain-oriented electrical steel sheet | |
JPH1112755A (en) | Super-low core loss grain-oriented silicon steel sheet | |
JPH0472920B2 (en) | ||
JP2752682B2 (en) | Method for producing grain-oriented silicon steel sheet with excellent magnetic properties | |
WO2020149323A1 (en) | Method for manufacturing grain-oriented electrical steel sheet | |
JPH0238527A (en) | Manufacture of grain-oriented silicon steel sheet with low iron loss free from deterioration in characteristic due to stress relief annealing | |
JPH0587597B2 (en) | ||
JPH11236682A (en) | Superlow core loss grain oriented silicon steel sheet and its production | |
JPH09118923A (en) | Manufacture of grain-oriented silicon steel sheet having low core loss | |
WO2020149336A1 (en) | Method for manufacturing grain-oriented electrical steel sheet | |
JP3272802B2 (en) | Method for producing grain-oriented silicon steel sheet having homogeneous forsterite coating | |
JPH02232399A (en) | Production of low-iron-loss unidirectionally-oriented silicon steel sheet having extremely high magnetic flux density | |
JPH0987744A (en) | Production of grain oriented silicon steel sheet |