JPH0325513B2 - - Google Patents

Info

Publication number
JPH0325513B2
JPH0325513B2 JP58110742A JP11074283A JPH0325513B2 JP H0325513 B2 JPH0325513 B2 JP H0325513B2 JP 58110742 A JP58110742 A JP 58110742A JP 11074283 A JP11074283 A JP 11074283A JP H0325513 B2 JPH0325513 B2 JP H0325513B2
Authority
JP
Japan
Prior art keywords
annealing
alkaline earth
steel sheet
magnetic properties
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58110742A
Other languages
Japanese (ja)
Other versions
JPS602625A (en
Inventor
Yasuhiro Kobayashi
Masao Iguchi
Isao Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP58110742A priority Critical patent/JPS602625A/en
Publication of JPS602625A publication Critical patent/JPS602625A/en
Publication of JPH0325513B2 publication Critical patent/JPH0325513B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、鋼板の圧延方向に磁化容易軸<001
>が十分に揃つた結晶粒を持つ磁束密度が高く、
鉄損の低い一方向性珪素鋼板の製造方法に関する
ものである。 主として変圧器等の鉄心用材料として用いられ
る一方向性珪素鋼板に要求される特性は、一定の
磁化力において得られる磁束密度が高いこと、お
よび一定の磁束密度を与えた場合にその鉄損が低
いことである。その代表値として、磁化力
1000A/mにおける磁束密度(B10、テスラ)、お
よび磁束密度1.7テスラ、周波数50Hzにおける鉄
損(W17/50、W/Kg)によつて表わされる。 従来の一方向性珪素鋼板は、通常2.0〜4.0%の
Siを含む低炭素鋼に微量のMn、S、Se等のイン
ヒビター成分元素を含ませて溶製した素材を熱間
圧延した後、中間焼鈍を含む2回以上もしくは1
回の冷間圧延により所定の板厚に仕上げ、該冷延
鋼板に脱炭をかねた1次再結晶焼鈍を施し、この
脱炭鋼板の表面にMgOを主成分とする焼鈍分離
剤を塗布した後、2次再結晶および鋼板中の不純
物除去のための最終仕上げ焼鈍をすることにより
製造されている。すなわち、最終仕上げ焼鈍によ
つて2次再結晶粒を{110}<001>方位に揃つて
発達させるとともに、鋼中の不純物が除去されて
良好な磁気特性が得られる。 通常、磁気特性を向上させるための手法とし
て、各種の工程、例えば、熱間冷間圧延時のパス
スケジユール、1次再結晶焼鈍および2次最結晶
焼鈍時のヒートパターンなどの改善が考えられ、
多くの提案がなされ、それぞれに成果が得られて
いる。しかしながら、いずれも工程改善による手
法は、各種の含有成分が一定の範囲に変動して溶
製される一方向性珪素鋼素材の全てに効果がある
とは限らず、極端な場合には、かえつて磁気特性
を劣化させることもある。すなわち、工程改善に
よる手法には、ある程度の不安定性は避け得ない
のである。この不安定性を無くするためには、素
材組成と工程条件の極めて厳密な管理が要求さ
れ、経済的な面あるいは生産効率の面から実現す
ることは困難である。 本発明はこのような従来の製造方法上の欠点を
克服し、操業上に何ら支障なく、高磁束密度、低
鉄損の一方向性珪素鋼板を製造する方法を提供し
ようとするものである。 本発明によれば、上述した1次再結晶焼鈍を行
う前に、アルカリ土類金属化合物を鋼板に所定量
固着するという簡便な手法により、上記目的を達
成することができる。アルカリ土類金属化合物の
鋼板への固着は、アルカリ土類金属化合物をアル
カリ土類金属に換算して1.0〜0.0001mol/含む
電解槽中での、1〜15coulomb/dm2の電解処理
法によるのが好適である。 次に本発明による磁気特性のすぐれた一方向性
珪素鋼板の製造方法につき詳細に説明する。 一般に一方向性珪素鋼板の製造においては、イ
ンヒビターと呼ばれる1次再結晶粒の正常な粒成
長を抑制するMnS、MnSe等の析出物、あるいは
Sbなどの粒界偏析元素の働きによつて、最終仕
上げ焼鈍中に形成される2次再結晶粒の{110}<
001>方位を圧延方向に揃えて磁気特性のよい成
品を得ている。 本発明者等は検討の結果、この2次再結晶の核
となりうる起源は、熱間圧延板の表層から厚さの
1/10程度に存在する{110}<001>方位を持つ未
再結晶粒であることという知見を得ている。すな
わち、2次再結晶は鋼板の極く表層から起るので
あり、表層の{110}<001>方位の1次再結晶粒
が多いほど2次再結晶の核発生が容易となり、2
次再結晶が円滑に進むために磁気特性が向上する
ものと考えられる。表層の{110}<001>方位を
強めるためには、熱延時に表層の{110}<001>
方位を強めておくか、または1次再結晶焼鈍時に
強めるかのいずれかが考えられる。前者の場合
は、熱延仕上げ温度を低下させることが考えられ
るのであるが、あまりに低温に過ぎると表面欠陥
が多発し、限界がある。従つて、通常工程を用い
たままで1次再結晶焼鈍時に{110}<001>方位
を強めることが容易な手法であり、かつ安定的な
ものであるとの判断から、本発明者等は各種の手
法で実験を繰り返した。その結果、1次再結晶焼
鈍前に鋼板表面にアルカリ土類金属化合物をアル
カリ土類金属に換算して1.0〜0.0001mol/含む
電解槽における1〜15coulomb/dm2の電解処理
により固着させるという極めて簡便な手法によ
り、磁毅特性の向上が達成できた。 この原因について、集合組織、脱炭反応の面か
ら検討を行なつた結果、Transaction ISIJ,
vol.15(1975)、P324に開示されるように、低炭素
鋼の再結晶焼鈍前にSなどの化合物を塗布するこ
とにより、表層の黒鉛析出が抑制されること、ま
た逆に、アルカリ土類金属化合物によつて黒鉛析
出が促進されることから、本発明に係わる素材に
関してもアルカリ土類金属化合物の鋼板表面への
固着によつて、表面の脱炭が急速に進行したこと
が推察される。この急速な表層の脱炭によつて、
表層の{110}<001>方位の1次再結晶粒が通常
より発生しやすい状況になり、結果的に表層
{110}<001>方位が強まつたことが、磁気特性向
上に結びついたものと考えられる。 前述の電解処理法における電解(脱脂)槽の電
極の配置の1例は、第4図に示すように、通板さ
れる鋼板の上下に電解用の対極が並列に位置し、
初めの対極が陽極であれば次の対極が陰極という
ようにして、鋼板を相対的に陽、陰極交互に交換
させて電解する方法で良いが、必ずしもこの方法
に限定する必要はない。第4図において、1は鋼
板、2は電解槽、3は電源、4は陽極、5は陰極
である。 上述の電解処理法は、アルカリ土類金属化合物
を鋼板表面に固着させることを目的とするもので
ある。電解処理による場合、電解液中の化合物の
イオン化による帯電状態に応じて鋼板表面にアル
カリ土類金属化合物の電着が起り、塗布乾燥法ま
たは浸漬法に比べてより強固な付着状態となると
考えられる。従つて、後工程における鋼板とロー
ル等の接触によつて剥離したり、削り落ちたりす
ることが少ないが、鋼板に付与する電気量の管理
が必要である。 本発明者等は、磁気特性改善効果のあるアルカ
リ土類金属化合物の固着量について検討したとこ
ろ、電解処理による方法においては、アルカリ土
類金属に換算して0.0001〜1.0mol/の濃度の電
解槽において、電解時に1〜15coulomb/dm2
電気量に制御することにより、磁気特性を改善し
うることを見出した。電解液の温度はアルカリ土
類金属化合物の濃度の条件が満足されていればよ
く、特に限定する必要はないが、電解脱脂と同時
に化合物の固着を行う場合、脱脂の効果を上げる
ためには25〜100℃程度の液温が望ましい。 次に、本発明におけるアルカリ土類金属化合物
水溶液の濃度、電解電気量などの限定理由につい
て、本発明者等の実施した実験例によつて説明す
る。 第1図および第2図は、それぞれアルカリ土類
金属化合物の代表例としてMgCl2,Sr(NO32
選び、アルカリ土類金属イオンに換算した濃度と
磁気特性の関係を示す図である。供試材の組成お
よび工程は後述する実施例3と同一である。単に
浸漬した場合、電解処理した場合とも、
0.0001mol/以上で効果が見られる。
0.05mol/程度の濃度が最も効果が大きく、そ
れ以上濃度を増加させても変化は少ない。
1.0mol/を越える場合はフオルステライト質
被膜形成を阻害するので好ましくない。以上の結
果から、濃度を0.0001〜1.0mol/の範囲に限定
した。 第3図は、電解脱脂時に電気量を変えた時の磁
気特性の変化を示す図である。液温は80℃、アル
カリ土類金属化合物のアルカリ土類金属換算濃度
は0.05mol/とした。供試材の組成および工程
は後述する実施例3と同一である。無電解時に比
較して、1coulomb/dm2以上の電気量で電解処
理することにより磁気特性の向上が見られる。電
解電気量の上限を15coulomb/dm2とした理由
は、電解槽の長大化、通板速度の低下、また電解
用電源の大容量化を必要とし、生産能率および経
済性の面から好ましくないためである。従つて、
1〜15coulomb/dm2の電解電気量に限定した。
電解処理は水溶液浸漬と本質的に変わりはないた
め、電気量が低い場合にも効果はある。しかしな
がら、脱脂を同時に目的とする場合はあまりに低
い電気量では好ましくないのは自明である。 次に、本発明で用いる鋼素材の成分限定理由に
ついて説明する。 Cは、0.02%より少ないと熱延時に粗大バンド
組織が板厚中央に残存し、2次再結晶が不完全に
なり、0.06%より多いと脱炭に長時間を要し、脱
炭不良を招き磁気特性上好ましくないので、0.02
〜0.06%の範囲がよい。 Siは、2.0%より少ないと素材の電気抵抗が低
く、渦電流損失に基づく鉄損値が大きくなり、
4.0%より多いと冷延時に板割れを生じやすいた
め、2.0〜4.0%の範囲がよい。 SとSeは共にMnと結合してMnS,MnSeを形
成し、インヒビターとして作用させるために添加
するもので、Sは0.008%未満、Seは0.003%未満
の場合には、生成するMnS,MnSeの1次再結晶
粒の成長抑制効果が弱く、また、いずれも0.1%
を越すと圧延加工性が著しく劣化するので、Sは
0.008〜0.1%、Seは0.003〜0.1%の範囲にするの
が良い。 次に、本発明を実施例につき具体的に説明す
る。 実施例 1 C0.040%、Si2.95%、Mn0.062%、S0.018%を
含有する鋼塊を、熱間圧延、均一化焼鈍および1
回の中間焼鈍を含む2回の冷間圧延を経て0.3mm
の最終板厚とし、湿水素中の脱炭1次再結晶焼鈍
前に、第1表に示すような条件で、Mg(NO32
CaCl2、Sr(NO32、BaCl2を表面に付着させ、そ
の後、脱炭焼鈍、MgO分離剤塗布工程を経て、
820℃から3℃/hrの加熱速度で1000℃まで昇温
した後、1180℃の水素雰囲気中で5時間純化焼鈍
を行なつて得た一方向性珪素鋼板の磁気特性を第
1表に示す。 実施例 2 C0.041%、Si3.05%、Mn0.066%、Se0.017%を
含有する鋼塊を、熱間圧延、均一化焼鈍および1
回の中間焼鈍を含む2回の冷間圧延を経て0.3mm
の最終板厚とし、湿水素中の脱炭1次再結晶焼鈍
前に、第2表に示すような条件で、MgCl2、Ca
(NO32、Sr(OH)2、Ba(NO32を表面に固着さ
せ、その後、脱炭焼鈍、MgO分離剤塗布工程を
経て、850℃からで50時間保持する2次再結晶焼
鈍を行なつた後、1180℃の水素雰囲気中で5時間
純化焼鈍を行なつて得た一方向性珪素鋼板の磁気
特性を第2表に示す。 実施例 3 C0.045%、Si3.35%、Mn0.064%、Se0.018%、
Sb0.025を含有する鋼塊を熱間圧延、均一化焼鈍
および1回の中間焼鈍を含む2回の冷間圧延を経
て0.3mmの最終板厚とし、湿水素中の脱炭1次再
結晶焼鈍前に、第3表に示すような条件で、
MgCl2、Ca(OH)2、Sr(NO32、Ba(OH)2を表面
に固着させ、その後、脱炭焼鈍、MgO分離剤塗
布工程を経て、850℃から50時間保持する2次再
結晶焼鈍を行なつた後、1180℃の水素雰囲気中で
5時間純化焼鈍を行なつて得た一方向性珪素鋼板
の磁気特性を第3表に示す。 以上の実施例の結果から明らかなように、電解
処理した場合、アルカリ土類金属化合物の鋼板表
面への固着によつて、磁束密度で約0.01T、鉄損
で約0.03〜0.05W/Kg程度の改善が見られる。 以上のように、鋼板表面にアルカリ土類金属化
合物を固着させることにより、極めて簡便に磁気
特性の向上が得られ、操業上困難な点あるいは不
安定な点が全くないことは、経済性、安定性の両
面から本発明の寄与は大きい。
In the present invention, the axis of easy magnetization is <001 in the rolling direction of the steel plate.
> has a high magnetic flux density with well-aligned crystal grains,
The present invention relates to a method for manufacturing a unidirectional silicon steel plate with low iron loss. The characteristics required of unidirectional silicon steel sheets, which are mainly used as core materials for transformers, are that the magnetic flux density obtained at a constant magnetization force is high, and that the iron loss is low when a constant magnetic flux density is applied. That's low. As a representative value, the magnetizing force
It is expressed by the magnetic flux density (B 10 , Tesla) at 1000 A/m and the iron loss (W 17/50 , W/Kg) at a magnetic flux density of 1.7 Tesla and a frequency of 50 Hz. Conventional unidirectional silicon steel sheets usually have 2.0 to 4.0%
After hot-rolling a material made by impregnating low-carbon steel containing Si with trace amounts of inhibitor component elements such as Mn, S, and Se, it is subjected to two or more times including intermediate annealing or once.
The cold rolled steel sheet was finished to a predetermined thickness by cold rolling twice, and the cold rolled steel sheet was subjected to primary recrystallization annealing which also serves as decarburization, and an annealing separator mainly composed of MgO was applied to the surface of this decarburized steel sheet. After that, the steel sheet is manufactured by performing secondary recrystallization and final annealing to remove impurities in the steel sheet. That is, by final annealing, secondary recrystallized grains are developed aligned in the {110}<001> orientation, impurities in the steel are removed, and good magnetic properties are obtained. Generally, methods for improving magnetic properties include improving various processes, such as the pass schedule during hot-cold rolling, the heat pattern during primary recrystallization annealing, and secondary recrystallization annealing.
Many proposals have been made, and each has yielded results. However, these methods based on process improvement are not necessarily effective for all unidirectional silicon steel materials that are produced with various contained components varying within a certain range, and in extreme cases, This may cause deterioration of magnetic properties. In other words, a certain degree of instability is unavoidable in methods based on process improvement. Eliminating this instability requires extremely strict control of material composition and process conditions, which is difficult to achieve from an economical or production efficiency standpoint. The present invention aims to overcome these drawbacks of conventional manufacturing methods and provide a method for manufacturing unidirectional silicon steel sheets with high magnetic flux density and low core loss without any operational problems. According to the present invention, the above object can be achieved by a simple method of fixing a predetermined amount of an alkaline earth metal compound to a steel plate before performing the above-described primary recrystallization annealing. The adhesion of the alkaline earth metal compound to the steel plate is achieved by electrolytic treatment of 1 to 15 coulomb/dm 2 in an electrolytic bath containing 1.0 to 0.0001 mol/dm 2 of the alkaline earth metal compound converted to alkaline earth metal. is suitable. Next, a method for manufacturing a unidirectional silicon steel sheet with excellent magnetic properties according to the present invention will be explained in detail. In general, in the production of grain-oriented silicon steel sheets, precipitates such as MnS and MnSe, which suppress the normal grain growth of primary recrystallized grains, called inhibitors, or
Due to the action of grain boundary segregation elements such as Sb, the secondary recrystallized grains formed during final annealing are
001>A product with good magnetic properties is obtained by aligning the orientation with the rolling direction. As a result of investigation, the present inventors have found that the origin that can become the nucleus of this secondary recrystallization is unrecrystallized {110}<001> orientation existing at about 1/10 of the thickness from the surface layer of the hot rolled sheet. We have obtained the knowledge that it is a grain. In other words, secondary recrystallization occurs from the very surface layer of the steel sheet, and the more primary recrystallized grains in the {110}<001> orientation in the surface layer, the easier the generation of nuclei for secondary recrystallization, and the more
It is thought that the magnetic properties are improved because the next recrystallization progresses smoothly. In order to strengthen the {110}<001> orientation of the surface layer, it is necessary to
It is possible to either strengthen the orientation or to strengthen it during primary recrystallization annealing. In the former case, it is possible to lower the hot rolling finishing temperature, but if it is too low, surface defects will occur frequently, and there is a limit. Therefore, the present inventors determined that strengthening the {110}<001> orientation during primary recrystallization annealing while using the normal process is an easy and stable method, and therefore The experiment was repeated using this method. As a result, we found that the alkaline earth metal compound was fixed to the steel sheet surface by electrolytic treatment at 1 to 15 coulomb/dm 2 in an electrolytic bath containing 1.0 to 0.0001 mol/dm 2 in terms of alkaline earth metal before primary recrystallization annealing. We were able to improve the magnetic properties using a simple method. As a result of examining the cause of this from the aspects of texture and decarburization, Transaction ISIJ,
Vol. 15 (1975), p. 324, it is known that graphite precipitation on the surface layer can be suppressed by applying a compound such as S before recrystallization annealing of low carbon steel, and that, conversely, graphite precipitation on the surface layer can be suppressed by applying compounds such as S before recrystallization annealing of low carbon steel. Since graphite precipitation is promoted by similar metal compounds, it is inferred that surface decarburization progressed rapidly in the materials related to the present invention due to the adhesion of alkaline earth metal compounds to the steel plate surface. Ru. Due to this rapid decarburization of the surface layer,
Primary recrystallized grains with {110}<001> orientation in the surface layer are more likely to occur than usual, and as a result, the {110}<001> orientation in the surface layer becomes stronger, which leads to improved magnetic properties. it is conceivable that. One example of the arrangement of the electrodes in the electrolytic (degreasing) tank in the above-mentioned electrolytic treatment method is as shown in Fig. 4, in which counter electrodes for electrolysis are located in parallel above and below the steel plate being passed.
If the first counter electrode is an anode, the next counter electrode is a cathode, and electrolysis may be performed by alternately replacing the anode and cathode of the steel plate, but it is not necessarily limited to this method. In FIG. 4, 1 is a steel plate, 2 is an electrolytic cell, 3 is a power source, 4 is an anode, and 5 is a cathode. The purpose of the above-mentioned electrolytic treatment method is to fix an alkaline earth metal compound to the surface of a steel sheet. In the case of electrolytic treatment, alkaline earth metal compounds are electrodeposited on the steel sheet surface depending on the electrification state due to ionization of the compounds in the electrolyte, and it is thought that the adhesion is stronger than that in the coating drying method or dipping method. . Therefore, peeling or scraping due to contact between the steel plate and a roll in a subsequent process is less likely, but it is necessary to manage the amount of electricity applied to the steel plate. The present inventors investigated the amount of fixed alkaline earth metal compounds that have the effect of improving magnetic properties, and found that in the electrolytic treatment method, the electrolytic bath has a concentration of 0.0001 to 1.0 mol/concentration in terms of alkaline earth metal. It was discovered that the magnetic properties could be improved by controlling the amount of electricity during electrolysis to 1 to 15 coulomb/dm 2 . The temperature of the electrolyte does not need to be particularly limited as long as it satisfies the conditions for the concentration of the alkaline earth metal compound, but when electrolytic degreasing is performed at the same time as fixation of the compound, in order to increase the degreasing effect, it is necessary to A liquid temperature of ~100℃ is desirable. Next, the reasons for limiting the concentration of the alkaline earth metal compound aqueous solution, the amount of electrolyzed electricity, etc. in the present invention will be explained using experimental examples conducted by the present inventors. Figures 1 and 2 are diagrams showing the relationship between concentration converted to alkaline earth metal ions and magnetic properties, with MgCl 2 and Sr(NO 3 ) 2 selected as representative examples of alkaline earth metal compounds, respectively. . The composition and process of the sample material are the same as in Example 3, which will be described later. Whether simply immersed or electrolytically treated,
Effects are seen at 0.0001 mol/or more.
A concentration of about 0.05 mol/about has the greatest effect, and even if the concentration is increased beyond that, there is little change.
If it exceeds 1.0 mol/mol, it is not preferable because it inhibits the formation of a forsterite film. Based on the above results, the concentration was limited to a range of 0.0001 to 1.0 mol/. FIG. 3 is a diagram showing changes in magnetic properties when the amount of electricity is changed during electrolytic degreasing. The liquid temperature was 80°C, and the alkaline earth metal equivalent concentration of the alkaline earth metal compound was 0.05 mol/. The composition and process of the sample material are the same as in Example 3, which will be described later. Compared to electroless treatment, magnetic properties are improved by electrolytic treatment with an amount of electricity of 1 coulomb/dm 2 or more. The reason why the upper limit of the amount of electricity for electrolysis was set at 15 coulomb/dm 2 is that it requires a longer electrolyzer, a lower threading speed, and a larger capacity power source for electrolysis, which is unfavorable from the viewpoint of production efficiency and economy. It is. Therefore,
The amount of electrolytic electricity was limited to 1 to 15 coulomb/ dm2 .
Electrolytic treatment is essentially the same as immersion in an aqueous solution, so it is effective even when the amount of electricity is low. However, if degreasing is also desired, it is obvious that too low an amount of electricity is not preferable. Next, the reason for limiting the composition of the steel material used in the present invention will be explained. If C is less than 0.02%, a coarse band structure will remain in the center of the sheet thickness during hot rolling, and secondary recrystallization will be incomplete; if it is more than 0.06%, decarburization will take a long time, resulting in poor decarburization. 0.02 as it is unfavorable in terms of inviting magnetic properties.
A range of ~0.06% is good. If Si is less than 2.0%, the electrical resistance of the material will be low and the iron loss value based on eddy current loss will be large.
If it is more than 4.0%, plate cracking is likely to occur during cold rolling, so a range of 2.0 to 4.0% is preferable. Both S and Se combine with Mn to form MnS and MnSe, and are added to act as inhibitors. If S is less than 0.008% and Se is less than 0.003%, the amount of MnS and MnSe produced will be reduced. The growth suppression effect of primary recrystallized grains is weak, and both are 0.1%.
If S is exceeded, the rolling workability will be significantly deteriorated.
It is preferable to keep Se in the range of 0.008 to 0.1%, and Se in the range of 0.003 to 0.1%. Next, the present invention will be specifically explained using examples. Example 1 A steel ingot containing 0.040% C, 2.95% Si, 0.062% Mn, and 0.018% S was hot rolled, homogenized annealed and
0.3mm after two times of cold rolling including intermediate annealing.
Mg(NO 3 ) 2 , Mg(NO 3 ) 2 ,
CaCl 2 , Sr(NO 3 ) 2 , and BaCl 2 are attached to the surface, and then through decarburization annealing and MgO separating agent coating process,
Table 1 shows the magnetic properties of unidirectional silicon steel sheets obtained by heating from 820°C to 1000°C at a heating rate of 3°C/hr and then performing purification annealing in a hydrogen atmosphere at 1180°C for 5 hours. . Example 2 A steel ingot containing 0.041% C, 3.05% Si, 0.066% Mn, and 0.017% Se was hot rolled, homogenized annealed and
0.3mm after two times of cold rolling including intermediate annealing.
MgCl 2 , Ca
(NO 3 ) 2 , Sr(OH) 2 , and Ba(NO 3 ) 2 are fixed on the surface, followed by decarburization annealing, MgO separating agent application process, and secondary recrystallization at 850°C for 50 hours. Table 2 shows the magnetic properties of the unidirectional silicon steel sheets obtained by annealing and then purification annealing for 5 hours in a hydrogen atmosphere at 1180°C. Example 3 C0.045%, Si3.35%, Mn0.064%, Se0.018%,
A steel ingot containing Sb0.025 was hot rolled, homogenized annealed, and cold rolled twice including one intermediate annealing to a final thickness of 0.3 mm, and then decarburized and primary recrystallized in wet hydrogen. Before annealing, under the conditions shown in Table 3,
MgCl 2 , Ca(OH) 2 , Sr(NO 3 ) 2 , and Ba(OH) 2 are fixed on the surface, followed by decarburization annealing, MgO separating agent application process, and secondary heating at 850°C for 50 hours. Table 3 shows the magnetic properties of unidirectional silicon steel sheets obtained by recrystallization annealing and then purification annealing for 5 hours in a hydrogen atmosphere at 1180°C. As is clear from the results of the above examples, when electrolytically treated, due to the adhesion of alkaline earth metal compounds to the steel sheet surface, the magnetic flux density is approximately 0.01 T and the iron loss is approximately 0.03 to 0.05 W/Kg. improvement can be seen. As described above, by fixing alkaline earth metal compounds to the steel sheet surface, it is possible to improve the magnetic properties extremely easily, and there are no operational difficulties or instability, which is advantageous in terms of economic efficiency and stability. The contribution of the present invention is significant from both aspects of performance.

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は添加するアルカリ土類金
属化合物の濃度と磁気特性との関係を示すグラ
フ、第3図は電解処理時の電気量と磁気特性との
関係を示すグラフ、第4図は電解槽の電極の1つ
の配置例を示す線図である。 符号の説明、1……鋼板、2……電解槽、3…
…電源、4……陽極、5……陰極。
Figures 1 and 2 are graphs showing the relationship between the concentration of the alkaline earth metal compound added and magnetic properties, Figure 3 is a graph showing the relationship between the amount of electricity during electrolytic treatment and magnetic properties, and Figure 4 is a graph showing the relationship between the amount of electricity and magnetic properties during electrolysis treatment. 1 is a diagram showing one example of arrangement of electrodes of an electrolytic cell; FIG. Explanation of symbols, 1... Steel plate, 2... Electrolytic cell, 3...
...power supply, 4...anode, 5...cathode.

Claims (1)

【特許請求の範囲】[Claims] 1 C0.02〜0.06%、Si2.0〜4.0%を含有する低炭
素鋼にS0.008〜0.1%およびまたはSe0.003〜0.1%
を含有させた一方向性珪素鋼素材を熱間圧延する
工程と、前記熱延鋼板を中間焼鈍を含む2回以
上、もしくは1回の冷間圧延により所定の板厚に
仕上げる工程と、前記冷延鋼板に脱炭をかねた1
次再結晶焼鈍を施す工程と、前記脱炭鋼板の表面
に焼鈍分離剤を塗布した後、最終仕上げ焼鈍する
工程を有する一方向性珪素鋼板の製造方法におい
て、前記1次再結晶焼鈍を行う前に、アルカリ土
類金属に換算して1.0〜0.0001mol/のMg、
Ca、Sr、Baのアルカリ土類金属の化合物を含む
電解槽中で、鋼板に1〜15coulomb/dm2の電解
処理を施すことを特徴とする磁気特性のすぐれた
一方向性珪素鋼板の製造方法。
1 Low carbon steel containing C0.02~0.06%, Si2.0~4.0% S0.008~0.1% and or Se0.003~0.1%
a step of hot rolling a unidirectional silicon steel material containing Decarburization of rolled steel plate 1
In the method for manufacturing a unidirectional silicon steel sheet, the method includes a step of performing secondary recrystallization annealing, and a step of final annealing after applying an annealing separator to the surface of the decarburized steel sheet, before performing the primary recrystallization annealing. 1.0 to 0.0001 mol/Mg in terms of alkaline earth metals,
A method for producing a unidirectional silicon steel sheet with excellent magnetic properties, characterized by subjecting the steel sheet to an electrolytic treatment of 1 to 15 coulomb/dm 2 in an electrolytic bath containing a compound of alkaline earth metals such as Ca, Sr, and Ba. .
JP58110742A 1983-06-20 1983-06-20 Manufacture of grain-oriented silicon steel sheet having superior magnetic characteristic Granted JPS602625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58110742A JPS602625A (en) 1983-06-20 1983-06-20 Manufacture of grain-oriented silicon steel sheet having superior magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58110742A JPS602625A (en) 1983-06-20 1983-06-20 Manufacture of grain-oriented silicon steel sheet having superior magnetic characteristic

Publications (2)

Publication Number Publication Date
JPS602625A JPS602625A (en) 1985-01-08
JPH0325513B2 true JPH0325513B2 (en) 1991-04-08

Family

ID=14543374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58110742A Granted JPS602625A (en) 1983-06-20 1983-06-20 Manufacture of grain-oriented silicon steel sheet having superior magnetic characteristic

Country Status (1)

Country Link
JP (1) JPS602625A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103098A (en) * 1986-10-20 1988-05-07 Nippon Steel Corp Surface treatment of amorphous alloy material
JP2002104375A (en) * 2000-09-28 2002-04-10 Asahi Printing & Packaging Co Ltd Packaging box
CN103525999A (en) * 2013-09-13 2014-01-22 任振州 Preparation method of high-magnetic-induction oriented silicon steel sheet

Also Published As

Publication number Publication date
JPS602625A (en) 1985-01-08

Similar Documents

Publication Publication Date Title
KR20150121012A (en) Production method for grain-oriented electrical steel sheets
JPH09184017A (en) Forsterite film of grain oriented silicon steel sheet with high magnetic flux density and its formation
KR100300209B1 (en) Method for producing oriented silicon steel sheet and oriented silicon steel decarburization annealing plate
JPS6250529B2 (en)
JPH0241565B2 (en)
KR0183408B1 (en) Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing the same
JPH0325513B2 (en)
JP3956621B2 (en) Oriented electrical steel sheet
JP3656913B2 (en) Ultra high magnetic flux density unidirectional electrical steel sheet
JPH0483823A (en) Production of grain-oriented silicon steel sheet excellent in magnetic flux density
US4096001A (en) Boron-containing electrical steel having a calcium borate coating and magnesia overcoating, and process therefor
JP3492965B2 (en) Cold rolling method to obtain unidirectional electrical steel sheet with excellent magnetic properties
JPH03240922A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property and bendability
JP2016216779A (en) Grain oriented magnetic steel sheet and production method therefor
JPH0335364B2 (en)
US20230416883A1 (en) Non-oriented electrical steel plate and manufacturing method therefor
JPS6089521A (en) Production of grain oriented silicon steel sheet having excellent magnetic characteristic
JPH02274812A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
KR970007333B1 (en) Method for manufacturing oriented electrical steel sheet having high magnetic density
JP3336142B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties
JP5434438B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH032211B2 (en)
JP2010156006A (en) Method for manufacturing grain oriented electrical steel sheet
JPS6257689B2 (en)
KR100237160B1 (en) The manufacturing method for high magnetic density orient electric steel sheet with low temperature heating type