JPH0472920B2 - - Google Patents

Info

Publication number
JPH0472920B2
JPH0472920B2 JP16487388A JP16487388A JPH0472920B2 JP H0472920 B2 JPH0472920 B2 JP H0472920B2 JP 16487388 A JP16487388 A JP 16487388A JP 16487388 A JP16487388 A JP 16487388A JP H0472920 B2 JPH0472920 B2 JP H0472920B2
Authority
JP
Japan
Prior art keywords
steel sheet
iron loss
treatment
silicon steel
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16487388A
Other languages
Japanese (ja)
Other versions
JPH0230779A (en
Inventor
Hirotake Ishitobi
Ujihiro Nishiike
Shigeko Sujita
Tsutomu Kami
Yasuhiro Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63164873A priority Critical patent/JPH0230779A/en
Priority to DE88308226T priority patent/DE3886146T2/en
Priority to EP88308226A priority patent/EP0307163B1/en
Priority to CA000576999A priority patent/CA1332345C/en
Priority to KR1019880011737A priority patent/KR930009390B1/en
Publication of JPH0230779A publication Critical patent/JPH0230779A/en
Priority to US07/600,136 priority patent/US5125991A/en
Publication of JPH0472920B2 publication Critical patent/JPH0472920B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、低鉄損方向性けい素鋼板の製造方
法に関し、特にその表面を工業的に低コストの手
法によつて効果的に平滑な状態に仕上げることに
よつて鉄損特性の有利な改善を図ろうとするもの
である。 一方向性けい素鋼板は、製品の2次再結晶粒を
(110)〔001〕すなわちゴス方位に集積させたもの
で、主として変圧器その他の電気機器の鉄心とし
て使用される。このため一方向性けい素鋼板の特
性としては、磁束密度(B10値で代表される)が
高いこと、ならびに鉄損(W17/50値で代表され
る)が低いことが要求される。特に最近では省エ
ネルギーの見地から、変圧器等の電力損失を少な
くするためよりいつそうの鉄損の低減が望まれて
いる。 従来の一方向性けい素鋼板の製造方法は、例え
ばSiを2.0〜4.0重量%(以下単に%で示す)含有
した素材を、熱間圧延したのち、1回又は中間焼
鈍を含む2回の冷間圧延により最終板厚とし、脱
炭焼鈍後、MgOを主成分とする焼鈍分離剤を塗
布してからコイルに巻き取り、ついで2次再結晶
焼鈍及び純化焼鈍を行ない、しかるのち必要に応
じてりん酸塩系絶縁コーテイングを施す方法が通
常行なわれている。 なお上記の純化焼鈍の際には、脱炭焼鈍後の鋼
板表面に生成したSiO2を主成分とする酸化層と
焼鈍分離剤中のMgOとが反応してフオルステラ
イト(Mg2SiO4)被膜が形成される。 (従来の技術) ところで一方向性けい素鋼板の鉄損特性改善に
ついては、純化焼鈍時に鋼板表面に形成されるガ
ラス質被膜を除去し、次いで地鉄とガラス質被膜
の界面付近にある窒化物や硫化物等の不純物を含
む層を除去し、表面を平滑に仕上げることによつ
て著しい鉄損の低減を図り得ることが報告されて
いる(例えば特公昭52−24499号、同56−4150号
各公報)。 鋼板表面を鏡面化する一般的な方法としては、
バフ、ブラシ等による機械研磨、化学的に表面を
溶解させる化学研磨および電気化学的に溶解させ
る電解研磨がある。このうち、機械研磨による場
合、鋼板に歪を与えずに研磨することは難しく、
またこの加工歪は歪取り焼鈍によつても完全には
除去できないため、鉄損は上昇する。したがつて
鉄損の低減を安定して実現するには、化学研磨又
は電解研磨による鏡面化が必要となるわけである
が、化学研磨の場合、研磨浴の劣化により、研磨
量と研磨面の所定条件からのずれが大きくなり易
いのに対し、電解研磨の場合は、電気化学的処理
であるため、研磨量や研磨面の制御が化学研磨に
比べると極めて容易である。従つて、工業的観点
からみると鏡面化処理としては電解研磨の方が有
利であると言える。 (発明が解決しようとする課題) しかしながらこれらの技術はいずれも鉄損低減
効果は非常に明確であるにもかかわらず、今日工
業的に実施されるまでには至つていない。 その理由は、化学研磨液として用いられるHF
+H2O2やH3PO4+H2O2などは高価なためコスト
高になるからである。同じく電解研磨液として通
常用いられるりん酸系浴、硫酸系浴、りん酸−硫
酸系浴および過塩素酸系浴などもいずれも高濃度
の酸を主成分とし、しかも添加物としてクロム酸
塩、沸酸、有機化合物等を使用するためコスト高
となり、しかも大量に鋼板を処理するには、均質
性、生産性および液の早期劣化など未解決の問題
も多く、工業的規模で実施されるには至つていな
い。 さらにもう一つの工業化を妨げる重要な欠点
に、鏡面研磨された表面には絶縁コートがのりに
くいことがある。すなわち従来知られているりん
酸塩系コートやセラミツクコートは鏡面故に密着
性が悪く現実の使用には耐え得ない。 この発明は、上記の問題を有利に解決するもの
で、電解研磨または化学研磨による鏡面化処理に
代わる工業化の容易な表面処理手段について提案
することを目的とする。 (課題を解決するための手段) さて発明者らは、表面状態が鉄損に及ぼす影響
について再検討した結果、以下に述べる知見を得
た。 すなわちその第1は、ヒステリシス損に対して
大きく影響を与えているのは、主として表面酸化
物であり、表面の凹凸に関しては必ずしも鏡面状
態とする必要はないことである。ここに鏡面状態
とは光学的な概念であり、定量的に定義づけられ
ていないが表面粗さが中心線平均粗さで0.4μm以
下望むらくは0.1μm以下のことを指す。 第2図に、酸化物が表面に存在する方向性けい
素鋼板、鏡面化処理を施した方向性けい素鋼板お
よびその後さらに酸洗を施して表面が荒れた方向
性けい素鋼板の各鉄損を比較して示したが、同図
から明らかなように酸洗によつて鏡面が失われて
も鉄損はさほど劣化していない。 このように低ヒステリシス損のけい素鋼板を得
るためには、必ずしも鏡面にする必要はなく、鋼
板の表面を磁気的に平滑な面、すなわちヒステリ
シス損の原因となる磁壁の移動を妨害することが
なくかつ、被膜密着性にも優れた表面にすればよ
い。したがつて電解研磨や化学研磨は必要不可欠
の条件ではなく、もつと自由に表面処理手段を選
択できることになる。 とはいえけい素鋼板の磁気的平滑化のプロセス中
に鋼板表面に歪が入ることは鉄損を劣化させるた
めに極力回避すべきことはいうまでもなく、この
点化学研磨や電解研磨などの無歪の研磨方法が適
している。 ここで電解研磨法を特徴づけている鏡面化現象
に触れておく。電解研磨においては、被研磨面を
陽極として強酸、強アルカリの電解液中で電流を
通すと、電解反応によつて金属は表面からイオン
となつて流出するが、金属表面と電解液の間に粘
性膜が生じる。この粘性膜が表面の凸部では薄い
ので、より多くの電流が流れ、凸部が凹部より多
く溶け出し金属表面は凹凸のない鏡面に仕上げら
れるとされている。したがつて化学研磨や電解研
磨は結晶粒度や方位に全く依存せずに金属表面を
平滑にする方法であるともいえる。 また第2の知見は、塩化物水溶液でけい素鋼板
を陽極電解処理した場合に鋼板表面の結晶粒方位
の違いによつて表面性状が大きく異なることであ
る。 従来、珪素鋼板に対する塩化物による電解処理
はなんら用途がないために実施されることはなか
つたが、発明者らは上述した第1の知見によつて
広く電解処理の可能性を探つていたため、塩化物
についても確認実験を行つたところ、上述の特異
な現象を突き止めたのである。 第3図に面方位の差異によつて、電解処理後の
結晶面のモルホロジーが異なることを表した金属
組織写真を示す。 第3図Aは結晶粒の{110}面が圧延面に対し
て5゜傾いている場合であり、独得の網目状表面モ
ルホロジーを呈している。この網目状粒は結晶粒
の如くみえる窪みが粒内に分散して隣合つている
ことによつて形成され、電解エツチによつて得ら
れるグレイニング面に類似しているのでグレイニ
ング様面と呼称する。第3図Bは、同じく11゜傾
いている場合であり鱗状モルホロジーを呈してい
る。さらに第3図Cは、25゜傾いている場合であ
つて木肌状組織となつている。これらの特異なモ
ルホロジーを有する面は写真A〜Cで想像しうる
ように網目状組織Aですら鏡面ではなくマクロ的
外観では結晶粒界の出現した酸洗面の様相を呈し
ている。 ここで重要なことは、かかる特異な網目状組織
を有する表面は{110}面を有するけい素鋼素材
を塩化物水溶液を電解液として電解処理した時の
み得られ、しかも上記の網目状組織は磁性的に平
滑な面であることである。 さらにこの塩化物水溶液で陽極電解した鋼板表
面は、化学研磨または電解研磨によつて得られる
鏡面に比し、絶縁コーテイングを施した際の被膜
の密着性に優れていることも新たに確認された。
しかし絶縁コーテイングの種類や膜厚によつては
被膜の密着性にばらつきが生じるため、表面に通
常のブラシング処理を施して改善を試みたが満足
する結果は得られなかつた。そこで被膜の密着性
低下の原因について調べたところ、通常のブラシ
ング処理のみでは除去しきれずに鋼板表面に残る
Feの水和酸化物やスマツトが被膜の密着性に影
響を及ぼしていることが判明した。そしてこの水
和酸化物やスマツトの除去には、電解後に鋼板表
面に炭酸水素塩の水溶液または水懸濁液を用いる
ブラシング処理を施すことが極めて有効で、この
処理によつて清浄な表面を現出することで絶縁被
膜の密着性を十分に向上し得ることもわかつた。 この発明は上記の知見に由来するものである。 すなわちこの発明は、 仕上げ焼鈍済みの方向性けい素鋼板に、水溶性
のハロゲン化物を1種以上含む水溶液中で電解に
よる磁気的平滑化処理を施すことを特徴とする低
鉄損方向性けい素鋼板の製造方法(第1発明) 仕上げ焼鈍済みの方向性けい素鋼板に、少なく
とも1種の水溶性のハロゲン化物とポリエーテル
とを含む水溶液中で電解による磁気的平滑化処理
を施すことを特徴とする低鉄損方向性けい素鋼板
の製造方法(第2発明) 仕上げ焼鈍済みの方向性けい素鋼板に、水溶性
のハロゲン化物を1種以上含む水溶液中で電解に
よる磁気的平滑化処理を施し、ついで鋼板表面に
炭酸水素塩の水溶液または水懸濁液を用いるブラ
シング処理を施すことを特徴とする低鉄損方向性
けい素鋼板の製造方法(第3発明) 仕上げ焼鈍済みの方向性けい素鋼板に、少なく
とも1種の水溶性のハロゲン化物とポリエーテル
とを含む水溶液中で電解による磁気的平滑化処理
を施し、ついで鋼板表面に炭酸水素塩の水溶液ま
たは水懸濁液を用いるブラシング処理を施すこと
を特徴とする低鉄損方向性けい素鋼板の製造方法
(第4発明) である。 また実施に当たり、電解水溶液に腐食防止剤を
添加することが有利である。 以下この発明を具体的に説明する。 この発明では、常法に従つてけい素鋼板用スラ
ブに熱間圧延を施し、次に中間焼鈍をはさむ冷間
圧延を施して最終板厚としたのち、脱炭焼鈍を施
し次いで最終仕上げ焼鈍を施す。 この最終仕上げ焼鈍の際の焼鈍分離剤として
は、従来からフオルステライト被膜も同時に形成
させるためにMgOを主成分とする焼鈍分離剤が
主に用いられてきたが、かかるフオルステライト
被膜を生成させない様に配合された、たとえば
Al2O3等を主成分とし、これに不活性MgOやCa,
Sr化合物を添加した分離剤を用いてもよい。 次に最終仕上げ焼鈍板の表面酸化層を除去す
る。 除去方法としては、酸洗等の化学的方法とエメ
リー研磨等の機械的手法があり、特に限定はしな
いが、機械的手法で表面酸化層を除去した場合に
は、板内部に歪みが入り易く、かかる歪は続く電
解処理によつても解放できないので、表面酸化物
の除去は酸洗処理で行う方が好ましい。 ついでこのように表面酸化層を除去した表面を
陽極電解処理によつて磁気的平滑面化する。 電解浴は水溶液のハロゲン化物を1種以上含む
水溶液または少なくとも1種の水溶性のハロゲン
化物とポリエーテルとを含む水溶液を用いる。 ここで水溶液のハロゲン化物とは、HCl、
NH4Clおよび各種金属の塩化物又はF、Br、I
を陰イオンとする酸、そのアルカリ、アルカリ土
類、その他の金属塩類およびアンモニウム塩のう
ちの水溶性のもの、さらに弗化物としては硼弗化
物(BF4塩)および珪弗化物(SiF6塩)のうちの
水溶性のものを意味する。水溶性ハロゲン化物を
例示すると、HCl、NaCl、KCl、NH4Cl、
MgCl2、CaCl2、AlCl3、HF、NaF、KF、
NH4F、HBr、NaBr、KBr、MgBr2、CaBr2
NH4Br、HI、NaI、KI、NH4I、CaI2、MgI2
H2SiF6、MgSiF6、(NH42SiF6、HBF4
NH4BF4およびNaBF4等である。これらはいず
れも{110}面を有する仕上げ焼鈍後の方向性け
い素鋼板に対し磁気的平滑化効果を持つものであ
るが、実操業においては陰極への金属析出の防止
等を考慮して、これらの中から選択することが望
ましい。また、その濃度は、浴の電気伝導度を確
保するうえから20g/以上であることが望まし
い。なお、その組成および濃度からしてこの発明
では海水の利用も可能である。 またポリエーテルとは、エーテル結合(−O
−)を主鎖中に含む線状分子であつて、一般に
〔MO〕担体の繰返しにより成る高分子化合物で
ある。ここでMは普通メチレン基またはポリメチ
レン基およびその誘導体である。例えば、ポリエ
チレングリコール(―CH2CH2O―)oはその1例で
ある。 ここにポリエーテルの添加量は2g/以上と
することが望ましく、一方濃度は高すぎると浴の
電気電導度が低下する上、添加量に見合う効果が
期待できないため2〜300g/程度の範囲が適
当である。 浴温は常温以上で任意に選ぶことができるが、
あまり高温では水の蒸発が著しく、常温ないし90
℃程度が適当である。電流密度は5A/dm2程度
から数百A/dm2の範囲で設定できる。しかし、
浴温が低いときに100A/dm2をこえるような高
電流密度とすると表面の処理むらを生じやすいの
で、電流密度の範囲をより広くしようとすれば、
浴温を40℃以上にした方がよい。 なお鉄損を低下させる見地から、この発明にお
ける電解の電気量および電解除去量はそれぞれ
300C/dm2以上、片面当り1μm以上にすること
が好ましい。 以上のようにこの発明においては従来の方法に
くらべてきわめて広範囲な条件下で磁気的平滑化
効果を得ることができ、この点もこの発明が工業
的に実施されるうえで有利であることの重要な根
拠となるものである。 ここで電解反応による浴の変化をNaCl水溶液
を例にとつて示すと次のとおりである。 陽極:Fe+2Cl- →FeCl2+2e- …(1) 陰極:2Na++2H2O+2e- →2NaOH+H2↑ …(2) バルク:FeCl2+2NaOH →2NaCl+Fe(OH)2↓ …(3) すなわち(1)式によつて生成したFeCl2と、(2)式
で生成したNaOHとは、(3)式に示した反応によ
つて自動的にNaClを再生する。したがつて浴組
成の制御は、基本的には(3)式で生成するFe
(OH)2の沈澱の除去と、水の補給、および鋼板
が系外へ持ち出すNaClの補給を行えばよいこと
になり、従来の化学研磨あるいは電解研磨にくら
べ、はるかに容易かつ低コストなものとなる。こ
の点もこの発明方法が工業的に優れたものである
ことのひとつの理由である。 また第3および4発明では、上記したハロゲン
化物水溶液中での陽極電解が終つたあと、水洗に
よつて鋼板表面のハロゲン化物を洗い流したあ
と、表面清浄化による被膜の密着性確保のために
炭酸水素塩の水懸濁液もしくは水溶液を用いてブ
ラシング処理が施される。ここで、炭酸水素塩と
は、炭酸水素ナトリウム、炭酸水素アンモニウ
ム、炭素水素カリリウム等を意味する。このと
き、水溶液を用いる場合の濃度は10g/以上と
することが望ましく、10g/未満では表面清浄
化効果が十分でない。なお清浄化効果は濃度が高
いほど大きく、懸濁液がもつとも顕著であるが、
10g/以上で、単なる水によるブラシング処理
にくらべて、明瞭な効果を得ることができる。ブ
ラシングの方法としては合成繊維あるいは天然繊
維を用いたブラシロールや不織布ロール等が有利
に適用できる。ブラシングを終つたあとは直ちに
水洗、乾燥することにより清浄な表面が維持され
る。 さらにハロゲン化物水溶液中で陽極電解した後
の方向性珪素鋼板の表面は極めて活性なため、大
気中に曝露されると容易に銹を発生する。 銹が生じると外観の劣化とともに、その後のコ
ーテイングの密着性の劣化をもたらし、ひいては
磁気特性の劣化を招くことになる。これを防止す
るには電解浴中に腐食防止剤(インヒビター)を
添加することが有効となる。インヒビターの種類
は大別して無機系と有機系に区別されるがこの発
明ではいずれでもよい。例を挙げれば無機系とし
ては、クロム酸塩、亜硝酸塩、りん酸塩等、また
有機系としては有機硫黄化合物や分子構造中に極
性基のアミノ基(−NH2)を有するところのア
ミン類等が適用できる。 その濃度はインヒビターの種類によつて効果の
程度が異なるので一概には言えないが、0.1〜50
g/程度が適当である。 また、ハロゲン化物水溶液中で方向性珪素鋼板
を陽極電解していくと浴中にFe(OH)2の沈澱が
多量に生成し、これが約2%を超えると液の粘性
が上り過ぎて正常な電解が不可能になる。 特にアルカリ金属のハロゲン化物を主成分とし
た電解液を用いる場合、Fe(OH)2の沈澱中に一
定量のハロゲンイオンが捕捉されるため、浴PHは
上昇傾向を示す。そしてPHが13を超えると均一な
電解表面は得られなくなる。これらの問題の発生
を防止するにはPH緩衝剤、あるいはFeイオンを
キレート化するキレート剤の添加が有効である。
PH緩衝剤としてはりん酸、クエン酸、硼酸、酢
酸、グリシン、マレイン酸等およびそれらの塩等
が有効であり、また、Feイオンのキレート剤と
してはクエン酸、酒石酸、グリコール酸等のオキ
シ酸、各種アミン類、あるいはEDTAなどのポ
リアミノカルボン酸類、ポリりん酸塩等が有効で
ある。それらの添加量はおおむね1〜100g/
の範囲が良い。また、電解中の浴PHを上昇を防止
するには、浴中のFe(OH)2の沈澱をFe(OH)3
酸化することも有効であり、その具体的な方法と
しては浴と空気の接触を強制的に強める空気酸化
あるいはH2O2等の酸化物を浴に添加するとよい。 (作用) 主として(110)面のみによつて構成されたけ
い素鋼板をNaClの水溶液で電解処理した後の鉄
損の改善代について調べた結果を第1図に示す。
また同図には比較として、混酸(CrO30%
H3PO4)での電解研磨(100A/dm2×20秒)に
より鏡面化した方向性けい素鋼素材の鉄損改善代
も併記した。同図から、ハロゲン化物浴を用いた
方が、鉄損の改善代が大きいことがわかる。 また(110)面から10゜以内の結晶面の占有率が
低い電解処理後の木目状組織を主とする試料の電
解処理前後の保磁力Hcを測定したところ、処理
後Hcは5%劣化した。なおこの実験は濃度20%
のNaCl電解液を用いて、電流密度100A/dm2
10秒間電解処理を施したものである。 さらに第1図には、イオンプレーテイングで
TiNを成膜した場合の鉄損の改善代をも併せて
示している。 第1図に示したように、第1発明に従うことで
鉄損の低減をはかれることが確認できたが、さら
に鉄損の改善代を大きくするには少ない溶解量で
もハロゲン化物の水溶液中での陽極電解による鉄
損改善効果を十分なものにする必要がある。かか
る観点からハロゲン化物の水溶液への種々の添加
物を検討したところ、ポリエーテルを添加した電
解浴を用いることが有効であるとの知見を得た。 第4図はNaClの100g/水溶液(浴温60℃)
を電解浴として0.23mm厚のフオルステライト被膜
のない仕上げ焼鈍済みの方向性けい素鋼板を電流
密度100A/dm2で陽極電解した場合の、電解に
よる鋼板の溶解厚さと鉄損(W17/50)の低下量の
関係を示したものである。なお、溶解厚さは電解
時間を変えることで変化させた。また、電解浴は
添加物を加えないもの、分子量約600のポリエチ
レングリコールを25g/添加したもの、および
分子量約2000のポリエチレングリコールを25g/
添加したもの、の3種において比較した。 第4図から、ポリエチレングリコールの添加に
よつて同じ鉄損低下量を得るのに必要な鋼板の溶
解厚さは、無添加の約1/2に減少していることが
わかる。ちなみに必要溶解量の減少は、電力コス
トの低減、製品歩留りの向上、生産性の向上、浴
中Fe分の増加率減少にともなう浴メンテナンス
費用の減少等、工業的に大きなメリツトをもたら
すものである。なお、第4図には分子量600と
2000のものの効果を示したが、これ以外の分子量
のポリエチレングリコールでも同様の効果が得ら
れることを確認している。したがつて第2発明で
はポリエーテルの分子量はとくに規定しない。 またハロゲン化物の水溶液にポリエーテルを添
加した電解浴を用いた場合の鉄損の改善代につい
て、第1図に結果を示した実験に準じて調べた結
果を第5図に示す。なお電解浴には分子量600の
ポリエチレングリコールを25g/含むNaClの
水溶液(濃度100g/)を用い、1000A/dm2
×20秒の条件で電解処理に供した。またその他の
条件は上記した実験と同様である。さらに第5図
には、イオンプレーテイングでTiNを成膜した
場合の鉄損の改善代をも併せて示した。 ポリエーテル添加による鉄損改善度向上の機構
については今のところ不明であるが、その効果が
分子量のいかんにかかわらず発揮されるところを
見ると、単なる浴の粘度上昇などによるものでは
なく、何らかの表面活性を示して、塩素イオンに
よる鋼板の磁気的平滑化を助長するものと考えら
れる。 ところでけい素鋼板においてはその表面には絶
縁コートを具備して用いることが多く、また磁
歪、鉄損などの磁気特性を更に良好にするため
に、絶縁コートに張力性を付与したり、あるい
は、張力コートと絶縁コートの2重コーテイング
を行つたりする。しかしながら従来の磁気的平滑
面を得る手段である鏡面研磨によつて得られた表
面は、これらのコーテイングを施し難いだけでな
く、コートの密着性が不良であつた。 この点この発明の鋼板の表面は、網目状粒を有
し、その境界に凸部を有するだけでなく、結晶粒
界が段差や溝状の凹部を形成しているのでコーテ
イング被膜の密着性は極めて良好である。 なおこの発明に従つて得られる製品の鉄損が、
従来法の電解研磨、化学研磨等によつて得られた
鏡面を有する製品に比して良好な値を示す物理的
理由は完全には解明されたわけではないが、第1
に磁気的に平滑であるためには幾何的な平滑度を
それほど高く要求されないこと、第2に本発明法
では粒界が段差状あるいは溝状に凹部を形成する
ので、磁区の細巾化が生じそれによる鉄損の減少
が望めること、第3に電解研磨法によると鏡面に
不均質に生じる酸化被膜による劣化が生じると考
えられるが本発明製品では生じないこと、による
ものと推察される。 また、電解処理後の炭酸水素塩を用いたブラシ
ング処理によつて被膜の密着性が向上するのは先
にも述べたように、鋼板表面が清浄化されるから
である。電解後の表面は、前述の(3)式の反応が、
鋼板表面上でも起るために、非晶質の水和酸化鉄
が全面に薄く生成していて、これは地鉄とのゆる
やかな化学結合をもつためか単なるブラシング処
理では完全にはとれない。さらに素材の方向性け
い素鋼板はSiを多く含有する故にきわめて酸化し
易い上、表面に吸着した微量の塩素イオンが常に
表面の腐食を促進する傾向にある。このような理
由で電解後の表面は完全にメタリツクな面ではな
く、水和酸化鉄におおわれた汚れた表面となつて
いる。ところで鋼板の清浄化効果は、単に電解後
の鋼板を、炭酸水素塩の水溶液もしくは懸濁液に
浸漬するだけでは得られることはない。一方単な
る水でブラシング処理しても、表面の汚れを完全
に除くことは困難である。したがつて炭酸水素塩
は何らかの機構によつて、表面の水和酸化鉄を除
去しやすい形態に変化させ、その状態のもとでブ
ラシング処理を行うことによつて、表面が十分に
清浄化されるものと考えられる。 かかる一連の処理を施したあと、表面にコーテ
イング被膜を形成する。被膜の種類としては従来
から知られているりん酸塩系あるいはクロム酸塩
系被膜、もしくは磁気特性のより一層の向上を図
るための張力付加型の被膜が適用される。張力付
加型被膜は従来より知られるコロイダルシリカを
含有するりん酸塩系コーテイングでもよいし、ド
ライあるいはウエツトのめつきで形成してもよ
い。 すなわちCVD法やPVD法(イオンプレーテイ
ングやイオンインプランテイシヨン)などの蒸着
法又はめつき等によつてTi、Nb、Si、V、Cr、
Al、Mn、B、Ni、Cc、Mo、Zr、Ta、Hf、W
の窒化物および/又は炭化物ならびにAl、Si、
Mn、Mg、Zn、Tiの酸化物のうちから選んだ少
なくとも1種より主として成る極薄被膜を鋼板表
面に強固に被成するのである。 なおかかる被膜の材質としては、上掲したもの
のほか、熱膨脹係数が低く鋼板に強固に付着する
ものであれば何であつてもよい。 さらに必要により常法に従つて張力付与型低熱
膨脹の上塗り絶縁被膜を被成することもできる。 (実施例) 実施例 1 C:0.043%、Si:3.35%、Se:0.018%、Mo:
0.013%およびSb:0.025%を含む組成になる熱延
板を、中間焼鈍を含む2回の冷間圧延により0.23
mmの厚の冷延板とした。ついでこの鋼板に、830
℃の湿水素中で脱炭・1次再結晶焼鈍を施した
後、MgOとAl2O3を主成分とする焼鈍分離剤を塗
布してから、コイル状に巻取り、850℃で50時間
の2次再結晶焼鈍及び1200℃で5時間の純化焼鈍
を施した。 その後、未反応の焼鈍分離剤を除去し、平坦化
焼鈍を施してコイルの巻きぐせを矯正し、供試材
とした。 かかる供試材の表面の酸化物被膜を酸洗により
除去し、ついで表1に示す条件の塩化物水溶液中
で電解処理を行つた後、鉄損(W17/50)を測定し
た。第1発明法に比較するためにりん酸とクロム
酸を用いて行う鏡面研磨法(比較例14)とりん酸
のみを用いる鏡面研磨法(比較例15)と機械研磨
法(エメリー#100仕上げ:比較例16)とを行つ
た。りん酸とクムロ酸を用いる方法は、従来から
知られているごとく大幅に鉄損の向上が認められ
るものの、第1発明法の方がすぐれている。また
りん酸で電解研磨鏡面化したものは、はるかに第
1発明法に比して鉄損が劣る。機械研磨法はかえ
つて鉄損が劣化する。これらの板の研磨後の表面
にTiNを張力コートとしてイオンプレーテイン
グし20mmφ棒による曲げ密着性テストを行つたと
ころ、第1発明に従うNo.1〜13はいずれも良好
(100%剥離なし)No.14はやや劣り(20%剥離)No.
15、16は劣つていた(No.15、80% No.16、100%
剥離)。測定結果を比較例の結果とともに第1に
併記する。
(Industrial Application Field) The present invention relates to a method for manufacturing a grain-oriented silicon steel sheet with low core loss, and in particular, the present invention relates to a method for manufacturing a grain-oriented silicon steel sheet with low core loss, and in particular, by effectively finishing the surface to a smooth state using an industrially low-cost method. This is an attempt to advantageously improve iron loss characteristics. Unidirectional silicon steel sheets are products in which secondary recrystallized grains are accumulated in the (110) [001], that is, Goss orientation, and are mainly used as iron cores for transformers and other electrical equipment. Therefore, unidirectional silicon steel sheets are required to have high magnetic flux density (represented by the B 10 value) and low iron loss (represented by the W 17/50 value). Particularly recently, from the standpoint of energy conservation, it has been desired to further reduce iron loss in order to reduce power loss in transformers and the like. The conventional method for manufacturing unidirectional silicon steel sheets involves hot rolling a material containing 2.0 to 4.0% by weight of Si (hereinafter simply expressed as %), followed by one or two cooling steps including intermediate annealing. The final plate thickness is obtained by inter-rolling, and after decarburization annealing, an annealing separator containing MgO as the main component is applied, and then it is wound into a coil, followed by secondary recrystallization annealing and purification annealing, and then as necessary. A commonly used method is to apply a phosphate-based insulating coating. In addition, during the purification annealing described above, the oxidized layer mainly composed of SiO 2 generated on the surface of the steel sheet after decarburization annealing reacts with MgO in the annealing separator to form a forsterite (Mg 2 SiO 4 ) coating. is formed. (Prior art) By the way, in order to improve the iron loss characteristics of unidirectional silicon steel sheets, the glassy film formed on the surface of the steel sheet during purification annealing is removed, and then the nitrides near the interface between the base steel and the glassy film are removed. It has been reported that iron loss can be significantly reduced by removing layers containing impurities such as iron and sulfides and smoothing the surface. each publication). A common method for mirror-finishing a steel plate surface is as follows:
There are mechanical polishing using buffs, brushes, etc., chemical polishing that dissolves the surface chemically, and electrolytic polishing that dissolves the surface electrochemically. Among these methods, when using mechanical polishing, it is difficult to polish the steel plate without causing distortion.
Further, since this processing strain cannot be completely removed even by strain relief annealing, iron loss increases. Therefore, in order to stably reduce iron loss, it is necessary to achieve a mirror finish by chemical polishing or electrolytic polishing, but in the case of chemical polishing, the amount of polishing and the polishing surface deteriorate due to deterioration of the polishing bath. In contrast, in the case of electrolytic polishing, the amount of polishing and the polishing surface can be controlled much more easily than in chemical polishing because it is an electrochemical process. Therefore, from an industrial point of view, it can be said that electrolytic polishing is more advantageous as a mirror polishing treatment. (Problems to be Solved by the Invention) However, although all of these techniques have a very clear effect of reducing iron loss, they have not yet been industrially implemented today. The reason is that HF, which is used as a chemical polishing liquid,
This is because +H 2 O 2 and H 3 PO 4 +H 2 O 2 are expensive, resulting in high costs. Similarly, phosphoric acid baths, sulfuric acid baths, phosphoric acid-sulfuric acid baths, and perchloric acid baths, which are commonly used as electrolytic polishing solutions, all have high concentration acids as their main component, and also contain chromate, chromate, etc. as additives. The cost is high due to the use of hydrofluoric acid, organic compounds, etc., and there are many unresolved problems in processing steel plates in large quantities, such as homogeneity, productivity, and early deterioration of the liquid, so it is difficult to implement it on an industrial scale. has not been reached yet. Another important drawback that hinders industrialization is that it is difficult for insulating coats to adhere to mirror-polished surfaces. That is, the conventionally known phosphate-based coats and ceramic coats have poor adhesion due to their mirror surfaces and cannot withstand actual use. The present invention advantageously solves the above-mentioned problems, and aims to propose a surface treatment means that can be easily industrialized as an alternative to mirror polishing by electrolytic polishing or chemical polishing. (Means for Solving the Problems) The inventors reexamined the influence of surface conditions on iron loss, and as a result, they obtained the knowledge described below. The first point is that it is mainly the surface oxide that has a large effect on the hysteresis loss, and that the surface irregularities do not necessarily have to be mirror-like. Here, the specular state is an optical concept, and although it is not quantitatively defined, it refers to a surface roughness of 0.4 μm or less, preferably 0.1 μm or less in center line average roughness. Figure 2 shows each iron loss of a grain-oriented silicon steel sheet with oxides on its surface, a grain-oriented silicon steel sheet that has been subjected to mirror polishing treatment, and a grain-oriented silicon steel sheet that has been further pickled and has a rough surface. As is clear from the figure, even if the mirror surface is lost due to pickling, the iron loss has not deteriorated much. In order to obtain a silicon steel sheet with low hysteresis loss in this way, it is not necessarily necessary to make the surface of the steel sheet a mirror surface.In other words, it is necessary to make the surface of the steel sheet a magnetically smooth surface, that is, to prevent the movement of the domain walls that cause hysteresis loss. What is necessary is to provide a surface that is free from oxidation and has excellent film adhesion. Therefore, electrolytic polishing and chemical polishing are not indispensable conditions, and surface treatment means can be freely selected. However, it goes without saying that strain on the surface of the steel sheet during the magnetic smoothing process of the silicon steel sheet should be avoided as much as possible since it will degrade core loss. Strain-free polishing methods are suitable. Here we will touch on the mirror polishing phenomenon that characterizes the electrolytic polishing method. In electrolytic polishing, when a current is passed through a strong acid or strong alkaline electrolyte using the surface to be polished as an anode, the metal flows out from the surface as ions due to an electrolytic reaction, but there are no bonds between the metal surface and the electrolyte. A viscous film forms. Since this viscous film is thinner at the convex portions of the surface, more current flows through the convex portions than at the concave portions, causing more melting in the convex portions than in the concave portions, resulting in a mirror-like finish with no irregularities. Therefore, chemical polishing and electrolytic polishing can be said to be methods for smoothing metal surfaces, completely independent of crystal grain size and orientation. The second finding is that when a silicon steel sheet is subjected to anodic electrolysis treatment with an aqueous chloride solution, the surface properties of the steel sheet vary greatly depending on the crystal grain orientation on the surface of the steel sheet. Conventionally, electrolytic treatment using chlorides on silicon steel sheets has not been carried out because there is no use for it, but the inventors have widely explored the possibilities of electrolytic treatment based on the above-mentioned first finding. When they conducted confirmation experiments on chloride, they discovered the above-mentioned peculiar phenomenon. FIG. 3 shows photographs of metallographic structures showing that the morphology of crystal planes after electrolytic treatment differs due to differences in plane orientation. FIG. 3A shows the case where the {110} planes of the crystal grains are inclined at an angle of 5° with respect to the rolling surface, exhibiting a unique network surface morphology. These mesh grains are formed by concavities that look like crystal grains that are dispersed and adjacent to each other within the grains, and are similar to the graining surfaces obtained by electrolytic etching, so they are called graining-like surfaces. To call. FIG. 3B shows the same case where it is tilted at 11 degrees and exhibits a scale-like morphology. Further, FIG. 3C shows a case where the grain is tilted at 25 degrees and has a wood texture. As can be imagined from photographs A to C, even the network structure A of these surfaces with unique morphology is not a mirror surface, but has a macroscopic appearance of a pickled surface with grain boundaries. What is important here is that the surface with such a unique network structure can only be obtained by electrolytically treating a silicon steel material with {110} planes using an aqueous chloride solution as an electrolyte; The surface must be magnetically smooth. Furthermore, it has been newly confirmed that the surface of steel sheets anodically electrolyzed with this chloride aqueous solution has superior coating adhesion when insulating coatings are applied, compared to mirror surfaces obtained by chemical polishing or electrolytic polishing. .
However, the adhesion of the coating varies depending on the type and thickness of the insulating coating, so an attempt was made to improve the adhesion by applying a normal brushing treatment to the surface, but no satisfactory results were obtained. Therefore, we investigated the cause of the decrease in film adhesion and found that it could not be completely removed by normal brushing treatment and remained on the surface of the steel plate.
It was found that hydrated oxides of Fe and smuts affected the adhesion of the coating. To remove these hydrated oxides and smuts, it is extremely effective to apply a brushing treatment to the steel plate surface using an aqueous solution or suspension of hydrogen carbonate after electrolysis, and this treatment creates a clean surface. It was also found that the adhesion of the insulating film could be sufficiently improved by releasing the insulating film. This invention is derived from the above knowledge. That is, the present invention provides a low iron loss oriented silicon steel sheet, which is characterized in that a finish annealed grain oriented silicon steel sheet is subjected to magnetic smoothing treatment by electrolysis in an aqueous solution containing one or more water-soluble halides. Method for manufacturing a steel sheet (first invention) A method of manufacturing a grain-oriented silicon steel sheet that has been finish annealed is subjected to magnetic smoothing treatment by electrolysis in an aqueous solution containing at least one water-soluble halide and polyether. Method for manufacturing a grain-oriented silicon steel sheet with low core loss (second invention) A finish-annealed grain-oriented silicon steel sheet is subjected to magnetic smoothing treatment by electrolysis in an aqueous solution containing one or more water-soluble halides. A method for producing a low iron loss grain-oriented silicon steel sheet (third invention), characterized in that the surface of the steel sheet is subjected to a brushing treatment using an aqueous solution or suspension of hydrogen carbonate (third invention). A raw steel plate is subjected to magnetic smoothing treatment by electrolysis in an aqueous solution containing at least one water-soluble halide and polyether, and then the steel plate surface is subjected to a brushing treatment using an aqueous solution or suspension of hydrogen carbonate. A method for manufacturing a grain-oriented silicon steel sheet with low core loss (fourth invention). In practice, it is also advantageous to add a corrosion inhibitor to the aqueous electrolytic solution. This invention will be specifically explained below. In this invention, a slab for silicon steel plate is hot rolled according to a conventional method, then cold rolled with intermediate annealing to achieve the final thickness, decarburized annealed, and then final finish annealed. give Conventionally, as an annealing separator during this final annealing, an annealing separator mainly containing MgO has been used in order to simultaneously form a forsterite film. For example,
The main component is Al 2 O 3 , etc., and inert MgO, Ca, etc.
A separation agent containing an Sr compound may also be used. Next, the surface oxidation layer of the final annealed plate is removed. Removal methods include chemical methods such as pickling and mechanical methods such as emery polishing. Although there are no particular limitations, if the surface oxide layer is removed by mechanical methods, distortion may easily occur inside the board. Since such strain cannot be relieved by subsequent electrolytic treatment, it is preferable to remove surface oxides by pickling treatment. Then, the surface from which the surface oxide layer has been removed is magnetically smoothed by anodic electrolytic treatment. The electrolytic bath uses an aqueous solution containing one or more types of aqueous halides or an aqueous solution containing at least one type of water-soluble halide and polyether. Here, the halides in the aqueous solution are HCl,
NH 4 Cl and various metal chlorides or F, Br, I
Water-soluble acids, their alkali, alkaline earth, and other metal salts and ammonium salts as anions, as well as fluorides such as borofluoride (BF 4 salt) and silicofluoride (SiF 6 salt) ) refers to water-soluble ones. Examples of water-soluble halides include HCl, NaCl, KCl, NH 4 Cl,
MgCl2 , CaCl2 , AlCl3 , HF, NaF, KF,
NH4F , HBr, NaBr, KBr, MgBr2 , CaBr2 ,
NH4Br , HI, NaI, KI, NH4I , CaI2 , MgI2 ,
H 2 SiF 6 , MgSiF 6 , (NH 4 ) 2 SiF 6 , HBF 4 ,
Such as NH 4 BF 4 and NaBF 4 . All of these have a magnetic smoothing effect on grain-oriented silicon steel sheets with {110} planes after finish annealing, but in actual operation, considering prevention of metal precipitation on the cathode, etc. It is desirable to choose from these. Further, the concentration is desirably 20 g/or more in order to ensure the electrical conductivity of the bath. Note that seawater can also be used in this invention due to its composition and concentration. In addition, polyether is an ether bond (-O
-) in its main chain, and is generally a polymer compound consisting of repeating [MO] carriers. Here, M is usually a methylene group or a polymethylene group and derivatives thereof. For example, polyethylene glycol (-CH 2 CH 2 O- ) is one example. It is desirable that the amount of polyether added is 2 g/or more; on the other hand, if the concentration is too high, the electrical conductivity of the bath will decrease and the effect commensurate with the amount added cannot be expected, so the range of about 2 to 300 g/ is recommended. Appropriate. The bath temperature can be selected arbitrarily above room temperature,
At too high a temperature, water evaporates significantly;
Approximately ℃ is appropriate. The current density can be set in a range from about 5 A/dm 2 to several hundred A/dm 2 . but,
If you use a high current density exceeding 100A/ dm2 when the bath temperature is low, it is likely to cause uneven surface treatment, so if you try to widen the current density range,
It is better to keep the bath temperature above 40℃. In addition, from the viewpoint of reducing iron loss, the amount of electricity in electrolysis and the amount of electrolytic removal in this invention are respectively
It is preferable that the thickness be 300 C/dm 2 or more and 1 μm or more per side. As described above, in this invention, the magnetic smoothing effect can be obtained under a much wider range of conditions than in the conventional method, and this point is also advantageous for the industrial implementation of this invention. This is an important basis. Here, the changes in the bath caused by the electrolytic reaction are shown below using an aqueous NaCl solution as an example. Anode: Fe+2Cl - →FeCl 2 +2e - ...(1) Cathode: 2Na + +2H 2 O+2e - →2NaOH+H 2 ↑ ...(2) Bulk: FeCl 2 +2NaOH →2NaCl+Fe(OH) 2 ↓ ...(3) That is, equation (1) The FeCl 2 produced by the formula (2) and the NaOH produced by the formula (2) automatically regenerate NaCl through the reaction shown in the formula (3). Therefore, the control of the bath composition is basically based on the Fe produced by equation (3).
All you need to do is remove the (OH) 2 precipitate, replenish water, and replenish NaCl, which the steel plate carries out of the system, making it much easier and cheaper than conventional chemical polishing or electrolytic polishing. becomes. This point is also one of the reasons why the method of this invention is industrially superior. In addition, in the third and fourth inventions, after the anodic electrolysis in the aqueous halide solution described above is completed, the halide on the surface of the steel plate is washed away by water washing, and then carbon dioxide is added to ensure the adhesion of the film by surface cleaning. Brushing treatment is performed using an aqueous suspension or solution of hydrogen salt. Here, hydrogen carbonate means sodium hydrogen carbonate, ammonium hydrogen carbonate, potassium hydrogen carbonate, and the like. At this time, when using an aqueous solution, the concentration is preferably 10 g/or more, and if it is less than 10 g/, the surface cleaning effect will not be sufficient. The higher the concentration, the greater the cleaning effect, and it is also noticeable in suspension.
At 10g/or more, clear effects can be obtained compared to simple brushing treatment with water. As a brushing method, a brush roll using synthetic fibers or natural fibers, a nonwoven fabric roll, etc. can be advantageously applied. After brushing, immediately rinse with water and dry to maintain a clean surface. Furthermore, the surface of grain-oriented silicon steel sheets after anodic electrolysis in an aqueous halide solution is extremely active and therefore easily generates rust when exposed to the atmosphere. When rust occurs, not only does the appearance deteriorate, but also the adhesion of the subsequent coating deteriorates, which in turn leads to deterioration of the magnetic properties. To prevent this, it is effective to add a corrosion inhibitor (inhibitor) to the electrolytic bath. The types of inhibitors can be broadly classified into inorganic and organic types, but in this invention, either type may be used. Examples of inorganic systems include chromates, nitrites, phosphates, etc.; organic systems include organic sulfur compounds and amines that have a polar amino group (-NH 2 ) in their molecular structure. etc. can be applied. The concentration cannot be generalized because the degree of effectiveness varies depending on the type of inhibitor, but it is between 0.1 and 50.
g/degree is appropriate. Furthermore, when a grain-oriented silicon steel sheet is subjected to anodic electrolysis in an aqueous halide solution, a large amount of Fe(OH) 2 precipitate is formed in the bath, and if this exceeds about 2%, the viscosity of the solution increases too much and it becomes less than normal. Electrolysis becomes impossible. In particular, when using an electrolytic solution containing an alkali metal halide as a main component, a certain amount of halogen ions are captured during Fe(OH) 2 precipitation, so the bath pH tends to rise. When the pH exceeds 13, a uniform electrolytic surface cannot be obtained. To prevent these problems from occurring, it is effective to add a PH buffer or a chelating agent that chelates Fe ions.
Phosphoric acid, citric acid, boric acid, acetic acid, glycine, maleic acid, etc., and their salts are effective as PH buffering agents, and oxyacids such as citric acid, tartaric acid, glycolic acid, etc. are effective as chelating agents for Fe ions. , various amines, polyaminocarboxylic acids such as EDTA, polyphosphates, etc. are effective. The amount added is approximately 1 to 100g/
Good range. In addition, to prevent the bath PH from rising during electrolysis, it is effective to oxidize the Fe(OH) 2 precipitate in the bath to Fe(OH) 3 . It is recommended to add air oxidation or an oxide such as H 2 O 2 to the bath to forcibly strengthen the contact. (Function) Figure 1 shows the results of an investigation into the improvement in iron loss after electrolytically treating a silicon steel sheet mainly composed of only (110) planes with an aqueous solution of NaCl.
The same figure also shows mixed acid (CrO 3 0%) for comparison.
The iron loss improvement cost of grain-oriented silicon steel material that has been mirror-finished by electrolytic polishing (100 A/dm 2 × 20 seconds) with H 3 PO 4 ) is also listed. From the figure, it can be seen that the improvement in iron loss is greater when a halide bath is used. In addition, when we measured the coercive force Hc before and after electrolytic treatment of a sample that mainly had a grain-like structure after electrolytic treatment with a low occupancy of crystal planes within 10° from the (110) plane, we found that Hc deteriorated by 5% after treatment. . Note that this experiment uses a concentration of 20%.
using a NaCl electrolyte with a current density of 100 A/ dm2.
It was electrolyzed for 10 seconds. Furthermore, Figure 1 shows that ion plating
It also shows the improvement in iron loss when TiN is formed. As shown in Figure 1, it was confirmed that the iron loss can be reduced by following the first invention, but in order to further improve the iron loss, even a small amount of dissolved halide in an aqueous solution is required. It is necessary to make the iron loss improvement effect by anodic electrolysis sufficient. From this point of view, we investigated various additives to an aqueous halide solution and found that it is effective to use an electrolytic bath containing polyether. Figure 4 shows 100g/aqueous solution of NaCl (bath temperature 60℃)
When a 0.23 mm thick finish-annealed grain-oriented silicon steel sheet without forsterite coating is subjected to anodic electrolysis at a current density of 100 A/dm 2 as an electrolytic bath, the melted thickness of the steel sheet due to electrolysis and iron loss (W 17/50 ) shows the relationship between the amount of decrease. Note that the melt thickness was varied by changing the electrolysis time. In addition, the electrolytic baths include one without additives, one with 25g/added of polyethylene glycol with a molecular weight of about 600, and one with 25g/added of polyethylene glycol with a molecular weight of about 2000.
Comparisons were made between three types: From FIG. 4, it can be seen that by adding polyethylene glycol, the melted thickness of the steel plate required to obtain the same reduction in iron loss is reduced to about 1/2 of that without the addition. Incidentally, a reduction in the required dissolution amount brings great industrial benefits, such as lower power costs, higher product yields, higher productivity, and lower bath maintenance costs due to a lower rate of increase in Fe content in the bath. . In addition, in Figure 4, the molecular weight is 600.
Although the effect of polyethylene glycol with a molecular weight of 2000 was shown, it has been confirmed that similar effects can be obtained with polyethylene glycol having a molecular weight other than this. Therefore, in the second invention, the molecular weight of the polyether is not particularly defined. Further, the improvement in iron loss when using an electrolytic bath in which polyether is added to an aqueous solution of a halide was investigated in accordance with the experiment shown in FIG. 1, and the results are shown in FIG. For the electrolytic bath, an aqueous NaCl solution (concentration 100 g/) containing 25 g/polyethylene glycol with a molecular weight of 600 was used, and the electrolysis rate was 1000 A/ dm2.
It was subjected to electrolytic treatment under the conditions of x20 seconds. Other conditions were the same as in the experiment described above. Furthermore, Fig. 5 also shows the improvement in iron loss when TiN is formed by ion plating. The mechanism of improving iron loss by adding polyether is currently unknown, but seeing that the effect is exhibited regardless of the molecular weight, it is not due to a simple increase in the viscosity of the bath, but rather due to some kind of It is thought to exhibit surface activity and promote magnetic smoothing of the steel sheet by chlorine ions. By the way, silicon steel sheets are often used with an insulating coat on their surface, and in order to further improve magnetic properties such as magnetostriction and iron loss, tensile properties are added to the insulating coat, or Double coating of tension coat and insulation coat is applied. However, surfaces obtained by mirror polishing, which is a conventional means of obtaining magnetically smooth surfaces, are not only difficult to apply these coatings to, but also have poor adhesion. In this regard, the surface of the steel sheet of the present invention has mesh grains, and not only have convex portions at their boundaries, but also grain boundaries form steps and groove-like recesses, so the adhesion of the coating film is low. Very good. Note that the iron loss of the product obtained according to this invention is
Although the physical reason for the better value compared to products with mirror surfaces obtained by conventional methods such as electrolytic polishing and chemical polishing has not been completely elucidated, the first
In order to achieve magnetic smoothness, geometric smoothness is not required to be very high.Secondly, in the method of the present invention, the grain boundaries form recesses in the shape of steps or grooves, so that the narrowing of the magnetic domain can be achieved. Thirdly, electrolytic polishing is thought to cause deterioration due to an oxide film that is formed heterogeneously on the mirror surface, but this does not occur with the product of the present invention. Further, as mentioned above, the reason why the brushing treatment using hydrogen carbonate after the electrolytic treatment improves the adhesion of the coating is that the surface of the steel sheet is cleaned. After electrolysis, the reaction of equation (3) on the surface is as follows:
Because this occurs on the surface of the steel plate, a thin layer of amorphous hydrated iron oxide is formed over the entire surface, and this cannot be completely removed by simple brushing, probably because it has a loose chemical bond with the base iron. Furthermore, the material grain-oriented silicon steel sheet contains a large amount of Si, so it is extremely susceptible to oxidation, and the small amount of chlorine ions adsorbed on the surface always tends to accelerate surface corrosion. For this reason, the surface after electrolysis is not a completely metallic surface, but a dirty surface covered with hydrated iron oxide. By the way, the cleaning effect of a steel plate cannot be obtained simply by immersing the steel plate after electrolysis in an aqueous solution or suspension of hydrogen carbonate. On the other hand, it is difficult to completely remove surface stains even by simply brushing with water. Therefore, by some mechanism, hydrogen carbonate changes the hydrated iron oxide on the surface into a form that is easy to remove, and by performing the brushing treatment under this condition, the surface can be sufficiently cleaned. It is considered that After performing this series of treatments, a coating film is formed on the surface. As the type of coating, a conventionally known phosphate-based or chromate-based coating, or a tension-applied coating for further improving magnetic properties is applied. The tension coating may be a conventionally known phosphate coating containing colloidal silica, or may be formed by dry or wet plating. In other words, Ti, Nb, Si, V, Cr,
Al, Mn, B, Ni, Cc, Mo, Zr, Ta, Hf, W
nitrides and/or carbides and Al, Si,
An extremely thin coating consisting mainly of at least one oxide selected from Mn, Mg, Zn, and Ti oxides is firmly formed on the surface of the steel sheet. In addition to the materials listed above, the coating may be made of any material that has a low coefficient of thermal expansion and firmly adheres to the steel plate. Furthermore, if necessary, a tension-applied low thermal expansion top insulating film can be applied using a conventional method. (Example) Example 1 C: 0.043%, Si: 3.35%, Se: 0.018%, Mo:
A hot-rolled sheet with a composition containing 0.013% and Sb: 0.025% is cold rolled twice including intermediate annealing to reduce the composition to 0.23%.
A cold-rolled plate with a thickness of mm was obtained. Next, to this steel plate, 830
After decarburization and primary recrystallization annealing in wet hydrogen at ℃, an annealing separator containing MgO and Al 2 O 3 as main components was applied, and the material was wound into a coil and heated at 850℃ for 50 hours. Secondary recrystallization annealing and purification annealing at 1200°C for 5 hours were performed. Thereafter, the unreacted annealing separator was removed, and flattening annealing was performed to correct the winding curls of the coil, resulting in a test material. The oxide film on the surface of the sample material was removed by pickling, and then electrolytically treated in an aqueous chloride solution under the conditions shown in Table 1, after which the iron loss (W 17/50 ) was measured. For comparison with the first invention method, a mirror polishing method using phosphoric acid and chromic acid (Comparative Example 14), a mirror polishing method using only phosphoric acid (Comparative Example 15), and a mechanical polishing method (Emery #100 finish: Comparative Example 16) was conducted. Although the method using phosphoric acid and cumuroic acid significantly improves the iron loss as has been known in the past, the first invention method is superior. Moreover, the iron loss of the mirror-finished iron by electrolytic polishing with phosphoric acid is far inferior to that of the first invention method. The mechanical polishing method actually deteriorates iron loss. When the polished surfaces of these plates were ion plated with TiN as a tension coating and a bending adhesion test was performed using a 20mmφ rod, Nos. 1 to 13 according to the first invention were all good (100% no peeling). .14 is slightly inferior (20% peeling) No.
15 and 16 were inferior (No. 15, 80% No. 16, 100%
peeling). The measurement results are listed first together with the results of the comparative example.

【表】 * 電解処理前後の重量差から算出
** 電解前の鉄損:0.98W/Kg
同表から明らかなように第1発明に従つて得ら
れた適合例はいずれも鉄損の向上度が大きかつ
た。これに対してこの発明の請求の範囲外の条件
で処理した比較例はいずれも電解処理効果も小さ
く、鉄損の改善もわずかなものでしかなかつた。 実施例 2 C:0.059%、Si:3.35%、Mn:0.077%、Al:
0.024%、S:0.023%、Cu:0.1%およびSn:
0.015%を含有する熱延板を、中間焼鈍を含む2
回の冷間圧延により、0.23mm厚の冷延板とした。
ついでこの鋼板に840℃の湿水素中で脱炭・1次
再結晶焼鈍を施した後、Al2O3とMgOを主成分と
した焼鈍分離剤を塗布してから、コイル状に巻取
り、850℃から1050まで10℃/hで昇温して2次
再結晶させた後、1200℃の乾水素中で5時間の純
化焼鈍を施した。その後、未反応の焼鈍分離剤を
除去し、平坦化焼鈍を施して、コイルの巻きぐせ
を矯正し、供試材とした。かかる供試材の表面の
酸化物皮膜を酸洗により除去したのち、表2に示
す条件の塩化物水溶液で電解処理を行つた後、鉄
損(W17/50)を測定した。この測定結果を表2に
併記する。 条件No.21はりん酸とクロム酸の電解研磨により
鏡面化した比較例であり、従来より知られている
如く大幅な鉄損の改善が図れるものの本発明法に
は及ばない。またNo.22はりん酸による電解研磨鏡
面化法であるが、特性の改善幅はさらに小さい。
[Table] * Calculated from the difference in weight before and after electrolysis treatment ** Iron loss before electrolysis: 0.98W/Kg
As is clear from the table, all of the conforming examples obtained according to the first invention showed a large improvement in iron loss. On the other hand, in all comparative examples treated under conditions outside the scope of the claims of the present invention, the effect of electrolytic treatment was small and the improvement in iron loss was only slight. Example 2 C: 0.059%, Si: 3.35%, Mn: 0.077%, Al:
0.024%, S: 0.023%, Cu: 0.1% and Sn:
A hot-rolled sheet containing 0.015%, including intermediate annealing 2
A cold-rolled plate with a thickness of 0.23 mm was obtained by cold rolling twice.
This steel plate is then subjected to decarburization and primary recrystallization annealing in wet hydrogen at 840°C, coated with an annealing separator mainly composed of Al 2 O 3 and MgO, and then wound into a coil. After secondary recrystallization by increasing the temperature from 850°C to 1050°C at a rate of 10°C/h, purification annealing was performed in dry hydrogen at 1200°C for 5 hours. Thereafter, the unreacted annealing separator was removed, and flattening annealing was performed to correct the winding curls of the coil, resulting in a test material. After removing the oxide film on the surface of the test material by pickling, the test material was electrolytically treated with an aqueous chloride solution under the conditions shown in Table 2, and then the iron loss (W 17/50 ) was measured. The measurement results are also listed in Table 2. Condition No. 21 is a comparative example in which a mirror surface was obtained by electrolytic polishing with phosphoric acid and chromic acid, and although it is possible to achieve a significant improvement in iron loss as is known from the past, it is not as good as the method of the present invention. No. 22 uses electrolytic polishing to mirror finish using phosphoric acid, but the improvement in properties is even smaller.

【表】 * 電解処理前後の重量差から算出

** 電解前の鉄損:0.98W/Kg

実施例 3 実施例1と同じ供試材を準備し、かかる供試材
の表面の酸化物被膜を酸洗により除去し、ついで
表3に示す条件のポリエチレングリコールを含有
する塩化物水溶液中で電解処理を行つた後、鉄損
(W17/50)を測定した。第2発明法に比較するた
めにりん酸とクロム酸を用いる電解研磨処理(条
件No.14)も併せて行つた。鉄損の測定結果を比較
例の結果とともに表3に示す。
[Table] * Calculated from the difference in weight before and after electrolytic treatment

** Iron loss before electrolysis: 0.98W/Kg

Example 3 The same test material as in Example 1 was prepared, the oxide film on the surface of the test material was removed by pickling, and then electrolyzed in an aqueous chloride solution containing polyethylene glycol under the conditions shown in Table 3. After the treatment, iron loss (W 17/50 ) was measured. For comparison with the second invention method, an electrolytic polishing treatment (condition No. 14) using phosphoric acid and chromic acid was also carried out. The measurement results of iron loss are shown in Table 3 together with the results of comparative examples.

【表】【table】

【表】 * 電解処理前後の重量差から算出
** 電解前の鉄損:0.99W/Kg
同表から、第2発明に従つて得られた製品は、
従来から知られているりん酸−クロム酸による電
解研磨処理での製品に比し、鉄損の向上度が大き
いことがわかる。 また、これらの板の電解後の表面にTiNを張
力コートとしてイオンプレーテイングし20mmφ棒
による曲げ密着性テストを行つたところ、本発明
条件であるNo.1〜13はいずれも良好(剥離なし)
でNo.14は劣つていた。 実施例 4 実施例2と同じ供試材を準備し、かかる供試材
の表面の酸化物被膜を酸洗により除去し、その後
表4に示す条件の塩化物水溶液で電解処理を行つ
た後、鉄損(W17/50)を測定した。この測定結果
を表4に併記する。なお条件No.9はりん酸とクロ
ム酸の電解研磨により鏡面化した比較例である。
[Table] * Calculated from the difference in weight before and after electrolysis treatment ** Iron loss before electrolysis: 0.99W/Kg
From the same table, the products obtained according to the second invention are:
It can be seen that the degree of improvement in iron loss is large compared to the conventionally known product processed by electrolytic polishing using phosphoric acid-chromic acid. In addition, when the surface of these plates after electrolysis was ion plated with TiN as a tension coating and a bending adhesion test was performed using a 20mmφ rod, all Nos. 1 to 13, which are the conditions of the present invention, were good (no peeling).
So No. 14 was inferior. Example 4 The same test material as in Example 2 was prepared, and the oxide film on the surface of the test material was removed by pickling, and then electrolytically treated with an aqueous chloride solution under the conditions shown in Table 4. Iron loss (W 17/50 ) was measured. The measurement results are also listed in Table 4. Condition No. 9 is a comparative example in which a mirror surface was obtained by electropolishing with phosphoric acid and chromic acid.

【表】【table】

【表】 * 電解処理前後の重量差から算出
** 電解前の鉄損:0.98W/Kg
同表から、第2発明に従うNo.1〜8の鉄損値が
No.9に比し低減されていることがわかる。 実施例 5 実施例1と同じ供試材を準備し、かかる供試材
の表面の酸化物被膜を酸洗により除去し、ついで
表5に示す条件の塩化物水溶液中での陽極電解を
行つた。その後水洗し、引き続き炭酸水素塩の水
溶液あるいは水懸濁液をかけつつ、ナイロン製の
ブラシロールによるブラシング処理を行つた。次
に、水洗、乾燥した後表5に示すコーテイング被
膜を形成し、その後、800℃で3時間の歪取り焼
鈍を行つた。得られた製品の磁気特性および被膜
の密着性を評価した結果を表5に示す。第3発明
法に比較するために、ブラシング処理を行わなか
つた場合(条件No.8)、ブラシング処理を水のみ
で行つた場合(条件No.9)、および電解処理をり
ん酸とクロム酸を用いて行う電解研磨とした場合
(条件No.10)についても同様に測定した。これら
の測定結果も表5に併記する。本発明の適合例は
いずれも優れた被膜密着性を示し、また鉄損も良
好であるが、炭酸水素塩によるブラシング処理を
行わなかつたNo.8、9は被膜密着性が悪く、磁性
もやや劣つており、りん酸−クロム酸液による電
解研磨(条件No.10)は被膜密着性、鉄損ともにさ
らに劣つていた。
[Table] * Calculated from the difference in weight before and after electrolysis treatment ** Iron loss before electrolysis: 0.98W/Kg
From the same table, the iron loss values of Nos. 1 to 8 according to the second invention are
It can be seen that it is reduced compared to No.9. Example 5 The same test material as in Example 1 was prepared, the oxide film on the surface of the test material was removed by pickling, and then anodic electrolysis was performed in a chloride aqueous solution under the conditions shown in Table 5. . Thereafter, it was washed with water, and then brushed with a nylon brush roll while applying an aqueous solution or suspension of bicarbonate. Next, after washing with water and drying, a coating film shown in Table 5 was formed, and then strain relief annealing was performed at 800° C. for 3 hours. Table 5 shows the results of evaluating the magnetic properties and film adhesion of the obtained product. In order to compare with the third invention method, we examined the cases in which no brushing treatment was performed (condition No. 8), the case in which brushing treatment was performed only with water (condition No. 9), and the case in which electrolytic treatment was performed using phosphoric acid and chromic acid. Measurements were made in the same manner for electrolytic polishing (condition No. 10). These measurement results are also listed in Table 5. All of the examples conforming to the present invention show excellent film adhesion and good iron loss, but Nos. 8 and 9, which were not brushed with hydrogen carbonate, had poor film adhesion and slightly less magnetic properties. Electrolytic polishing using a phosphoric acid-chromic acid solution (condition No. 10) was even worse in both film adhesion and iron loss.

【表】【table】

【表】 (注) * 片面溶解厚:処理前後の重量差から
算出
** 評価:N雰囲気中、800℃×3時間、
歪取り焼鈍後
*** コーテイング被膜密着性:被膜が剥離
しない最小径、mm、
実施例 6 実施例2と同じ供試材を準備し、かかる供試材
の表面の酸化物被膜を酸洗により除去したのち、
表6に示す条件の塩化物水溶液中で陽極電解処理
を行つた。 その後水洗し、引き続き炭酸水素塩の水溶液あ
るいは水懸濁液をかけつつ、ナイロン製のブラシ
ロールによるブラシング処理を行つた。次に、水
洗、乾燥した後表6に示すコーテイング被膜を形
成し、その後、800℃で3時間の歪取り焼鈍を行
つた。得られた製品の磁気特性および被膜の密着
性を評価した結果を表6に示す。第3発明法に比
較するために、ブラシング処理を行わなかつた場
合(条件No.8)、ブラシング処理を水のみで行つ
た場合(条件No.9)、および電解処理の代りに
H2O2HFの混合液による化学研磨を行つた場合
(条件No.10)についても同様に測定した。これら
の測定結果も表6に併記する。 本発明の適合例はいずれもすぐれた被膜密着性
を示し、また、鉄損も良好であるが、炭酸水素塩
によるブラシング処理を行わなかつNo.18、19は被
膜密着性が悪く、磁性もやや劣つており、また
H2O2とHFの混合液による化学研磨(条件No.20)
は被膜密着性、鉄損ともにさらに劣つていた。
[Table] (Note) * Single-sided melting thickness: Calculated from the difference in weight before and after treatment ** Evaluation: N2 atmosphere, 800℃ x 3 hours,
After strain relief annealing *** Coating film adhesion: Minimum diameter without peeling of the film, mm,
Example 6 The same test material as in Example 2 was prepared, and after removing the oxide film on the surface of the test material by pickling,
Anodic electrolysis treatment was performed in a chloride aqueous solution under the conditions shown in Table 6. Thereafter, it was washed with water, and then brushed with a nylon brush roll while applying an aqueous solution or suspension of bicarbonate. Next, after washing with water and drying, a coating film shown in Table 6 was formed, and then strain relief annealing was performed at 800° C. for 3 hours. Table 6 shows the results of evaluating the magnetic properties and film adhesion of the obtained product. In order to compare with the third invention method, the cases where the brushing treatment was not performed (condition No. 8), the case where the brushing treatment was performed only with water (condition No. 9), and the case where the electrolytic treatment was replaced.
Similar measurements were made for the case where chemical polishing was performed using a mixed solution of H 2 O 2 HF (condition No. 10). These measurement results are also listed in Table 6. All of the examples conforming to the present invention show excellent film adhesion and good iron loss, but Nos. 18 and 19, which were not brushed with hydrogen carbonate, had poor film adhesion and slightly less magnetism. inferior and also
Chemical polishing with a mixture of H 2 O 2 and HF (condition No. 20)
was even worse in both film adhesion and iron loss.

【表】【table】

【表】 (注) * 片面溶解厚:処理前後の重量差から
算出
** 評価:N雰囲気中、800℃×3時間、
歪取り焼鈍後
*** コーテイング被膜密着性:被膜が剥離
しない最小径、mm、
実施例 7 実施例1および実施例2と同じ供試材を準備
し、かかる供試材の表面の酸化物被膜を酸洗によ
り除去し、ついで表7に示す条件のポリエチレン
グリコールを含有する塩化物水溶液中での陽極電
解処理を行つた。その後水洗し、引き続き炭酸水
素ナトリウムの水溶液あるいは水懸濁液をかけつ
つ、ナイロン製のブラシロールによるブラシング
処理を行つた。次に、水洗、乾燥した後表7に示
すコーテイング被膜を形成し、その後、800℃で
3時間の歪取り焼鈍を行つた。得られた製品の磁
気特性および被膜の密着性を評価した結果を表7
に示す。第4発明法に比較するために、ブラシン
グ処理を水のみで行つた場合(条件No.9、10)、
および電解処理をりん酸とクロム酸を用いて行う
電解研磨とした場合(条件No.11、12)についても
同様に測定した。これらの測定結果も表7に併記
する。本発明の適合例はいずれも優れた被膜密着
性を示し、また鉄損も良好であるが、炭酸水素ナ
トリウムによるブラシング処理を行わなかつたNo.
9、10は被膜密着性が悪く、磁性もやや劣つてお
り、りん酸−クロム酸液による電解研磨(条件No.
11、12)は被膜密着性、鉄損ともにさらに劣つて
いた。
[Table] (Note) * Single-sided melting thickness: Calculated from the difference in weight before and after treatment ** Evaluation: N2 atmosphere, 800℃ x 3 hours,
After strain relief annealing *** Coating film adhesion: Minimum diameter without peeling of the film, mm,
Example 7 The same test material as in Example 1 and Example 2 was prepared, the oxide film on the surface of the test material was removed by pickling, and then a chloride containing polyethylene glycol was prepared under the conditions shown in Table 7. Anodic electrolysis treatment was performed in an aqueous solution. Thereafter, it was washed with water, and then brushed with a nylon brush roll while applying an aqueous solution or suspension of sodium bicarbonate. Next, after washing with water and drying, a coating film shown in Table 7 was formed, and then strain relief annealing was performed at 800° C. for 3 hours. Table 7 shows the results of evaluating the magnetic properties and film adhesion of the obtained product.
Shown below. In order to compare with the fourth invention method, when the brushing treatment was performed with only water (conditions No. 9 and 10),
Similar measurements were also made for the case where the electrolytic treatment was electropolishing using phosphoric acid and chromic acid (conditions No. 11 and 12). These measurement results are also listed in Table 7. All of the examples conforming to the present invention showed excellent film adhesion and good iron loss, but No. 1, which was not brushed with sodium bicarbonate, had excellent film adhesion and good iron loss.
Nos. 9 and 10 had poor film adhesion and somewhat poor magnetism, and were electrolytically polished using a phosphoric acid-chromic acid solution (condition No.
11, 12) were even worse in both film adhesion and iron loss.

【表】【table】

【表】 実施例 8 実施例1と同じ供試材を準備し、かかる供試材
の表面の酸化物被膜を酸洗により除去し、ついで
表8に示す条件ハロゲン化物水溶液中で陽極電解
処理を行つた後、鉄損(W17/50)を測定した。 また、比較のためにりん酸とクロム酸を用いる
電解研磨処理(条件No.9)も併せて行つた。鉄損
の測定条件を比較例の結果とともに表8に示す。
[Table] Example 8 The same test material as in Example 1 was prepared, the oxide film on the surface of the test material was removed by pickling, and then anodic electrolysis treatment was performed in an aqueous halide solution under the conditions shown in Table 8. After that, the iron loss (W 17/50 ) was measured. For comparison, an electrolytic polishing treatment using phosphoric acid and chromic acid (condition No. 9) was also performed. The measurement conditions for iron loss are shown in Table 8 along with the results of comparative examples.

【表】 * 電解処理前後の重量差から算出
** 電解前の鉄損:0.98W/Kg
同表から明らかなようにこの発明に従う適合例
は、いずれも鉄損の向上度が大きいのに対し比較
例の鉄損向上度は少ない。 実施例 9 実施例1と同じ供試材を準備し、かかる供試材
の表面の酸化物被膜を酸洗により除去し、ついで
表9に示す条件のポリエチレングリコールを含有
するハロゲン化物水溶液中で陽極電解処理を行つ
た後、鉄損(W17/50)を測定した。また、比較の
ためりん酸とクロム酸を用いる電解研磨処理(条
件No.7)も併せて行つた。鉄損の測定結果を比較
例の結果とともに表9に示す。
[Table] * Calculated from the difference in weight before and after electrolysis treatment ** Iron loss before electrolysis: 0.98W/Kg
As is clear from the same table, all of the conforming examples according to the present invention have a large degree of improvement in iron loss, whereas the comparative example has a small degree of improvement in iron loss. Example 9 The same test material as in Example 1 was prepared, the oxide film on the surface of the test material was removed by pickling, and the anode was then anodized in a halide aqueous solution containing polyethylene glycol under the conditions shown in Table 9. After electrolytic treatment, iron loss (W 17/50 ) was measured. For comparison, an electrolytic polishing treatment using phosphoric acid and chromic acid (condition No. 7) was also performed. The measurement results of iron loss are shown in Table 9 together with the results of comparative examples.

【表】 * 電解処理前後の重量差から算出
** 電解前の鉄損:0.98W/Kg
同表からこの発明に従つて得られた製品は、従
来から知られているりん酸−クロム酸による電解
研磨処理での製品に比し、鉄損の向上度が大きい
ことがわかる。 実施例 10 実施例1と同じ供試材を準備し、かかる供試材
の表面の酸化物被膜を酸洗により除去し、ついで
表10に示す条件のハロゲン化物水溶液中での陽極
電解処理を行つた。その後水洗し、炭酸水素ナト
リウムの水溶液をかけつつナイロン製のブラシロ
ールによるブラシング処理を行つた。次に水洗、
乾燥した後、表10に示すコーテイング被膜を形成
し、その後、800℃で3時間の歪取り焼鈍を施し
た。得られた製品の磁気特性および被膜の密着性
について評価した結果を表10に示す。またブラシ
ング処理を行わなかつた場合(条件No.6)、ブラ
シング処理を水のみで行つた場合(条件No.7)に
ついても同様の評価を行つた。これらの結果も表
10に併記する。 この発明に従うブラシング処理例はいずれも優
れた皮膜密着性を示し、また鉄損も良好である。
[Table] * Calculated from the difference in weight before and after electrolysis treatment ** Iron loss before electrolysis: 0.98W/Kg
From the same table, it can be seen that the products obtained according to the present invention have a greater degree of improvement in core loss than products obtained by the conventionally known electrolytic polishing treatment using phosphoric acid-chromic acid. Example 10 The same test material as in Example 1 was prepared, the oxide film on the surface of the test material was removed by pickling, and then anodic electrolysis treatment was performed in an aqueous halide solution under the conditions shown in Table 10. Ivy. Thereafter, it was washed with water and brushed with a nylon brush roll while applying an aqueous solution of sodium bicarbonate. Next, wash with water,
After drying, a coating film shown in Table 10 was formed, and then strain relief annealing was performed at 800° C. for 3 hours. Table 10 shows the results of evaluating the magnetic properties and film adhesion of the obtained product. Similar evaluations were also conducted in the case where the brushing treatment was not performed (Condition No. 6) and the case where the brushing treatment was performed with only water (Condition No. 7). These results are also shown.
Also listed in 10. All of the brushing treatment examples according to the present invention exhibit excellent film adhesion and also have good iron loss.

【表】【table】

【表】 実施例 11 実施例1と同じ供試材を準備し、かかる供試材
の表面の酸化物被膜を酸洗によつて除去し、つい
で表11に示す条件のインヒビターを含むハロゲン
化物水溶液中で陽極電解処理を行つた後、水洗、
乾燥し、鉄損(W17/50)を測定するとともに湿潤
大気中での耐食性を調べた。また、インヒビター
を含まない浴で処理したもの(条件No.6、7)に
ついても同様の調査を行つた。それぞれの結果を
表11に示す。
[Table] Example 11 The same test material as in Example 1 was prepared, the oxide film on the surface of the test material was removed by pickling, and then a halide aqueous solution containing an inhibitor under the conditions shown in Table 11 was added. After performing anodic electrolysis treatment inside, washing with water,
After drying, the iron loss (W 17/50 ) was measured and the corrosion resistance in a humid atmosphere was investigated. A similar investigation was also conducted on samples treated with a bath containing no inhibitor (conditions No. 6 and 7). The respective results are shown in Table 11.

【表】【table】

【表】 同表から明らかなように、浴にインヒビターを
添加した場合は鉄損の向上度は問題なく、特に耐
食性に優れ、銹が発生しにくいことがわかる。 実施例 12 実施例1と同じ供試材を準備し、かかる供試材
の表面の酸化物被膜を酸洗によつて除去し、つい
で表12に示す条件のPH緩衝剤またはキレート剤を
含むハロゲン化物水溶液中で陽極電解処理を行つ
た後、鉄損(W17/50)を測定するとともに、表面
が不均一で光沢が少なくなる、すなわち電解処理
能力が低下するまでの全電解時間を調べた。ま
た、PH緩衝剤やキレート剤を含まない浴(条件No.
6、7)についても同様の調査を行つた。それぞ
れの結果を表12に示す。
[Table] As is clear from the table, when an inhibitor is added to the bath, there is no problem in improving the iron loss, and it is found that corrosion resistance is particularly excellent and rust is less likely to occur. Example 12 The same test material as in Example 1 was prepared, the oxide film on the surface of the test material was removed by pickling, and then a halogen containing PH buffer or chelating agent was added under the conditions shown in Table 12. After performing anodic electrolysis treatment in an aqueous compound solution, we measured the iron loss (W 17/50 ) and investigated the total electrolysis time until the surface became uneven and less glossy, that is, the electrolytic treatment ability decreased. . In addition, a bath containing no PH buffer or chelating agent (condition No.
6 and 7) were also investigated. The respective results are shown in Table 12.

【表】【table】

【表】 同表から明らかなように、キレート剤やPH緩衝
剤を添加した場合は鉄損の向上度は問題なく、特
に長時間の安定的な電解が実現できることがわか
る。 実施例 13 実施例1と同じ供試材を準備し、かかる供試材
の表面の酸化物被膜を酸洗によつて除去し、つい
で表13に示す条件のインヒビターまたはPH緩衝剤
を含むハロゲン化物水溶液中での陽極電解を行つ
た。その後水洗し、炭酸水素ナトリウムの水溶液
をかけつつナイロン製のブラシロールによるブラ
シング処理を行つた。次に水洗、乾燥した後、表
13に示すコーテイング皮膜を形成し、その後、
800℃で3時間の歪取り焼鈍を施した。得られた
製品の磁気特性、皮膜の密着性、耐食性および電
解時間について評価した結果を、表13に示す。ま
たブラシング処理を行わない場合(条件No.11)、
ブラシング処理を水のみで行つた場合(条件No.
12)についても同様の評価を行つた。これらの評
価結果も表13に併記する。この発明に従つてブラ
シング処理を実施した場合はいずれも特に優れた
皮膜密着性を示し、また鉄損も良好である。さら
にインヒビター添加の場合は特に耐食性が良好で
あり、PH緩衝剤やキレート剤の添加を行つた場合
は特に長時間の安定的な電解ができることがわか
る。
[Table] As is clear from the table, when a chelating agent or a PH buffering agent is added, there is no problem in improving the iron loss, and in particular, it is possible to realize stable electrolysis for a long time. Example 13 The same test material as in Example 1 was prepared, the oxide film on the surface of the test material was removed by pickling, and then a halide containing an inhibitor or PH buffer under the conditions shown in Table 13 was prepared. Anodic electrolysis was performed in an aqueous solution. Thereafter, it was washed with water and brushed with a nylon brush roll while applying an aqueous solution of sodium bicarbonate. Next, after washing and drying,
Form the coating film shown in 13, and then
Strain relief annealing was performed at 800°C for 3 hours. Table 13 shows the results of evaluating the magnetic properties, film adhesion, corrosion resistance, and electrolysis time of the obtained product. Also, if brushing is not performed (condition No. 11),
When brushing is performed with water only (condition no.
12) was also evaluated in the same way. These evaluation results are also listed in Table 13. When the brushing treatment is carried out according to the present invention, particularly excellent film adhesion is exhibited, and iron loss is also good. Furthermore, when an inhibitor is added, corrosion resistance is particularly good, and when a PH buffer or chelating agent is added, stable electrolysis can be performed for a particularly long time.

【表】【table】

【表】 (発明の効果) この発明の方法は仕上げ焼鈍後の方向性けい素
鋼板の鉄損低下を目的とした低コストの電解処理
方法としてきわめて有利であり、従来は困難であ
つた工業化の実現を容易にし得る。また、鉄損の
改善幅も大きく絶縁コーテイング等の密着性も良
好である。
[Table] (Effects of the Invention) The method of the present invention is extremely advantageous as a low-cost electrolytic treatment method for reducing iron loss of grain-oriented silicon steel sheets after finish annealing, and it is possible to achieve industrialization, which has been difficult in the past. It can be easily realized. In addition, the improvement in iron loss is large and the adhesion to insulating coatings, etc. is also good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電解処理したけい素鋼板の鉄損改善代
を示すグラフ、第2図は表面状態と鉄損との関係
を示すグラフ、第3図は面方位の異なる結晶面を
示す金属組織写真、第4および5図は電解処理し
たけい素鋼板の鉄損改善代を示すグラフである。
Figure 1 is a graph showing the improvement in iron loss of electrolytically treated silicon steel sheets, Figure 2 is a graph showing the relationship between surface condition and iron loss, and Figure 3 is a metallographic photograph showing crystal planes with different orientations. , 4 and 5 are graphs showing the iron loss improvement margin of electrolytically treated silicon steel sheets.

Claims (1)

【特許請求の範囲】 1 仕上げ焼鈍済みの方向性けい素鋼板に、水溶
性のハロゲン化物を1種以上含む水溶液中で電解
による磁気的平滑化処理を施すことを特徴とする
低鉄損方向性けい素鋼板の製造方法。 2 仕上げ焼鈍済みの方向性けい素鋼板に、少な
くとも1種の水溶性のハロゲン化物とポリエーテ
ルとを含む水溶液中で電解による磁気的平滑化処
理を施すことを特徴とする低鉄損方向性けい素鋼
板の製造方法。 3 仕上げ焼鈍済みの方向性けい素鋼板に、水溶
性のハロゲン化物を1種以上含む水溶液中で電解
による磁気的平滑化処理を施し、ついで鋼板表面
に炭酸水素塩の水溶液または水懸濁液を用いるブ
ラシング処理を施すことを特徴とする低鉄損方向
性けい素鋼板の製造方法。 4 仕上げ焼鈍済みの方向性けい素鋼板に、少な
くとも1種の水溶性のハロゲン化物とポリエーテ
ルとを含む水溶液中で電解による磁気的平滑化処
理を施し、ついで鋼板表面に炭酸水素塩の水溶液
または水懸濁液を用いるブラシング処理を施すこ
とを特徴とする低鉄損方向性けい素鋼板の製造方
法。 5 電解水溶液は腐食防止剤を含むものである請
求項1ないし4項のいずれか1項に記載の製造方
法。
[Claims] 1. A low iron loss directionality characterized by subjecting a finish annealed grain oriented silicon steel sheet to magnetic smoothing treatment by electrolysis in an aqueous solution containing one or more water-soluble halides. Method of manufacturing silicon steel sheet. 2. A low core loss directional silicon steel sheet characterized by subjecting a finish annealed grain oriented silicon steel sheet to magnetic smoothing treatment by electrolysis in an aqueous solution containing at least one water-soluble halide and polyether. Manufacturing method of raw steel plate. 3 A grain-oriented silicon steel sheet that has been finish annealed is subjected to magnetic smoothing treatment by electrolysis in an aqueous solution containing one or more water-soluble halides, and then an aqueous solution or suspension of hydrogen carbonate is applied to the surface of the steel sheet. 1. A method for producing a grain-oriented silicon steel sheet with low iron loss, characterized by applying brushing treatment. 4 A grain-oriented silicon steel sheet that has been finish annealed is subjected to magnetic smoothing treatment by electrolysis in an aqueous solution containing at least one water-soluble halide and polyether, and then the surface of the steel sheet is coated with an aqueous solution of hydrogen carbonate or A method for producing a grain-oriented silicon steel sheet with low core loss, characterized by performing a brushing treatment using a water suspension. 5. The manufacturing method according to any one of claims 1 to 4, wherein the electrolytic aqueous solution contains a corrosion inhibitor.
JP63164873A 1987-09-10 1988-07-04 Production of grain-oriented silicon steel sheet having low iron loss Granted JPH0230779A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63164873A JPH0230779A (en) 1987-09-10 1988-07-04 Production of grain-oriented silicon steel sheet having low iron loss
DE88308226T DE3886146T2 (en) 1987-09-10 1988-09-06 Low iron loss silicon steel sheet and method of manufacturing the same.
EP88308226A EP0307163B1 (en) 1987-09-10 1988-09-06 Silicon steel sheets having low iron loss and method of producing the same
CA000576999A CA1332345C (en) 1987-09-10 1988-09-09 Silicon steel sheets having low iron loss and method of producing the same
KR1019880011737A KR930009390B1 (en) 1987-09-10 1988-09-10 Silicon steel steet having low iron loss and method of producing the same
US07/600,136 US5125991A (en) 1987-09-10 1990-10-19 Silicon steel sheets having low iron loss and method of producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP62-225148 1987-09-10
JP22514887 1987-09-10
JP63-87366 1988-04-11
JP63164873A JPH0230779A (en) 1987-09-10 1988-07-04 Production of grain-oriented silicon steel sheet having low iron loss

Publications (2)

Publication Number Publication Date
JPH0230779A JPH0230779A (en) 1990-02-01
JPH0472920B2 true JPH0472920B2 (en) 1992-11-19

Family

ID=26489812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63164873A Granted JPH0230779A (en) 1987-09-10 1988-07-04 Production of grain-oriented silicon steel sheet having low iron loss

Country Status (1)

Country Link
JP (1) JPH0230779A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183118A (en) * 2004-12-28 2006-07-13 Jfe Steel Kk Method for producing low core loss grain oriented silicon steel sheet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5897406B2 (en) * 2012-05-28 2016-03-30 株式会社石飛製作所 Electrolytic solution for electropolishing
JP5914255B2 (en) * 2012-08-24 2016-05-11 株式会社タセト Electrolyte

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183118A (en) * 2004-12-28 2006-07-13 Jfe Steel Kk Method for producing low core loss grain oriented silicon steel sheet
JP4725711B2 (en) * 2004-12-28 2011-07-13 Jfeスチール株式会社 Manufacturing method of low iron loss grain oriented electrical steel sheet

Also Published As

Publication number Publication date
JPH0230779A (en) 1990-02-01

Similar Documents

Publication Publication Date Title
US3932236A (en) Method for producing a super low watt loss grain oriented electrical steel sheet
JP7040888B2 (en) Method of forming a tension insulating film for grain-oriented electrical steel sheets and grain-oriented electrical steel sheets
KR930009390B1 (en) Silicon steel steet having low iron loss and method of producing the same
US6849138B1 (en) Method for surface treatment of aluminum alloy high-temperature processed articles
JPH0472920B2 (en)
KR101568477B1 (en) Method for annealing-pickling ferritic stainless steel having high silicon content
JPH03130376A (en) Production of unidirectionally oriented silicon steel sheet excellent in magnetic characteristic
JP3921199B2 (en) Method for producing unidirectional silicon steel sheet excellent in film adhesion of tension imparting insulating film
JP3557782B2 (en) Manufacturing method of electrogalvanized steel sheet with excellent appearance
JP2703604B2 (en) Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties
JP2731312B2 (en) Pretreatment method for uniform formation of electrical steel sheet insulation coating
JPS63277793A (en) Anodic oxidizing solution for magnesium or alloy thereof
JPH079041B2 (en) Method for producing low iron loss grain-oriented silicon steel sheet whose characteristics are not deteriorated by stress relief annealing
JPH09118923A (en) Manufacture of grain-oriented silicon steel sheet having low core loss
JPH0587597B2 (en)
JPH0551711A (en) Production of high temperature-worked product of aluminum alloy
JPH0474899A (en) Production of cold rolled ferritic stainless steel strip having excellent corrosion resistance
JPH0587600B2 (en)
JPH11236682A (en) Superlow core loss grain oriented silicon steel sheet and its production
JPH03215679A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
KR20150053626A (en) Method for annealing of ferritic stainless steel having high silicon content
JP2752682B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
JPH0987744A (en) Production of grain oriented silicon steel sheet
JPH02232399A (en) Production of low-iron-loss unidirectionally-oriented silicon steel sheet having extremely high magnetic flux density
JPH11335861A (en) Production of ultralow core loss grain oriented silicon steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees