JPH0587600B2 - - Google Patents

Info

Publication number
JPH0587600B2
JPH0587600B2 JP8736588A JP8736588A JPH0587600B2 JP H0587600 B2 JPH0587600 B2 JP H0587600B2 JP 8736588 A JP8736588 A JP 8736588A JP 8736588 A JP8736588 A JP 8736588A JP H0587600 B2 JPH0587600 B2 JP H0587600B2
Authority
JP
Japan
Prior art keywords
electrolytic
steel sheet
polishing
treatment
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8736588A
Other languages
Japanese (ja)
Other versions
JPH01259200A (en
Inventor
Hirotake Ishitobi
Ujihiro Nishiike
Shigeko Sujita
Tsutomu Kami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8736588A priority Critical patent/JPH01259200A/en
Publication of JPH01259200A publication Critical patent/JPH01259200A/en
Publication of JPH0587600B2 publication Critical patent/JPH0587600B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は方向性けい素鋼板の電解処理方法に
関し、特にその表面を工業的に低コストの手法で
効果的に平滑な状態に仕上げることによつて鉄損
特性の有利な改善を図るに適した電解処理方法に
関するものである。 一方向性けい素鋼板は、製品の2次再結晶粒を
(110)〔001〕すなわちゴス方位に集積させたもの
で、主として変圧器その他の電気機器の鉄心とし
て使用される。このため一方向性けい素鋼板の特
性としては、磁束密度(B10値で代表される)が
高いこと、ならびに鉄損(W17/50値で代表され
る)が低いことが要求される。特に最近では省エ
ネルギーの見地から、変圧器等の電力損失を少な
くするためよりいつそうの鉄損の低減が望まれて
いる。 従来の一方向性けい素鋼板の製造方法は、例え
ばSiを2.0〜4.0重量%(以下単に%で示す)含有
した素材を、熱間圧延したのち、1回又は中間焼
鈍を含む2回の冷間圧延により最終板厚とし、脱
炭焼鈍後、MgOを主成分とする焼鈍分離剤を塗
布してからコイルに巻き取り、ついで2次再結晶
焼鈍及び純化焼鈍を行ない、しかるのち必要に応
じてりん酸塩系絶縁コーテイングを施す方法が通
常行なわれている。 なお上記の純化焼鈍の際には、脱炭焼鈍後の鋼
板表面に生成したSiO2を主成分とする酸化層と
焼鈍分離剤中のMgOとが反応してフオルステラ
イト(Mg2SiO4)被膜が形成される。 (従来の技術) ところで一方向性けい素鋼板の鉄損特性改善に
ついては、純化焼鈍時に鋼板表面に形成されるガ
ラス質被膜を除去し、次いで地鉄とガラス質被膜
の界面付近にある窒化物や硫化物等の不純物を含
む層を除去し、表面に平滑に仕上げることによつ
て著しい鉄損の低減を図り得ることが報告されて
いる(例えば特公昭52−24499号、同56−4150号
各公報)。 鋼板表面を鏡面化する一般的な方法としては、
バフ、ブラシ等による機械研磨、化学的に表面を
溶解させる化学研磨および電気化学的に溶解させ
る電解研磨がある。このうち、機械研磨による場
合、鋼板に歪を与えずに研磨することは難しく、
またこの加工歪は歪取り焼鈍によつても完全には
除去できないため、鉄損は上昇する。したがつて
鉄損の低減を安定して実現するには、化学研磨又
は電解研磨による鏡面化が必要となるわけである
が、化学研磨の場合、研磨浴の劣化により、研磨
量と研磨面の所定条件からのずれが大きくなり易
いのに対し、電解研磨の場合は、電気化学的処理
であるため、研磨量や研磨面の制御が化学研磨に
比べると極めて容易である。従つて、工業的観点
からみると鏡面化処理としては電解研磨の方が有
利であると言える。 (発明が解決しようとする課題) しかしながらこれらの技術はいずれも鉄損低減
効果は非常に明確であるにもかかわらず、今日工
業的に実施されるまでには至つていない。 その理由は、化学研摩液として用いられるHF
+H2O2やH3PO4+H2O2などは高価なためコスト
高になるからである。同じく電解研磨液として通
常用いられるりん酸系浴、硫酸系浴、りん酸−硫
酸系浴および過塩素酸系浴などもいるれも高濃度
の酸を主成分とし、しかも添加物としてクロム酸
塩、沸酸、有機化合物等を使用するためコスト高
となり、しかも大量に鋼板を処理するには、均質
性、生産および液の早期劣化など未解決の問題も
多く、工業的企模で実施されるには至つていな
い。 さらにもう一つの工業化を妨げる重要な欠点
に、鏡面研磨された表面には絶縁コートがのりに
くいことがある。すなわち従来知られているりん
酸塩系コートやラミツクコートは鏡面故に密着性
が悪く現実の使用には耐え得ない。 この発明は、上記の問題を有利に解決するもの
で、電解研磨または化学研磨による鏡面化処理に
代わる工業化の容易な表面処理に有利に適合する
電解処理について提案することを目的とする。 (課題を解決するための手段) さて発明者らは、表面状態が鉄損に及ぼす影響
について再検討した結果、以下に述べる知見を得
た。 すなわちその第1は、ヒステリシス損に対して
大きく影響を与えているのは、主として表面酸化
物であり、表面の凹凸に関しては必ずしも鏡面状
態とする必要はないことである。ここに鏡面状態
とは光学的な概念であり、定量的に定義づけられ
ていないが表面粗さが中心線平均粗さで0.4μm以
下望むらくは0.1μm以下のことを脂す。 第2図に、酸化物が表面に存在する方向性けい
素鋼板、鏡面化処理を施した方向性けい素鋼板お
よびその後さらに酸洗を施して表面が荒れた方向
性けい素鋼板の各鉄損を比較して示したが、同図
から明らかなように酸洗によつて鏡面が失われて
も鉄損はさほど劣化していない。 このように低ヒステリシス損のけい素鋼板を得
るためには、必ずしも鏡面にする必要はなく、鋼
板の表面を磁気的に平滑な面、すなわちヒステリ
シス損の原因となる磁壁の移動を妨害することが
なくかつ、被膜密着性にも優れた表面にすればよ
い。したがつて電解研磨や化学研磨は必要不可欠
の条件ではなく、もつと自由に表面処理手段を選
択できることになる。 とはいえけい素鋼板の磁気的平滑化のプロセス
中に鋼板表面が歪に入ることは鉄損を劣化させる
ために極力回避すべきことはいうまでもなく、こ
の点化学研磨や電解研磨などの無歪の研磨方法が
適している。 ここで電解研磨法を特徴づけている鏡面化現象
に触れておく。電解研磨においては、被研磨面を
陽極として強酸、弱アルカリの電解液中で電流を
通すと、電解反応によつて金属は表面からイオン
となつて流出するが、金属表面の電解液の間に粘
性膜が生じる。この粘性膜が表面の凸部では薄い
ので、より多くの電流が流れ、凸部が凹部より多
く溶け出し金属表面は凹凸のない鏡面に仕上げら
れるとされている。したがつて化学研磨や電解研
磨は結晶粒度や方位に全く依存せずに金属表面を
平滑にする方法であるともいえる。 また第2の知見は、塩化物水溶液でけい素鋼板
を陽極電解処理した場合に鋼板表面の結晶粒方位
の違いによつて表面性状が大きく異なることであ
る。 とくに仕上げ焼鈍済みの方向性けい素鋼板の表
面に強く集積している{110}面はマクロ的外観
では結晶粒界の出現した面を呈するにもかかわら
ず微視的に特異な網目状組織となり、しかもこの
面は磁性的に平滑な面であることを新たに知見し
た。そしてここで用いられるNaCl,KClおよび
NH4Cl等の塩化物は従来の化学研磨や電解研磨
に用いられる薬剤にくらべコスト的にきわめて低
価格で、電解液の電流効率や液電導度が高く液の
腐食性が小さくかつ浴組成の維持や制御が非常に
簡単であるため、設備的な負荷や操業コストもき
わめて小さくて済む。 また、この塩化物の水溶液で陽極電解した鋼板
表面は、化学研磨、または電解研磨によつて得ら
れる鏡面に比べ、絶縁コートの密着性が優れてい
ることもわたつた。 しかしながら、方向性けい素鋼板のストリツプ
に塩化物の水溶液中で陽極電解処理を連続的に施
すと、処理後の鋼板表面にアークスポツト、斑点
状の汚れまたは微少な傷が発生しやすく、このた
め磁気特性や、電解後に被成されるコーテイング
膜の密着強度がばらつくことが応々にしてあつ
た。 この原因を調べたところ、鋼板表面に付着した
水酸化鉄の沈澱物が、コンダクターロールを通過
する際に、鋼板表面に固着し表面性状の劣化をま
ねいていることを確認した。なお、水酸化鉄の沈
澱物は、鋼板の陽極電解にともなつて、必然的に
浴中に多量に蓄積してくるものである。そこで電
解処理後の鋼板の表面性状を向上させる手段につ
いて種々検討したところ、鋼板がコンダクターロ
ールを通過する前に、清浄な液をかけて鋼板を冷
却しつつその表面から沈澱物を流い流すのが有効
であることを見出した。 すなわちこの発明は、水溶性の塩化物を1種以
上含む水溶液からなる電解液を満たした電解槽内
に、コンダクタロールによつて正に帯電された仕
上げ焼鈍済の方向性けい素鋼板を導入し電解によ
る磁気的平滑化処理を連続的に施すに当り、電解
槽から電解液の一部を連続的に抜き出しつつ固液
分離を行つて抜き出した電解液中の沈澱物濃度を
100ppm以下とし、ついで該電解液をコンダクタ
ロールの入側にて鋼板表面へ供給し再び電解槽内
に戻すことを特徴とする方向性けい素鋼板の電解
処理方法である。 また実施例に当り、電解液の固液分離は沈澱凝
集剤を用いることが有利に適合する。 以下この発明を具体的に説明する。 この発明では、常法に従つてけい素鋼板用スラ
ブに熱間圧延を施し、次に中間焼鈍をはさむ冷間
圧延を施して最終板厚としたのち、脱炭焼鈍を施
し次いで最終仕上げ焼鈍を施す。 この最終仕上げ焼鈍の際の焼鈍分離剤として
は、従来からフオルステライト被膜も同時に形成
させるためにMgOを主成分とする焼鈍分離剤が
主に用いられてきたが、かかるフオルステライト
被膜を生成させない様に配合された、たとえば
Al2O3等を主成分とし、これに不活性MgOやCa,
Sr化合物を添加した分離剤を用いてもよい。 次に最終仕上げ焼鈍の表面酸化層を除去する。 除去方法としては、酸洗等の化学的方法とエメ
リー研磨等の機械的手法があり、特に限定はしな
いが、機械的手法で表面酸化層を除去した場合に
は、板内部に歪みが入り易く、かかる歪は続く電
解処理によつても解放できないので、表面酸化物
の除去は酸洗処理で行う方が好ましい。 ついでこのように表面酸化層を除去した表面を
陽極電解処理によつて磁気的平滑面化する。 電解浴は水溶性の塩化物を1種または2種以上
含む水溶液であり、ここで水溶性塩化物というの
はHCl,NH4Clおよび各種金属の塩化物を意味
する。これらはいれも仕上げ焼鈍後の方向性けい
素鋼板に対し磁気的平滑化効果を持つものである
が、実操業においては陰極への金属析出を防する
ために、アルカリ金属やアルカリ土類金属の塩化
物あるいはNH4ClやHCl,AlCl3等の中から選択
することが望ましい。また、その濃度は、浴の電
気伝導度を確保するうえから20g/以上である
ことが望ましい。なお、その組および濃度からし
てこの発明では海水の利用も可能である。浴温は
常温以上で任意に選ぶことができるが、あまり高
温では水の蒸発が著しく、常温ないし90℃程度が
適当である。電流密度は5A/dm2程度から数百
A/dm2の範囲で設定できる。しかし、浴温が低
いときに100A/dm2をこえるような高電流密度
とすると表面の処理むらを生じやすいので、電流
密度の範囲をより広くしようとすれば、浴温を40
℃以上にした方がよい。 なお鉄損を低下させる見地から、この発見にお
ける電解の電気量および電解除去量はそれぞれ
300C/dm2以上、片面当り1μm以上にすること
が好ましい。 また、電解反応による浴の変化を、NaCl水溶
液を例にとつて示すと下記のとおりである。 記 陽極:Fe+2Cl-→FeCl2+2e- …(1) 陰極:2Na++2H2O+2e-→2NaOH+H2
…(2) バルク:FeCl2+2NaOH→2NaCl+Fe(OH)2
↓ …(3) すなわち(1)式によつて生成したFeCl2と、(2)式
で生成したNaOHとは、(3)式に示した反応によ
つて自動的にNaClを再生する。したがつて浴の
制御方法としては、基本的には(3)式で生成する
Fe(OH)2の沈澱の除去、水の補給、および板が
系外へ持ち出すNaClの補給でよいことになり、
従来の化学研磨あるいは電解研磨にくらべ、はる
かに容易かつ低コストなものとなる。この点もこ
の発明の方法が工業的に優れたものであることの
ひとつの根拠である。 ところで鉄損低下のための鋼板溶解量は、片面
当り1μm以上で、連続的に処理する場合、溶解し
た鉄はすべて水酸化鉄になるために、浴中に生成
して沈澱する量は相当に多い。このため沈澱物は
鋼板上に付着しやすく、そして付着したままコン
ダクターロールを通過すると、鋼板に固着し、汚
れ、傷あるいはアークスポツト等の欠陥の発生原
因となる。これらの欠陥は当然のことながら磁気
特性やコーテイング被膜の密着性に悪影響を与え
る。 方向性けい素鋼板は板厚が0.2〜0.35mmと薄い
上に、Siを多く含有するため、固有抵抗が普通鋼
の数倍も高く、くわえてラインスピードを上げて
生産性を向上しようとする投入電流が大きくな
り、この結果、鋼板の発熱がきわめて増大する。
このような理由のために鋼板に対する水酸化鉄の
沈澱物の固着傾向が強いのである。 そこでこの発明は、以下の方法によつて沈澱物
濃度の悪影響を除くものであり、第1図に示すと
ころに従つて詳しく説明する。 第1図はこの発明に直接使用する、縦型電解槽
を3槽有する電解処理装置の1例を模式で示す。
けい素鋼板のストリツプ1は、コンダクターロー
ル2およびシンクロール3を経て順次陽極電解さ
れていく。なお4は陰極、5はスナバーロールで
ある。このとき鋼板の溶解によつて生成する水酸
化鉄の沈澱物は電解液6の中に分散し、かつ蓄積
していく。そこで電解槽7から電解液6の一部を
連続的に抜き出し、ポンプ8を介して原液槽9へ
導く。ついで電解液6を凝集槽10へ送り、この
槽内に沈澱凝集剤タンク11から沈澱凝集剤を送
給し、電解液内に沈澱凝集剤を添加して、フロツ
クをつくり、この液を固液分離装置12に送る。
なおこのときの移送は凝集沈澱したフロツクを破
壊しないゆるやかな流れをつくるポンプを用いる
か、あるいはポンプを用いず、単に重力を利用し
て移送することが望ましい。固液分離装置12と
しては各種タイプの濾過機、遠心分離機、シツク
ナーおよび磁気分離装置などを胆独または組合わ
せて用いればよい。 ここで分離された水酸化鉄の沈澱物はスラツジ
処理装置13で脱水されるかあるいはそのまま廃
棄される。 一方固液分離後の液は処理液槽14を経てコン
ダクタロール入側のスプレー15から、鋼板表面
に向けて供給され、電解槽7内で付着した水酸化
鉄の沈澱物を洗い流す。 このとき、スプレー15から出てくる液中の沈
澱物濃度は100ppm以下にする必要がある。なぜ
ならば、沈澱物濃度が100ppmを越えると沈澱物
固着によるアークスポツトや汚れ、傷等の欠陥が
出やすくなるからである。さらにスプレーの圧力
や流量は、鋼板表面に付着した沈澱物を洗い流す
に足る条件に設定されるが、同時にこのときジユ
ール熱によつて発熱した鋼板の冷却も考慮して決
定することが望ましい。なお、この発明において
は、固液分離装置の能力いかんによつては沈澱凝
集剤の添加を行わなくてもよい。 また固液分離装置の処理能力としては、電解槽
7の中の沈澱物濃度を2%以下に維持するように
設定することが好ましい。なぜなら沈澱物濃度が
2%を越えると液の粘性性が上り、また電気伝導
度が低下して操業に大なる障をきたすおそれがあ
るからである。 この発明において沈澱凝集剤を用いる場合は、
例えば使用する電解液のPHに応じてアニオン系、
ノニオン系およびカチオン系等、各種タイプのも
のがつくられているポリアクリルアミド系、ある
いはポリアクリル酸エステル系の高分子凝集剤等
が好適である。 なお第1図は縦型電解槽の例を示したが、この
発明はこれに限定されるものではなく、水平型な
従来鋼板ストリツプの連続電解処理に用いてい
る、他のタイプの槽にも有利に適合する。 (作用) この発明に従つて連続電解を行うと処理後の鋼
板表面にアークスポツト、汚れおよび微小傷等の
欠陥が発生しにくいのは、コンダクターロール入
側で行う清浄液スプレーにより鋼板表面に付着し
た沈澱物が除去されるため、ストリツプとコンダ
クターロールの接触面に電解槽中から出てくる水
酸化鉄の沈澱物が介在しなくなるからである。さ
らに鋼板表面への清浄液スプレーによつてジユー
ル熱で発熱した鋼板を冷却し得ることも、鋼板へ
の沈澱物の固着を防止するのに有利に働いてい
る。 また塩化物水溶液中で陽極電解することによつ
て得られる製品の鉄損が、従来法の電解研磨、化
学研磨等によつて得られた鏡面を有する製品に比
して良好な値を示す物理的理由は完全に解明され
たわけではないが、第1に磁気的に平滑であるた
めには幾何学的な平滑度をそれほど高く要求され
ないこと、第2に本発明法では粒界が段差状ある
いは溝状に凹部を形成するので、磁区の細幅化が
生じそれによる鉄損の減少が望めること、第3に
電解研磨法によると鏡面に不均質に生じる酸化被
膜による劣化が生じると考えられるが本発明製品
では生じないこと、によるものと推察される。 (実施例) 実施例 1 C:0.040%,Si:3.38%,Se:0.016%,Mo:
0.011およびSb:0.027%を含む組成になる熱延板
を、中間焼鈍を含む2回の冷間圧延により0.23mm
厚さの冷延板とした。ついでこの鋼板に、830℃
の湿水素中で脱炭・1次再結晶焼鈍を施した後、
MgOとAl2O3を主成分とする焼鈍分離剤を塗布し
てから、コイル状に巻取り、850℃で50時間の2
次再結晶焼鈍及び1200℃で5時間の純化焼鈍を施
した。 その後、未反応の焼鈍分離剤を除去し、平坦化
焼鈍をしてコイルの巻きぐせを矯正し、供試材と
した。 かかる供試材の表面の酸化物被膜を酸洗により
除去し、ついで第1図に示した縦型電解槽を用い
て陽極電解処理を下記の条件を行つた。 記 (1)電解液:NaCl、200g/、60℃ (2)槽中の水酸化鉄沈澱物濃度:3500ppm (3)電流密度:70A/dm2 (4)電気量:2400クーロン/dm2(片面6μm溶解) さらに電解処理を行いつつ電解槽から電解液を
一部抜き出してシツクナーに導き、沈降によつて
固液分離した。沈降処理後の電解液の沈澱物濃度
は約60ppmであつた。ついで処理済の電解液をコ
ンダクターロールの入側でストリツプ表面にスプ
レーしつつ、操業を行つた。電解処理後に水洗、
乾燥し、コイルに巻き取つた。製品の磁気特性と
表面外観を調べた結果を第1表に示す。また、比
較のために、電解液の固液分離を行わずに単なる
循環スプレーをしながら操業した場合についても
同様の調査を行つた。この結果も第1表に併記す
る。
(Industrial Application Field) The present invention relates to a method for electrolytic treatment of grain-oriented silicon steel sheets, and in particular, the present invention relates to an electrolytic treatment method for grain-oriented silicon steel sheets, and in particular, to effectively finish the surface to a smooth state using an industrially low-cost method, thereby improving iron loss characteristics. The present invention relates to an electrolytic treatment method suitable for achieving significant improvements. Unidirectional silicon steel sheets are products in which secondary recrystallized grains are accumulated in the (110) [001], that is, Goss orientation, and are mainly used as iron cores for transformers and other electrical equipment. Therefore, unidirectional silicon steel sheets are required to have high magnetic flux density (represented by the B 10 value) and low iron loss (represented by the W 17/50 value). Particularly recently, from the standpoint of energy conservation, it has been desired to further reduce iron loss in order to reduce power loss in transformers and the like. The conventional method for manufacturing unidirectional silicon steel sheets involves hot rolling a material containing 2.0 to 4.0% by weight of Si (hereinafter simply expressed as %), followed by one or two cooling steps including intermediate annealing. The final plate thickness is obtained by inter-rolling, and after decarburization annealing, an annealing separator containing MgO as the main component is applied, and then it is wound into a coil, followed by secondary recrystallization annealing and purification annealing, and then as necessary. A commonly used method is to apply a phosphate-based insulating coating. In addition, during the purification annealing described above, the oxidized layer mainly composed of SiO 2 generated on the surface of the steel sheet after decarburization annealing reacts with MgO in the annealing separator to form a forsterite (Mg 2 SiO 4 ) coating. is formed. (Prior art) By the way, in order to improve the iron loss characteristics of unidirectional silicon steel sheets, the glassy film formed on the surface of the steel sheet during purification annealing is removed, and then the nitrides near the interface between the base steel and the glassy film are removed. It has been reported that it is possible to significantly reduce iron loss by removing layers containing impurities such as iron and sulfides and creating a smooth surface (for example, Japanese Patent Publications Nos. 52-24499 and 56-4150). each publication). A common method for mirror-finishing a steel plate surface is as follows:
There are mechanical polishing using buffs, brushes, etc., chemical polishing that dissolves the surface chemically, and electrolytic polishing that dissolves the surface electrochemically. Among these methods, when using mechanical polishing, it is difficult to polish the steel plate without causing distortion.
Further, since this processing strain cannot be completely removed even by strain relief annealing, iron loss increases. Therefore, in order to stably reduce iron loss, it is necessary to achieve a mirror finish by chemical polishing or electrolytic polishing, but in the case of chemical polishing, the amount of polishing and the polishing surface deteriorate due to deterioration of the polishing bath. In contrast, in the case of electrolytic polishing, the amount of polishing and the polishing surface can be controlled much more easily than in chemical polishing because it is an electrochemical process. Therefore, from an industrial point of view, it can be said that electrolytic polishing is more advantageous as a mirror polishing treatment. (Problems to be Solved by the Invention) However, although all of these techniques have a very clear effect of reducing iron loss, they have not yet been industrially implemented today. The reason is that HF, which is used as a chemical polishing liquid,
This is because +H 2 O 2 and H 3 PO 4 +H 2 O 2 are expensive, resulting in high costs. Similarly, phosphoric acid baths, sulfuric acid baths, phosphoric acid-sulfuric acid baths, and perchloric acid baths, which are commonly used as electrolytic polishing solutions, all have high concentration of acid as their main component, and also contain chromate as an additive. The cost is high due to the use of fluoric acid, organic compounds, etc., and there are many unresolved problems in processing steel sheets in large quantities, such as homogeneity, production, and early deterioration of the liquid, so it is not implemented as an industrial project. has not yet been reached. Another important drawback that hinders industrialization is that it is difficult for insulating coats to adhere to mirror-polished surfaces. That is, the conventionally known phosphate-based coats and lamic coats have poor adhesion due to their mirror surfaces and cannot withstand actual use. The present invention advantageously solves the above-mentioned problems, and aims to propose an electrolytic treatment that is advantageously suitable for surface treatment that can be easily industrialized, instead of mirror polishing treatment by electrolytic polishing or chemical polishing. (Means for Solving the Problems) The inventors reexamined the influence of surface conditions on iron loss, and as a result, they obtained the knowledge described below. The first point is that it is mainly the surface oxide that has a large effect on the hysteresis loss, and that the surface irregularities do not necessarily have to be mirror-like. Here, the specular state is an optical concept, and although it is not quantitatively defined, it refers to a surface roughness of 0.4 μm or less, preferably 0.1 μm or less in center line average roughness. Figure 2 shows each iron loss of a grain-oriented silicon steel sheet with oxides on its surface, a grain-oriented silicon steel sheet that has been subjected to mirror polishing treatment, and a grain-oriented silicon steel sheet that has been further pickled and has a rough surface. As is clear from the figure, even if the mirror surface is lost due to pickling, the iron loss has not deteriorated much. In order to obtain a silicon steel sheet with low hysteresis loss in this way, it is not necessarily necessary to make the surface of the steel sheet a mirror surface.In other words, it is necessary to make the surface of the steel sheet a magnetically smooth surface, that is, to prevent the movement of the domain walls that cause hysteresis loss. What is necessary is to provide a surface that is free from oxidation and has excellent film adhesion. Therefore, electrolytic polishing and chemical polishing are not indispensable conditions, and surface treatment means can be freely selected. However, it goes without saying that strain on the surface of the steel sheet during the magnetic smoothing process of silicon steel sheets should be avoided as much as possible since it will degrade core loss. Strain-free polishing methods are suitable. Here we will touch on the mirror polishing phenomenon that characterizes the electrolytic polishing method. In electrolytic polishing, when a current is passed through a strong acid or weak alkaline electrolyte using the surface to be polished as an anode, the metal flows out from the surface as ions due to an electrolytic reaction, but the metal flows between the electrolyte on the metal surface. A viscous film forms. Since this viscous film is thinner at the convex portions of the surface, more current flows through the convex portions than at the concave portions, causing more melting in the convex portions than in the concave portions, resulting in a mirror-like finish with no irregularities. Therefore, chemical polishing and electrolytic polishing can be said to be methods for smoothing metal surfaces, completely independent of crystal grain size and orientation. The second finding is that when a silicon steel sheet is subjected to anodic electrolysis treatment with an aqueous chloride solution, the surface properties of the steel sheet vary greatly depending on the crystal grain orientation on the surface of the steel sheet. In particular, {110} planes, which are strongly accumulated on the surface of grain-oriented silicon steel sheets that have been finish annealed, form a unique network structure microscopically, although they appear as surfaces with grain boundaries in their macroscopic appearance. Moreover, we newly discovered that this surface is magnetically smooth. And NaCl, KCl and
Chlorides such as NH 4 Cl are extremely low in cost compared to chemicals used in conventional chemical polishing and electrolytic polishing, have high current efficiency and conductivity of the electrolyte, are less corrosive, and have a lower bath composition. Since it is extremely easy to maintain and control, the equipment load and operating costs are also extremely low. It was also found that the surface of a steel sheet anodically electrolyzed with this chloride aqueous solution had better adhesion to the insulating coat than a mirror surface obtained by chemical polishing or electrolytic polishing. However, when a strip of grain-oriented silicon steel sheet is subjected to continuous anodic electrolysis treatment in an aqueous chloride solution, arc spots, speckled stains, or minute scratches are likely to occur on the surface of the treated steel sheet. There were variations in magnetic properties and adhesion strength of the coating film formed after electrolysis. When the cause of this was investigated, it was confirmed that iron hydroxide precipitates adhering to the steel plate surface adhered to the steel plate surface when passing through the conductor roll, causing deterioration of the surface quality. Incidentally, a large amount of iron hydroxide precipitate inevitably accumulates in the bath as a steel plate undergoes anodic electrolysis. Therefore, we investigated various methods for improving the surface properties of steel sheets after electrolytic treatment, and found that before the steel sheet passes through the conductor roll, a clean liquid is applied to the steel sheet to cool it and to wash away the precipitates from the surface. was found to be effective. That is, this invention introduces a finish-annealed grain-oriented silicon steel sheet that is positively charged by a conductor roll into an electrolytic cell filled with an electrolytic solution made of an aqueous solution containing one or more water-soluble chlorides. When continuously performing magnetic smoothing treatment by electrolysis, a portion of the electrolyte is continuously extracted from the electrolytic cell and solid-liquid separation is performed to determine the concentration of precipitates in the extracted electrolyte.
This is an electrolytic treatment method for a grain-oriented silicon steel sheet, which is characterized in that the electrolytic solution is adjusted to 100 ppm or less, and then the electrolytic solution is supplied to the surface of the steel sheet at the inlet side of a conductor roll, and then returned to the electrolytic cell. Further, in the embodiment, it is advantageous to use a precipitating flocculant for solid-liquid separation of the electrolyte. This invention will be specifically explained below. In this invention, a slab for a silicon steel plate is hot rolled according to a conventional method, then cold rolled with intermediate annealing to achieve the final thickness, decarburized annealed, and then final finish annealed. give As an annealing separator during this final annealing, an annealing separator containing MgO as a main component has conventionally been mainly used in order to simultaneously form a forsterite film. For example,
The main component is Al 2 O 3 , etc., and inert MgO, Ca, etc.
A separation agent containing an Sr compound may also be used. Next, the surface oxidation layer of the final finish annealing is removed. Removal methods include chemical methods such as pickling and mechanical methods such as emery polishing. Although there are no particular limitations, if the surface oxide layer is removed by mechanical methods, distortion may easily occur inside the board. Since such strain cannot be relieved even by a subsequent electrolytic treatment, it is preferable to remove surface oxides by a pickling treatment. Then, the surface from which the surface oxide layer has been removed is magnetically smoothed by anodic electrolytic treatment. The electrolytic bath is an aqueous solution containing one or more water-soluble chlorides, and the water-soluble chlorides here mean HCl, NH 4 Cl, and chlorides of various metals. All of these have a magnetic smoothing effect on grain-oriented silicon steel sheets after finish annealing, but in actual operation, alkali metals and alkaline earth metals are used to prevent metal precipitation on the cathode. It is preferable to select from chloride, NH 4 Cl, HCl, AlCl 3 , etc. Further, the concentration is desirably 20 g/or more in order to ensure the electrical conductivity of the bath. Note that seawater can also be used in this invention due to its composition and concentration. The bath temperature can be arbitrarily selected from room temperature or above, but if the temperature is too high, water will evaporate significantly, so room temperature to about 90°C is suitable. The current density can be set in a range from about 5 A/dm 2 to several hundred A/dm 2 . However, when the bath temperature is low, using a high current density exceeding 100 A/ dm2 tends to cause uneven surface treatment, so if you try to widen the current density range, you can increase the bath temperature by 40
It is better to keep it above ℃. In addition, from the standpoint of reducing iron loss, the amount of electricity in electrolysis and the amount of electrolytic removal in this discovery are respectively
It is preferable that the thickness be 300 C/dm 2 or more and 1 μm or more per side. Further, the changes in the bath caused by the electrolytic reaction are shown below using an aqueous NaCl solution as an example. Note Anode: Fe+2Cl - →FeCl 2 +2e - …(1) Cathode: 2Na + +2H 2 O+2e - →2NaOH+H 2
…(2) Bulk: FeCl 2 +2NaOH→2NaCl+Fe(OH) 2
↓ ...(3) That is, FeCl 2 produced by equation (1) and NaOH produced by equation (2) automatically regenerate NaCl through the reaction shown in equation (3). Therefore, the basic method for controlling the bath is to generate it using equation (3).
All that is required is the removal of the Fe(OH) 2 precipitate, the replenishment of water, and the replenishment of NaCl carried out of the system by the plate.
Compared to conventional chemical polishing or electrolytic polishing, it is much easier and cheaper. This point is also one of the reasons why the method of the present invention is industrially superior. By the way, the amount of steel plate melted to reduce iron loss is 1 μm or more per side, and when treated continuously, all of the dissolved iron becomes iron hydroxide, so the amount that forms and precipitates in the bath is quite large. many. For this reason, the precipitates tend to adhere to the steel plate, and if the precipitates pass through the conductor roll while remaining adhered, they will stick to the steel plate and cause defects such as stains, scratches, and arc spots. These defects naturally have an adverse effect on the magnetic properties and adhesion of the coating. Grain-oriented silicon steel sheets are thin at 0.2 to 0.35 mm, and contain a large amount of Si, so their resistivity is several times higher than that of ordinary steel.In addition, they are used to increase line speed and improve productivity. The input current increases, and as a result, the heat generated by the steel plate increases significantly.
For this reason, iron hydroxide precipitates have a strong tendency to stick to steel sheets. Therefore, the present invention eliminates the adverse effects of the precipitate concentration by the following method, which will be explained in detail with reference to FIG. 1. FIG. 1 schematically shows an example of an electrolytic treatment apparatus having three vertical electrolytic cells, which is directly used in the present invention.
A strip 1 of silicon steel sheet passes through a conductor roll 2 and a sink roll 3 and is sequentially subjected to anodic electrolysis. Note that 4 is a cathode and 5 is a snubber roll. At this time, the iron hydroxide precipitate generated by dissolving the steel plate is dispersed and accumulated in the electrolytic solution 6. Therefore, a portion of the electrolytic solution 6 is continuously extracted from the electrolytic cell 7 and guided to the stock solution tank 9 via the pump 8. Next, the electrolytic solution 6 is sent to a coagulation tank 10, and a precipitated coagulant is fed into this tank from a precipitated coagulant tank 11. The precipitated coagulant is added to the electrolytic solution to form a floc, and this liquid is converted into a solid-liquid. It is sent to the separation device 12.
At this time, it is preferable to use a pump that creates a gentle flow that does not destroy the coagulated and precipitated flocs, or to simply use gravity to transfer without using a pump. As the solid-liquid separator 12, various types of filters, centrifuges, thickeners, magnetic separators, etc. may be used alone or in combination. The iron hydroxide precipitate separated here is either dehydrated in the sludge treatment device 13 or disposed of as is. On the other hand, the liquid after solid-liquid separation is supplied from the spray 15 on the inlet side of the conductor roll to the surface of the steel plate through the treatment liquid tank 14, and washes away the deposits of iron hydroxide deposited in the electrolytic cell 7. At this time, the concentration of precipitates in the liquid coming out of the spray 15 needs to be 100 ppm or less. This is because when the precipitate concentration exceeds 100 ppm, defects such as arc spots, dirt, and scratches are likely to occur due to the adhesion of the precipitates. Further, the pressure and flow rate of the spray are set to conditions sufficient to wash away the precipitates adhering to the surface of the steel plate, but at the same time, it is desirable to determine this while also taking into consideration the cooling of the steel plate that has generated heat due to Joule heat. In addition, in this invention, depending on the capacity of the solid-liquid separator, it is not necessary to add a settling and flocculant. Further, the processing capacity of the solid-liquid separator is preferably set so as to maintain the precipitate concentration in the electrolytic cell 7 at 2% or less. This is because if the precipitate concentration exceeds 2%, the viscosity of the liquid increases and the electrical conductivity decreases, which may seriously impede the operation. When using a precipitating flocculant in this invention,
For example, anionic, depending on the pH of the electrolyte used,
Polyacrylamide-based or polyacrylic acid ester-based polymer flocculants, which are available in various types such as nonionic and cationic types, are suitable. Although FIG. 1 shows an example of a vertical electrolytic cell, the present invention is not limited to this, and may be applied to other types of horizontal cells conventionally used for continuous electrolytic treatment of steel plate strips. suit advantageously. (Function) When continuous electrolysis is carried out according to the present invention, defects such as arc spots, dirt, and minute scratches are less likely to occur on the surface of the steel plate after treatment, because the cleaning liquid sprayed on the conductor roll entry side adheres to the surface of the steel plate. This is because the deposits of iron hydroxide coming out from the electrolytic cell are no longer present on the contact surface between the strip and the conductor roll. Furthermore, the ability to cool the steel plate that has generated heat due to Joule heat by spraying the cleaning liquid onto the surface of the steel plate is also advantageous in preventing deposits from adhering to the steel plate. In addition, the iron loss of products obtained by anodic electrolysis in chloride aqueous solutions is better than that of products with mirror surfaces obtained by conventional methods such as electrolytic polishing and chemical polishing. The reasons for this have not been completely elucidated, but firstly, geometric smoothness is not required to be very high in order to be magnetically smooth, and secondly, in the method of the present invention, the grain boundaries are not step-like or Since groove-shaped recesses are formed, the width of the magnetic domain becomes narrower, which is expected to reduce iron loss.Thirdly, electrolytic polishing is thought to cause deterioration due to an oxide film formed non-uniformly on the mirror surface. It is presumed that this is because this does not occur with the product of the present invention. (Example) Example 1 C: 0.040%, Si: 3.38%, Se: 0.016%, Mo:
A hot rolled sheet with a composition containing 0.011% and Sb: 0.027% is cold rolled twice including intermediate annealing to a thickness of 0.23mm.
It was made into a cold-rolled plate with a certain thickness. Next, this steel plate was heated to 830℃.
After decarburization and primary recrystallization annealing in wet hydrogen,
After applying an annealing separator mainly composed of MgO and Al 2 O 3 , it was wound into a coil and heated at 850℃ for 50 hours.
Next recrystallization annealing and purification annealing were performed at 1200°C for 5 hours. Thereafter, the unreacted annealing separator was removed, flattening annealing was performed to correct the winding curls, and a test material was obtained. The oxide film on the surface of the sample material was removed by pickling, and then anodic electrolytic treatment was performed using the vertical electrolytic cell shown in FIG. 1 under the following conditions. (1) Electrolyte: NaCl, 200g/, 60℃ (2) Iron hydroxide precipitate concentration in the tank: 3500ppm (3) Current density: 70A/dm 2 (4) Electricity: 2400 coulombs/dm 2 ( (Dissolution of 6 μm on one side) Furthermore, while performing electrolytic treatment, a portion of the electrolytic solution was extracted from the electrolytic cell and introduced into a thickener, where it was separated into solid and liquid by sedimentation. The precipitate concentration in the electrolytic solution after the sedimentation treatment was about 60 ppm. The operation was then carried out while spraying the treated electrolyte onto the strip surface at the entrance of the conductor roll. Washing with water after electrolytic treatment,
It was dried and wound into coils. Table 1 shows the results of examining the magnetic properties and surface appearance of the products. For comparison, a similar investigation was also conducted when the electrolyte was operated without solid-liquid separation and with simple circulating spraying. These results are also listed in Table 1.

【表】 この発明に従つて得られた製品(適合例)は欠
陥のない表面とともに、きわめて低い鉄損を示し
たが、比較例ではアークスポツトを斑点状汚れが
多発し、このため、磁気特性も適合例に比べ劣る
ものであつた。 実施例 2 実施例と同じ供試材を準備し、かかる供試材表
面の酸化物被膜を酸洗により除去し、ついで実施
例1と同じ電解槽を用いて陽極電解処理を下記の
条件で行つた。 記 (1)電解液:NaCl(100g)、NH4Cl(150g/)、
50℃ (2)槽中の水酸化鉄沈澱物濃度:2800ppm (3)電流密度:90A/dm2 (4)電気量:2000クーロン/dm2(片面5μm溶解) さらに電解処理を行いつつ電解槽から電解液を
一部抜き出し、この液にポリアクリルアミド系の
高分子沈澱凝集剤およびFe3O4粉末を加えてフロ
ツクを形成させ、次に永久磁石を利用した磁着分
離装置によつて固液分離した。なお処理後の液の
沈澱物濃度は約30ppmであつた。この液をコンダ
クターロールの入側でストリツプ表面にスプレー
しつつ、操業を行つた。そして電解処理後に水
洗、乾燥し、コイルに巻き取つた。製品の磁気特
性と表面外観を調べた結果を第2表に示す。ま
た、比較のために、電解液の固液分離を行わずに
単なる循環スプレーをしながら操業した場合につ
いても同様の調査を行つた。この結果も第2表に
併記する。
[Table] The product obtained according to the present invention (conforming example) showed a defect-free surface and extremely low core loss, but the comparative example had frequent speckled stains on the arc spots, which caused magnetic properties to deteriorate. The results were also inferior to the conforming examples. Example 2 The same test material as in Example was prepared, the oxide film on the surface of the test material was removed by pickling, and then anodic electrolysis was performed using the same electrolytic bath as in Example 1 under the following conditions. Ivy. (1) Electrolyte: NaCl (100g), NH 4 Cl (150g/),
50℃ (2) Concentration of iron hydroxide precipitate in the tank: 2800ppm (3) Current density: 90A/dm 2 (4) Amount of electricity: 2000 coulombs/dm 2 (dissolution of 5 μm on one side) Further electrolytic treatment is carried out in the electrolytic tank. A portion of the electrolyte is extracted from the liquid, a polyacrylamide-based polymer precipitating flocculant and Fe 3 O 4 powder are added to this liquid to form a floc, and then a solid-liquid is separated by a magnetic separation device using a permanent magnet. separated. The precipitate concentration in the solution after treatment was approximately 30 ppm. The operation was carried out while spraying this liquid onto the strip surface on the inlet side of the conductor roll. After electrolytic treatment, it was washed with water, dried, and wound into a coil. Table 2 shows the results of investigating the magnetic properties and surface appearance of the products. For comparison, a similar investigation was also conducted when the electrolyte was operated with simple circulation spraying without solid-liquid separation. These results are also listed in Table 2.

【表】 この発明に従つて得られた製品(適合例)は欠
陥のない表面とともに、きわめて低い鉄損を示し
たが、比較例ではアークスポツトと斑点状汚れが
多発し、このため、磁気特性も適合例に比べ劣る
ものであつた。 (発明の効果) この発明の方法は仕上げ焼鈍済の方向性けい素
鋼板の鉄損低下を目的とした低コストの電解処理
方法としてまた連続的に操業においても表面欠陥
のない製品を得る方法としてきわめて有利であ
り、従来は困難であつた工業化の実現を容易にし
得る。
[Table] The product obtained according to the present invention (conforming example) showed a defect-free surface and extremely low core loss, but the comparative example had many arc spots and speckled stains, which caused the magnetic properties to deteriorate. The results were also inferior to the conforming examples. (Effects of the Invention) The method of the present invention can be used as a low-cost electrolytic treatment method for the purpose of reducing iron loss of finish-annealed grain-oriented silicon steel sheets, and as a method for obtaining products without surface defects even in continuous operation. This is extremely advantageous and can facilitate the realization of industrialization, which has been difficult in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電解処理装置の1例を示す模式図、第
2図は表面状態と鉄損の関係を示すグラフであ
る。 1…ストリツプ、2…コンダクターロール、3
…シンクロール、4…陰極、5…スナバーロー
ル、6…電解液、7…電解槽、8…ポンプ、9…
原液槽、10…凝集槽、11…沈澱凝集剤タン
ク、12…固液分離装置、13…スラツジ処理装
置、14…処理液槽、15…スプレー。
FIG. 1 is a schematic diagram showing an example of an electrolytic treatment apparatus, and FIG. 2 is a graph showing the relationship between surface condition and iron loss. 1...Strip, 2...Conductor roll, 3
... sink roll, 4... cathode, 5... snubber roll, 6... electrolyte, 7... electrolytic cell, 8... pump, 9...
Raw solution tank, 10... flocculating tank, 11... settling flocculant tank, 12... solid-liquid separator, 13... sludge treatment device, 14... treated liquid tank, 15... spray.

Claims (1)

【特許請求の範囲】 1 水溶性の塩化物を1種以上含む水溶液からな
る電解液を満たした電解槽内に、コンダクタロー
ルによつて正に帯電された仕上げ焼鈍済の方向性
けい素鋼板を導入し電解による磁気的平滑化処理
を連続的に施すに当り、 電解槽から電解液の一部を連続的に抜き出しつ
つ固液分離を行つて抜き出した電解液中の沈澱物
濃度を100ppm以下とし、ついで該電解液をコン
ダクタロールの入側にて鋼板表面へ供給し再び電
解槽内に戻すことを特徴とする方向性けい素鋼板
の電解処理方法。 2 電解液の固液分離は、沈澱凝集剤を用いる特
許請求の範囲第1項に記載の方法。
[Claims] 1. A finish-annealed grain-oriented silicon steel sheet that is positively charged by a conductor roll is placed in an electrolytic cell filled with an electrolytic solution consisting of an aqueous solution containing one or more water-soluble chlorides. When introducing and continuously performing magnetic smoothing treatment by electrolysis, a portion of the electrolyte is continuously extracted from the electrolytic cell and solid-liquid separation is performed to keep the concentration of precipitates in the extracted electrolyte to 100 ppm or less. A method for electrolytic treatment of a grain-oriented silicon steel sheet, characterized in that the electrolytic solution is then supplied to the surface of the steel sheet at the inlet side of a conductor roll, and then returned to the electrolytic cell. 2. The method according to claim 1, in which the solid-liquid separation of the electrolytic solution uses a precipitating and coagulating agent.
JP8736588A 1988-04-11 1988-04-11 Electrolytic treatment for grain-oriented silicon steel sheet Granted JPH01259200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8736588A JPH01259200A (en) 1988-04-11 1988-04-11 Electrolytic treatment for grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8736588A JPH01259200A (en) 1988-04-11 1988-04-11 Electrolytic treatment for grain-oriented silicon steel sheet

Publications (2)

Publication Number Publication Date
JPH01259200A JPH01259200A (en) 1989-10-16
JPH0587600B2 true JPH0587600B2 (en) 1993-12-17

Family

ID=13912868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8736588A Granted JPH01259200A (en) 1988-04-11 1988-04-11 Electrolytic treatment for grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH01259200A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101649587B1 (en) * 2015-05-07 2016-08-19 주식회사 삼성피엘티 Injection products incision device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104419974B (en) * 2013-08-19 2017-06-16 柳广德 Electric slurry polishing can be carried out continuously for bundled stainless steel wire and reduce the installation method of surface roughness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101649587B1 (en) * 2015-05-07 2016-08-19 주식회사 삼성피엘티 Injection products incision device

Also Published As

Publication number Publication date
JPH01259200A (en) 1989-10-16

Similar Documents

Publication Publication Date Title
US3932236A (en) Method for producing a super low watt loss grain oriented electrical steel sheet
EP0307163B1 (en) Silicon steel sheets having low iron loss and method of producing the same
US4872946A (en) Method of manufacturing supports for lithographic printing plate
JPH0587600B2 (en)
US3207683A (en) Process of electrolytic surface treatment of metals
JPH0680174B2 (en) Method for manufacturing low iron loss unidirectional silicon steel sheet
JP2001011698A (en) Surface roughening method and manufacture of aluminum supporting body for lithographic printing plate
JPS6048600B2 (en) Manufacturing method of silicon electrical steel sheet
JPH02213483A (en) Production of grain oriented silicon steel sheet excellent in magnetic characteristic
JPH0587597B2 (en)
JPH0230779A (en) Production of grain-oriented silicon steel sheet having low iron loss
JPH0551711A (en) Production of high temperature-worked product of aluminum alloy
US3213008A (en) Electrolytic polishing of stainless steel
JPS61167000A (en) Removing method of oxide film from continuously annealed steel strip
JPH0238527A (en) Manufacture of grain-oriented silicon steel sheet with low iron loss free from deterioration in characteristic due to stress relief annealing
RU2793361C1 (en) Electric pickling of steel
RU2793361C9 (en) Electric pickling of steel
JPS61166999A (en) Method for cleaning surface of steel sheet
JPH09118923A (en) Manufacture of grain-oriented silicon steel sheet having low core loss
Cuthbertson Electrolytic processes for surface conditioning of metals
JPH0325513B2 (en)
JP3272802B2 (en) Method for producing grain-oriented silicon steel sheet having homogeneous forsterite coating
JPS5937126B2 (en) Dry temper rolling method for steel strip
JP2001011699A (en) Manufacture of aluminum supporting body for lithographic printing plate
JPH01168899A (en) Production of cold rolled stainless steel sheet free from heat scratch