JPH03130376A - Production of unidirectionally oriented silicon steel sheet excellent in magnetic characteristic - Google Patents

Production of unidirectionally oriented silicon steel sheet excellent in magnetic characteristic

Info

Publication number
JPH03130376A
JPH03130376A JP1268166A JP26816689A JPH03130376A JP H03130376 A JPH03130376 A JP H03130376A JP 1268166 A JP1268166 A JP 1268166A JP 26816689 A JP26816689 A JP 26816689A JP H03130376 A JPH03130376 A JP H03130376A
Authority
JP
Japan
Prior art keywords
steel sheet
silicon steel
film
thickness
oriented silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1268166A
Other languages
Japanese (ja)
Other versions
JP2670155B2 (en
Inventor
Ujihiro Nishiike
西池 氏裕
Shigeko Sujita
筋田 成子
Tsutomu Kami
力 上
Katsuo Sadase
貞瀬 捷雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1268166A priority Critical patent/JP2670155B2/en
Publication of JPH03130376A publication Critical patent/JPH03130376A/en
Application granted granted Critical
Publication of JP2670155B2 publication Critical patent/JP2670155B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an unidirectionally oriented silicon steel sheet excellent in flux density and iron loss by removing a nonmetallic material on the surface of a finish-annealed grain-oriented silicon steel sheet, smoothing the surface, then forming a gel thin film in specified thickness and further forming an insulat ing coating film. CONSTITUTION:The nonmetallic material on the steel surface is electrolytically removed with a halide or nitrate. In this case, the surface layer is removed to >=3mum thickness. The surface freed of the nonmetallic material is chemically or electrolytically polished into the smooth surface having <=0.3mum mean rough ness on the center line. A gel thin film layer having 0.1-0.5mum thickness and consisting of a metal alkoxide is then formed on the smoothed surface by the sol-gel method. The gel film is dried at about 100 deg.C, and a phosphate soln., for example, is applied and baked to form an insulating coating film. As a result, the unidirectionally oriented silicon steel sheet excellent in magnetic characteristic is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁束密度および鉄損が極めて良好な一方向
性けい素鋼板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a grain-oriented silicon steel sheet having extremely good magnetic flux density and iron loss.

(従来の技術) 一方向性けい素鋼板の磁気特性は、磁束密度および鉄損
によって規定されていて、磁束密度(800A/mの磁
化力での磁束密度Be(T)で代表される)は高い方が
望ましく、また鉄損(1.7T. 5011zの鉄損W
+t/s。で代表される)は低い方が望ましい。
(Prior Art) The magnetic properties of a unidirectional silicon steel sheet are defined by magnetic flux density and iron loss, and the magnetic flux density (represented by the magnetic flux density Be(T) at a magnetizing force of 800 A/m) is Higher is desirable, and iron loss (1.7T. Iron loss W of 5011z
+t/s. ) is preferably lower.

また一方向性けい素鋼板は積層して用いられるため鋼板
表面には絶縁被膜を施すことが必要であり、通常絶縁被
膜は、方向性けい素鋼板の製造工程において高温で行わ
れる仕上げ焼鈍中に生成するフォルステライトを主とす
るガラス様被膜と、絶縁性を付与するために被成する燐
酸塩コーティングとの2Nからなっている。
In addition, since unidirectional silicon steel sheets are used in a laminated manner, it is necessary to apply an insulating coating to the surface of the steel sheet, and the insulating coating is usually applied during finish annealing at high temperatures in the manufacturing process of grain oriented silicon steel sheets. It consists of a 2N film consisting of a glass-like coating mainly composed of forsterite and a phosphate coating to provide insulation.

ところで近年、表面の改質により種々の物質の有する様
々な特性を充分に引き出そうとする研究が盛んである。
Incidentally, in recent years, research has been actively conducted to fully bring out the various properties of various substances through surface modification.

けい素鋼の分野においても、けい素鋼板の表面を平滑化
する、一種の表面改質技術によって、主として履歴損の
減少から鉄損が大幅に改良されることが以前から良く知
られている。
In the field of silicon steel, it has long been well known that a type of surface modification technology that smoothes the surface of a silicon steel sheet can significantly improve iron loss, mainly due to a reduction in hysteresis loss.

即ち上記ガラス様被膜と表層の内部酸化II(サブスケ
ール)を除去することによって表面を鏡面化すれば、鉄
損が大幅に改良されるわけである。
That is, if the surface is mirror-finished by removing the glass-like film and the internal oxidation II (subscale) on the surface layer, iron loss can be significantly improved.

しかし上記したようにけい素鋼板の表面には絶縁性が必
要なため、鏡面化したままの状態では鉄心材料として用
いることが出来ない、しかも上記燐酸塩コーティングは
鏡面に対しては密着性が不良であるために直接鏡面上に
は成膜できなかった。
However, as mentioned above, the surface of the silicon steel sheet requires insulation, so it cannot be used as a core material in its mirror-finished state, and the phosphate coating described above has poor adhesion to mirror surfaces. Therefore, it was not possible to form a film directly on the mirror surface.

そこでこれらの問題を解決するためにこれまで種々の技
術的工夫が凝らされてきた。
Therefore, various technical devices have been devised to solve these problems.

例えば特開昭49−96920号公報には、「鋼板表面
を化学研磨或は電解研磨し、次いで鏡面状態となった表
面にZn+ Sn+ Cu+ Nt等の金属めっきを5
μm以下の厚さで施す」ことが開示されており、また特
公昭56−4150号公報には「化学研磨あるいは電解
研磨して得られる平滑面上にセラミックスを真空蒸着、
化学蒸着、スパッタリングあるいは溶射によって施すこ
と」が開示されている。
For example, Japanese Patent Application Laid-Open No. 49-96920 states, ``The surface of the steel sheet is chemically polished or electrolytically polished, and then metal plating such as Zn+Sn+Cu+Nt is applied to the mirror-like surface.
Japanese Patent Publication No. 56-4150 discloses that ``ceramics are vacuum-deposited on a smooth surface obtained by chemical polishing or electrolytic polishing.
application by chemical vapor deposition, sputtering or thermal spraying.

これらの技術はいずれも鏡面研磨を施した面には直接燐
酸塩等の絶縁コートを施すことが出来ないという問題に
対して解決を与えるものである。
All of these techniques provide a solution to the problem that it is not possible to directly apply an insulating coat such as phosphate to a mirror-polished surface.

(発明が解決しようとする課題) しかしながら上記の方法はいずれも工業化されるに至っ
ていない。というのは、特開昭49−96920号公報
においては金属めっきを施して平滑面を保ちつつコーテ
ィングを施すことが可能であることが示されているが、
実際にこの処理を行った場合鉄心素材であるけい素鋼板
において加工後に行われる歪取り焼鈍において金属めっ
きは鋼中に拡散してけい素鋼板の磁性を劣化せしめ、ま
ためっき層による占積率の劣化も大きく商品価値が大幅
に低下する。
(Problem to be Solved by the Invention) However, none of the above methods has been industrialized. This is because, although it is shown in JP-A No. 49-96920 that it is possible to apply a coating while maintaining a smooth surface by applying metal plating,
If this treatment is actually carried out, the metal plating will diffuse into the steel during strain relief annealing performed after processing on silicon steel sheets, which are the iron core material, and will deteriorate the magnetic properties of the silicon steel sheets. Deterioration is also significant and the product value decreases significantly.

一方特公昭56−4150号公報に開示されている技術
では、まず真空蒸着は反応速度や処理面積が限定されて
いるために生産性に難点があり、また化学蒸着は反応速
度および膜の均質性に難点があり、さらにスパッタリン
グは真空蒸着に比べても生産性は劣り、溶射は均質な薄
膜を作ることが非常に困難であり占積率は大幅に劣化す
る。
On the other hand, with the technology disclosed in Japanese Patent Publication No. 56-4150, vacuum evaporation has problems with productivity because the reaction rate and processing area are limited, and chemical vapor deposition has problems with the reaction rate and film homogeneity. In addition, sputtering has lower productivity than vacuum deposition, and thermal spraying makes it extremely difficult to form a homogeneous thin film, resulting in a significant drop in space factor.

これらの理由から上記の手法は工業的に実施されるに至
っていない。
For these reasons, the above method has not been implemented industrially.

そこでこの発明は、平滑面化されたけい素鋼板が有する
優れた磁性を劣化させることなく、密着性の高い絶縁被
膜を広範な面積に対して均質に成膜できるコーティング
方法により、優れた占積率と低鉄損および高磁束密度と
を有する方向性けい素鋼板を製造する方法について提案
することを目的とする。
Therefore, the present invention has developed a coating method that can uniformly form a highly adhesive insulating film over a wide area without deteriorating the excellent magnetism of the smoothed silicon steel sheet. The purpose of the present invention is to propose a method for producing grain-oriented silicon steel sheets with low iron loss and high magnetic flux density.

(課題を解決するための手段) 発明者らは、上記の問題を克服するために、方向性けい
素鋼板の表面を改質することにより磁気特性を改善する
技術の開発に取り組んだところ、平滑化したけい素鋼板
の表面にゾル・ゲル法により0.1〜0.5μmの厚み
でゲル薄膜を被成し、さらにその上に絶縁被膜を破戒す
ることにより、磁気特性を劣化することなく、占積率に
有利な、均質で密着性の良好な絶縁被膜を成膜すること
に成功した。
(Means for Solving the Problems) In order to overcome the above problems, the inventors worked on the development of a technology to improve the magnetic properties by modifying the surface of grain-oriented silicon steel sheets. By forming a thin gel film with a thickness of 0.1 to 0.5 μm on the surface of a silicon steel plate using the sol-gel method, and then adding an insulating film on top of it, the magnetic properties can be We succeeded in forming an insulating film that is homogeneous and has good adhesion, which is advantageous for the space factor.

すなわちこの発明は、 仕上げ焼鈍済の方向性けい素鋼板につき、その表面の非
金属物質を除去し、ついで鋼板の表面を中心線平均粗さ
で0.3μm以下の平滑面としたのち、この鋼板表面上
にゾル・ゲル法により厚さ0.1〜0.5μmのゲル薄
膜を被成し、さらにこの薄膜上に絶縁被膜を破戒するこ
とを特徴とする特許 方法および 仕上げ焼鈍済の方向性けい素鋼板につき、その表面の非
金属物質を除去し、ついで鋼板の表層を、水溶性のハロ
ゲン化物あるいは硝酸塩を用いた電解処理により、厚さ
3μm以上にわたり除去したのち、この鋼板表面上にゾ
ル・ゲル法により厚さ0、1〜0.5μmのゲル薄膜を
被成し、さらにこの薄膜上に絶縁被膜を破戒することを
特徴とする磁気特性の極めて良好な一方向性けい素鋼板
の製造方法 である。
That is, this invention involves removing nonmetallic substances from the surface of a grain-oriented silicon steel sheet that has been finish annealed, and then making the surface of the steel sheet a smooth surface with a centerline average roughness of 0.3 μm or less. A patented method characterized by forming a gel thin film with a thickness of 0.1 to 0.5 μm on the surface by a sol-gel method, and further removing an insulating film on this thin film, and a directional structure that has been finish annealed. Non-metallic substances on the surface of the raw steel sheet are removed, and then the surface layer of the steel sheet is removed to a thickness of 3 μm or more by electrolytic treatment using a water-soluble halide or nitrate. A method for producing a unidirectional silicon steel sheet with extremely good magnetic properties, characterized by forming a gel thin film with a thickness of 0.1 to 0.5 μm by a gel method, and further removing an insulating coating on this thin film. It is.

(作 用) 次にこの発明を工程順に詳細に説明する。(for production) Next, this invention will be explained in detail in the order of steps.

この発明で用いる方向性けい素鋼板は、従来知られてい
る方法で2次再結晶処理が施された鋼板を用いる。すな
わち方向性けい素鋼板素材成分を含有する鋼塊を熱間圧
延し、さらに冷間圧延と焼鈍を繰り返して所定の板厚と
した後、1次再結晶焼鈍を行う。次に上該鋼板表面に焼
鈍分離材を塗布し2次再結晶焼鈍を施す。この発明法は
表面の改質によって磁性を改良するものであるので、素
材のインヒビターや圧延焼鈍方法等の製造方法に拘らず
、磁性の改善効果があることはいうまでもない。
The grain-oriented silicon steel sheet used in this invention is a steel sheet that has been subjected to secondary recrystallization treatment by a conventionally known method. That is, a steel ingot containing a grain-oriented silicon steel sheet material component is hot rolled, further cold rolled and annealed repeatedly to obtain a predetermined thickness, and then primary recrystallization annealing is performed. Next, an annealing separation material is applied to the surface of the steel plate and secondary recrystallization annealing is performed. Since this invention method improves magnetism by modifying the surface, it goes without saying that it has the effect of improving magnetism regardless of the inhibitor of the material or the manufacturing method such as rolling annealing method.

ちなみに代表的な成分組成を示すと、次に示すとおりで
ある。
Incidentally, typical component compositions are as shown below.

C:0.01〜0.10wt%(以下単に%と示す)C
は、熱間圧延、冷間圧延中の組織の均一微細化のみらな
す、ゴス方位の発達に有用な元素であり、少なくとも0
.01%以上の添加が好ましい。しかしながら0.10
%を超えて含有されるとかえってゴス方位に乱れが生じ
るので上限は0.10%程度が好ましい。
C: 0.01 to 0.10 wt% (hereinafter simply referred to as %) C
is an element useful for the development of Goss orientation, which results in uniform refinement of the structure during hot rolling and cold rolling, and has at least 0
.. It is preferable to add 0.01% or more. However, 0.10
If the content exceeds 0.1%, the Goss orientation will be disturbed, so the upper limit is preferably about 0.10%.

Si : 2.0〜4.5% Siは、鋼板の比抵抗を高め鉄損の低減に有効に寄与す
るが、4.5%を上回ると冷延性が損なわれ、一方2.
0%に満たないと比抵抗が低下するだけでなく、2次再
結晶・純化のために行われる最終高温焼鈍中にα−γ変
態によって結晶方位のランダム化を生じ、十分な鉄損改
善効果が得られないので、Si量は2.0〜4.5%程
度とするのが好ましい。
Si: 2.0 to 4.5% Si increases the resistivity of the steel sheet and effectively contributes to reducing iron loss, but if it exceeds 4.5%, cold rollability is impaired;
If it is less than 0%, not only will the resistivity decrease, but also randomization of crystal orientation will occur due to α-γ transformation during the final high-temperature annealing performed for secondary recrystallization and purification, resulting in a sufficient iron loss improvement effect. is not obtained, the amount of Si is preferably about 2.0 to 4.5%.

Mn : 0.02〜0.12% Mnは、熱間脆化を防止するため少なくとも0.02%
程度を必要とするが、あまりに多すぎると磁気特性を劣
化させるので上限は0.12%程度に定めるのが好まし
い。
Mn: 0.02-0.12% Mn is at least 0.02% to prevent hot embrittlement
It is preferable to set the upper limit at about 0.12%, since too much content deteriorates the magnetic properties.

インヒビターとしては、いわゆるMnS、 MnSe系
とAIN系とがある。MnS、 MnSe系の場合は、
Se、Sのうちから選ばれる少なくとも1種: o、o
os〜0.08%を含有する。
Inhibitors include so-called MnS, MnSe, and AIN inhibitors. In the case of MnS and MnSe,
At least one selected from Se, S: o, o
Contains os~0.08%.

Se+ Sはいずれも、方向性けい素鋼板の2次再結晶
を制’+8するインヒビターとして有力な元素である。
Both Se+S are effective elements as inhibitors that control secondary recrystallization of grain-oriented silicon steel sheets.

抑制力確保の観点からは、少なくとも0.005%程度
を必要とするが、0.06%を超えるとその効果が損な
われるので、その下限、上限はそれぞれ0.01%、 
0.08%程度とするのが好ましい。
From the viewpoint of ensuring suppressive power, it is necessary to have at least about 0.005%, but if it exceeds 0.06%, the effect will be impaired, so the lower limit and upper limit are 0.01%, respectively.
It is preferably about 0.08%.

AIN系の場合は、 Al 70.005〜0.10%、 N : 0.00
4〜0.015%AIおよびNの範囲についても、上述
したMnS、 Mn5(系の場合と同様な理由により、
上記の範囲に定めた。ここに上記したMnS、 MnS
e系およびAIN系はそれぞれ併用が可能である。
For AIN type, Al 70.005-0.10%, N: 0.00
Regarding the range of 4 to 0.015% AI and N, for the same reason as the above-mentioned MnS, Mn5 (system),
It is set within the above range. Here, the above-mentioned MnS, MnS
The e system and the AIN system can each be used in combination.

インヒビター成分としては上記したS、Se、Alの他
、Cu、 Sn、 Cr、 Ge+ sb、 Mo+ 
Tet BiおよびPなども有利に適合するので、それ
ぞれ少量併せて含有させることもできる。ここに上記成
分の好適添加範囲はそれぞれ、Cu、 Sn、 Cr 
: 0.01〜0.15%、Ge、 Sb、 Mo、 
Te、 Bi : 0.005〜0.1%、P:0..
01〜0.2%であり、これらの各インヒビター成分に
ついても、単独使用および複合使用いずれもが可能であ
る。
In addition to the above-mentioned S, Se, and Al, inhibitor components include Cu, Sn, Cr, Ge+ sb, Mo+
Since Tet Bi and P are also advantageously compatible, they can also be contained together in small amounts. Here, the preferred addition ranges of the above components are Cu, Sn, Cr, respectively.
: 0.01~0.15%, Ge, Sb, Mo,
Te, Bi: 0.005-0.1%, P: 0. ..
01 to 0.2%, and each of these inhibitor components can be used alone or in combination.

次いで仕上げ焼鈍の際に生じた表面の酸化物を除去して
鋼板表面を中心線平均粗さが0.3μm以下の平滑面に
仕上げる。この際表面に大きな塑性歪を残すことは製品
の磁気特性を劣化させるために避けなければならない。
Next, oxides on the surface generated during final annealing are removed to finish the steel plate surface into a smooth surface with a center line average roughness of 0.3 μm or less. At this time, it is necessary to avoid leaving large plastic strain on the surface since this will deteriorate the magnetic properties of the product.

そこで酸化物の除去には、酸洗や弾性体による低歪機械
研磨などを用いるのが好ましい。その後化学研磨あるい
は電解研磨で所定の表面粗さまで平滑化される。ここで
は鋼板表面を0.3μm Ra以下に仕上げる必要があ
る。
Therefore, to remove the oxide, it is preferable to use pickling, low strain mechanical polishing using an elastic body, or the like. Thereafter, the surface is smoothed to a predetermined roughness by chemical polishing or electrolytic polishing. Here, it is necessary to finish the surface of the steel plate to 0.3 μm Ra or less.

なぜなら鋼板の表面粗さが0.3 μm Raをこえる
と、充分な履歴損の減少が得られない。
This is because if the surface roughness of the steel plate exceeds 0.3 μm Ra, sufficient reduction in hysteresis loss cannot be obtained.

また化学研磨、電解研磨以外に平滑化する手段として、
水溶性のハロゲン化物あるいは硝酸塩溶液による電解処
理を用いてもよい。ここで水溶性のハロゲン化物とは、
HCI、 N)I4C1および各種金属の塩化物、P+
 Br+ Iを陰イオンとする酸、アルカリ、アルカリ
土類およびその他の金属塩類、またはアンモニウム塩の
うちの水溶性のもの、さらにはほうふつか物(BP、塩
)またはけいふっか物(SiF6塩)のうちの水溶性の
ものを意味する。また硝酸塩とは同じく水溶性のものを
意味する。これらハロゲン化物あるいは硝酸塩の水溶液
による電解処理によっては化学研磨あるいは電解研磨の
ような、いわゆる鏡面をうることはできないが、表層が
3μ輪以上の厚みにわたって減少する電解処理を施せば
鏡面と同様な履歴IN減少の効果をうることかできる。
Also, as a means of smoothing other than chemical polishing and electrolytic polishing,
Electrolytic treatment with a water-soluble halide or nitrate solution may also be used. Here, water-soluble halides are:
HCI, N) I4C1 and various metal chlorides, P+
Water-soluble acids, alkali, alkaline earth and other metal salts, or ammonium salts with Br+ I as an anion, as well as derivatives (BP, salts) or silicon fluorides (SiF6 salts) Of these, it means water-soluble ones. Nitrates also refer to nitrates that are water-soluble. Electrolytic treatment using an aqueous solution of halides or nitrates cannot produce a so-called mirror surface like chemical polishing or electrolytic polishing, but electrolytic treatment that reduces the surface layer to a thickness of 3 μm or more can produce a surface similar to that of a mirror surface. It is possible to obtain the effect of reducing IN.

その後平滑化した鋼板表面に、ゾル・ゲル法によって0
.1〜0.5μ111厚の薄いゲル膜層を形成する。膜
の原料としては、例えば金属アルコキシドを用いる。金
属アルコキシドはM (OR) nの一般式であられさ
れる。ここでM:金属元素、R:アルキル基をそれぞれ
示す。Mとしては、Si、 Ti、^l。
Afterwards, the surface of the smoothed steel plate is coated with 0% by sol-gel method.
.. A thin gel film layer with a thickness of 1 to 0.5 μl is formed. For example, a metal alkoxide is used as a raw material for the membrane. Metal alkoxides have the general formula M (OR) n. Here, M: metal element, R: alkyl group, respectively. As M, Si, Ti, ^l.

Zr+ Get B+ Lit Na+ Fe、 Ga
、Mg、 P+ Sb、Sn、 TaおよびV等が適し
ており、これらの単一あるいは複数金属アルコキシドが
用いられる。そしてこの金属アルコキシドはゾル状態に
て、鋼板表面にスプレーまたはデイツプ法などによりコ
ーティングする。また膜厚は、0.1 μm未満である
と均質な膜をうることか困難であり、0.5μmをこえ
るとゲル膜にクラックが入り磁気特性の劣化をまねくた
め、0.1〜0.5 μmとした。
Zr+ Get B+ Lit Na+ Fe, Ga
, Mg, P+ Sb, Sn, Ta and V, and single or multiple metal alkoxides thereof are used. This metal alkoxide is then coated in a sol state onto the surface of the steel plate by spraying or dipping. Further, if the film thickness is less than 0.1 μm, it is difficult to obtain a homogeneous film, and if it exceeds 0.5 μm, cracks will occur in the gel film, leading to deterioration of magnetic properties. It was set to 5 μm.

次にゲル膜は約100°Cの温度1で乾燥ゲル膜とした
後、絶縁被膜を形成するために、鋼板表面に例えば燐酸
塩溶液を塗布する。もちろん従来知られている張力付与
型の絶縁被膜形成用溶液を塗布しても構わない、塗布は
ロールコータを用いても、スプレーを用いてもどちらで
も構わない。
Next, the gel film is dried at a temperature of about 100° C. 1, and then a phosphate solution, for example, is applied to the surface of the steel plate in order to form an insulating film. Of course, a conventionally known tension-applying insulating film forming solution may be applied, and the application may be performed using either a roll coater or a spray.

上記した塗膜は焼き付けられ、その際に中間の乾燥ゲル
膜層はガラス化して強固なバインダーになるとともに鋼
板表面に張力を付与する。
The above-mentioned coating film is baked, and at that time, the intermediate dry gel film layer becomes vitrified and becomes a strong binder, and also imparts tension to the surface of the steel sheet.

なお絶縁コーティングに先だって乾燥ゲル膜を焼き付け
ておいても構わない。焼付は温度は用いる金属アルコキ
シドの種類によって異なるが、いずれも高い温度ではな
い。例えばSi (OCJs) aを用いた場合は45
0°Cで5分間の加熱を行うことにより焼き付けること
が出来る。
Note that the dry gel film may be baked prior to insulating coating. The temperature of baking varies depending on the type of metal alkoxide used, but it is not a high temperature in any case. For example, when using Si (OCJs) a, 45
It can be baked by heating at 0°C for 5 minutes.

ゾル・ゲル法には上記金属アルコキシド以外にもアセチ
ルアセトン金属塩やナフテン酸−金属石鹸やオクチル酸
金属石鹸、シリカ・アルミナのゾルなどを用いることが
できる。
In addition to the metal alkoxides mentioned above, acetylacetone metal salts, naphthenic acid metal soaps, octylic acid metal soaps, silica-alumina sols, and the like can be used in the sol-gel method.

(実施例) 実施史上 MnSeをインヒビターとする、Stを3.2%含有す
る仕上げ焼鈍済みの方向性けい素w4板の表面に存在す
る非金属物質を酸洗で除去し、ついでその表面を燐酸と
クロム酸の混合酸液を用いた電解研磨を施して表面粗さ
を0.1 μm Raとした。
(Example) Non-metallic substances present on the surface of a finish-annealed grain-oriented silicon W4 plate containing 3.2% St, with MnSe as an inhibitor, were removed by pickling, and then the surface was treated with phosphoric acid. Electrolytic polishing was performed using a mixed acid solution of chromic acid and chromic acid to give a surface roughness of 0.1 μm Ra.

その後得られた研磨面に対して、種々のゾル液をデイツ
プ法で塗布し、100°Cで乾燥、ゲル膜とした(適合
例)。また比較法として、上記と同様に得られた研磨面
に対して、電気めっきで厚みにして約0.8μmのクロ
ムを成膜しく比較法A)、さらに同様に得られた研磨面
に対して、イオンブレーティングによってTiNを1.
0μm厚で成膜した(比較法B)。
Thereafter, various sol solutions were applied to the obtained polished surface by a dip method and dried at 100°C to form a gel film (suitable example). In addition, as a comparative method, a chromium film with a thickness of approximately 0.8 μm was deposited by electroplating on the polished surface obtained in the same manner as above, and Comparative method A) was applied to the polished surface obtained in the same manner. , TiN by ion blating 1.
A film was formed to a thickness of 0 μm (comparative method B).

ついで上記各条件で施した膜の上に、燐酸マグネシウム
の主成分にコロイダルシリカを含有させた溶液を塗布し
て焼き付け、約1.4μm厚の張力付与型の絶縁被膜を
破戒した。また比較法として、上記と同様の研磨面に対
して、中間の成膜を行わずに直接絶縁被膜を破戒した(
比較法C)。また仕上げ焼鈍後の鋼板表面に上記の研磨
を施さずに絶縁被膜を破戒した(従来法)。
Next, a solution containing colloidal silica as a main component of magnesium phosphate was applied onto the film formed under each of the above conditions and baked, thereby breaking a tension-applied insulating film with a thickness of about 1.4 μm. In addition, as a comparative method, we applied an insulating film directly to the same polished surface as above without forming an intermediate film (
Comparative method C). In addition, the insulating coating was removed without applying the above polishing to the surface of the steel plate after finish annealing (conventional method).

上記の各条件に従って得られた被膜付m板に対して、次
の試験を行った。
The following tests were conducted on the coated m plates obtained according to the above conditions.

まず被膜密着性は、円柱の試験棒の周囲に鋼板を巻き付
けたのち、それを延ばし膜の剥離しない最小の円柱の直
径(−)を調べ、曲げ密着性を評価した。ちなみに従来
の方向性けい素鋼板では30鴫以下であれば充分である
First, film adhesion was evaluated by wrapping a steel plate around a cylindrical test rod, stretching it, and examining the minimum diameter (-) of the cylinder without peeling off the film, to evaluate bending adhesion. Incidentally, for conventional grain-oriented silicon steel sheets, it is sufficient if the thickness is 30 or less.

また鋼板の磁性は、鉄損値Wl’l/S。(w/kg)
およびBl(T)で示した。磁性値そのものは素材の磁
性値に大きく依存しているので、仕上げ焼鈍後の非金属
物質を有したままの表面に絶縁被膜を施した従来法との
比較で改良幅を記載した。この発明法は表面の改質によ
って磁性を改良するので、素材のインヒビターや圧延お
よび焼鈍等の製造方法に拘らず、磁性の改善効果がある
ことはいうまでもない。さらに占積率は絶縁被膜形成後
の重量から得た、計算厚みと実測厚みとの比から求め、
膜厚のばらつきは板幅50cmの試材における板厚のば
らつきを測定した。
The magnetic property of the steel plate is determined by the iron loss value Wl'l/S. (w/kg)
and Bl(T). Since the magnetic value itself is highly dependent on the magnetic value of the material, the improvement is described in comparison with the conventional method in which an insulating film is applied to the surface that still contains the nonmetallic substance after final annealing. Since the method of this invention improves magnetism by modifying the surface, it goes without saying that it has the effect of improving magnetism regardless of the inhibitor of the material or the manufacturing method such as rolling or annealing. Furthermore, the space factor is determined from the ratio of the calculated thickness and the measured thickness obtained from the weight after the insulation coating is formed.
The variation in the film thickness was measured by measuring the variation in the thickness of a sample having a width of 50 cm.

得られた結果を第1表に示す。The results obtained are shown in Table 1.

同表かられかるように、この発明方法によって優れた磁
気特性を劣化させることなく、密着性および占積率が高
くかつ均質な絶縁被膜を効率よく成膜することができる
As can be seen from the table, the method of the present invention makes it possible to efficiently form a homogeneous insulating film with high adhesion and space factor without deteriorating the excellent magnetic properties.

裏旌拠主 AINをインヒビターとする、Stを3.2%含有する
仕上げ焼鈍済みの方向性けい素鋼板の表面に存在する非
金属物質を弾性研磨ロールを用いて低歪機械研磨により
除去し、ついでその表面にNaC1水溶液を用いて、鋼
板表層を厚さ5μmにわたり除去する電解処理を施した
。電解処理は鋼板を陽極として、50A/d−の直流電
流を付与して行った。
Non-metallic substances present on the surface of a finish-annealed grain-oriented silicon steel sheet containing 3.2% St using Ura-Kokushu AIN as an inhibitor are removed by low-strain mechanical polishing using an elastic polishing roll, Then, the surface of the steel plate was electrolytically treated using an aqueous NaCl solution to remove the surface layer of the steel plate over a thickness of 5 μm. The electrolytic treatment was carried out using a steel plate as an anode and applying a direct current of 50 A/d-.

電解処理後の表面はいわゆる鏡面ではないが、履歴損は
充分小さくなった。
Although the surface after electrolytic treatment was not a so-called mirror surface, the hysteresis loss was sufficiently reduced.

次にこの電解処理面に対して、種々のゾル液をデイツプ
法で塗布し、100 ’Cで乾燥、ゲル膜とした(適合
例)。また比較法として、上記と同様に得られた処理面
に対して、電気めっきで厚みにして約0.8μmのクロ
ムを成膜しく比較例D)、さらに同様に得られた処理面
に対して、イオンブレーティングによってTiOを1.
0μm厚で成膜した(比較例E)。
Next, various sol solutions were applied to this electrolytically treated surface by a dip method and dried at 100'C to form a gel film (suitable example). In addition, as a comparative method, a chromium film with a thickness of about 0.8 μm was formed by electroplating on the treated surface obtained in the same manner as above (Comparative Example D), and on the treated surface obtained in the same manner as above. , TiO by ion blating 1.
A film was formed to a thickness of 0 μm (Comparative Example E).

ついで上記各条件で施した膜の上に、燐酸マグネシウム
の主成分にコロイダルシリカを含有させた溶液を塗布し
て焼き付け、約1.4μm厚の張力付与型の絶縁被膜を
被成した。また比較法として、上記と同様の処理面に対
して、中間の成膜を行わずに直接絶縁被膜を破戒した(
比較法F)。また仕上げ焼鈍後の鋼板表面に上記の研磨
を施さずに絶縁被膜を破戒した(従来法)。
Next, a solution containing colloidal silica as a main component of magnesium phosphate was applied onto the film formed under each of the above conditions and baked to form a tension-applying insulating film with a thickness of about 1.4 μm. In addition, as a comparative method, we applied an insulating film directly to the same treated surface without forming an intermediate film (
Comparative method F). In addition, the insulating coating was removed without applying the above polishing to the surface of the steel plate after finish annealing (conventional method).

以上の各条件に従って得られた被膜付鋼板に対して、実
施例1と同様の試験を行った。
The same tests as in Example 1 were conducted on the coated steel sheets obtained according to the above conditions.

得られた結果を第2表に示す。The results obtained are shown in Table 2.

同表かられかるように、この発明方法によって優れた磁
気特性を劣化させることなく、密着性および占積率が高
くかつ均質な絶縁被膜を効率よく成膜することができる
As can be seen from the table, the method of the present invention makes it possible to efficiently form a homogeneous insulating film with high adhesion and space factor without deteriorating the excellent magnetic properties.

1嵐員主 MnSeをインヒビターとする、Siを3.2%含有す
る仕上げ焼鈍済みの方向性けい素w4′Fiの表面に存
在する非金属物質を弾性研磨ロールを用いて低歪機械研
磨により除去し、ついでその表面にNaC1水溶液を用
いて、鋼板表層を厚さ5μmにわたり除去する電解処理
を施した。電解処理は鋼板を陽極として、50A/d−
の直流電流を付与して行った。
1. Non-metallic substances present on the surface of finish-annealed oriented silicon w4'Fi containing 3.2% Si with MnSe as the inhibitor are removed by low strain mechanical polishing using an elastic polishing roll. Then, the surface thereof was subjected to an electrolytic treatment using an aqueous NaCl solution to remove the surface layer of the steel plate over a thickness of 5 μm. The electrolytic treatment uses a steel plate as an anode and is applied at 50A/d-
This was done by applying a direct current of .

電解処理後の表面はいわゆる鏡面ではないが、履歴損は
充分小さくなった。
Although the surface after electrolytic treatment was not a so-called mirror surface, the hysteresis loss was sufficiently reduced.

次にこの電解処理面に対して、種々のゾル液をデイツプ
法で塗布し、100°Cで乾燥、ゲル膜とした。さらに
ゲル膜は500″Cで加熱してガラス化した(適合例)
、また比較法として、上記と同様に得られた処理面に対
して、電気めっきで厚みにして約0.8μ鵠のクロムを
成膜しく比較例G)、さらに同様に得られた処理面に対
して、イオンブレーティングによってTie、を1,0
μm厚で成膜した(比較例H)。
Next, various sol solutions were applied to this electrolytically treated surface by a dip method and dried at 100°C to form a gel film. Furthermore, the gel film was vitrified by heating at 500″C (suitable example)
In addition, as a comparative method, a chromium film with a thickness of about 0.8 μm was formed by electroplating on the treated surface obtained in the same manner as above (Comparative Example G), and then on the treated surface obtained in the same manner. On the other hand, Tie is 1,0 by ion brating.
A film was formed to a thickness of μm (Comparative Example H).

ついで上記各条件で施した膜の上に、燐酸マグネシウム
を主成分とした溶液を塗布して焼き付け、約1.2μm
厚の張力付与型の絶縁被膜を被成した。
Next, a solution containing magnesium phosphate as the main component was applied onto the film formed under each of the above conditions and baked to form a film with a thickness of about 1.2 μm.
A thick tension-applied insulation coating was applied.

また比較法として、上記と同様の処理面に対して、中間
の成膜を行わずに直接絶縁被膜を被成した(比較法I)
。また仕上げ焼鈍後の鋼板表面に上記の研磨を施さずに
絶縁被膜を被成した(従来法)以上の各条件に従って得
られた被膜付鋼板に対して、実施例1と同様の試験を行
った。
In addition, as a comparative method, an insulating film was directly formed on the same treated surface as above without performing intermediate film formation (Comparative method I).
. In addition, the same tests as in Example 1 were conducted on coated steel plates obtained according to the above conditions, in which an insulating coating was formed on the surface of the steel plate after finish annealing without the above-mentioned polishing (conventional method). .

得られた結果を第3表に示す。The results obtained are shown in Table 3.

同表かられかるように、この発明方法によって優れた磁
気特性を劣化させることなく、密着性および占積率が高
くかつ均質な絶縁被膜を効率よく成膜することができる
As can be seen from the table, the method of the present invention makes it possible to efficiently form a homogeneous insulating film with high adhesion and space factor without deteriorating the excellent magnetic properties.

(発明の効果) この発明によれば、方向性けい素鋼板の鉄損および磁束
密度を格段に向上することができ、省エネルギーという
社会的要求に合致した工業的価値の非常に大きい製品を
提供できる。さらに密着性および均質性に優れた被膜が
得られるので、方向性けい素鋼板の占積率を高めること
が可能で工業的価値は更に増大する。
(Effects of the Invention) According to this invention, it is possible to significantly improve the iron loss and magnetic flux density of grain-oriented silicon steel sheets, and it is possible to provide products with extremely high industrial value that meet social demands for energy conservation. . Furthermore, since a coating with excellent adhesion and homogeneity can be obtained, it is possible to increase the space factor of the grain-oriented silicon steel sheet, further increasing its industrial value.

Claims (2)

【特許請求の範囲】[Claims] 1.仕上げ焼鈍済の方向性けい素鋼板につき、その表面
の非金属物質を除去し、ついで鋼板の表面を中心線平均
粗さで0.3μm以下の平滑面としたのち、この鋼板表
面上にゾル・ゲル法により厚さ0.1〜0.5μmのゲ
ル薄膜を被成し、さらにこの薄膜上に絶縁被膜を被成す
ることを特徴とする磁気特性の極めて良好な一方向性け
い素鋼板の製造方法。
1. After removing non-metallic substances from the surface of a grain-oriented silicon steel sheet that has been finish annealed, the surface of the steel sheet is made smooth with a center line average roughness of 0.3 μm or less, and then a sol is applied onto the surface of the steel sheet. Manufacture of a unidirectional silicon steel sheet with extremely good magnetic properties characterized by forming a gel thin film with a thickness of 0.1 to 0.5 μm by a gel method and further forming an insulating film on this thin film. Method.
2.仕上げ焼鈍済の方向性けい素鋼板につき、その表面
の非金属物質を除去し、ついで鋼板の表層を、水溶性の
ハロゲン化物あるいは硝酸塩を用いた電解処理により、
厚さ3μm以上にわたり除去したのち、この鋼板表面上
にゾル・ゲル法により厚さ0.1〜0.5μmのゲル薄
膜を被成し、さらにこの薄膜上に絶縁被膜を被成するこ
とを特徴とする磁気特性の極めて良好な一方向性けい素
鋼板の製造方法。
2. Non-metallic substances on the surface of a grain-oriented silicon steel sheet that has been finish annealed are removed, and then the surface layer of the steel sheet is electrolytically treated using a water-soluble halide or nitrate.
After removing a thickness of 3 μm or more, a thin gel film with a thickness of 0.1 to 0.5 μm is formed on the surface of the steel plate by a sol-gel method, and an insulating film is further formed on this thin film. A method for manufacturing a unidirectional silicon steel sheet with extremely good magnetic properties.
JP1268166A 1989-10-17 1989-10-17 Method for producing unidirectional silicon steel sheet with extremely good magnetic properties Expired - Fee Related JP2670155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1268166A JP2670155B2 (en) 1989-10-17 1989-10-17 Method for producing unidirectional silicon steel sheet with extremely good magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1268166A JP2670155B2 (en) 1989-10-17 1989-10-17 Method for producing unidirectional silicon steel sheet with extremely good magnetic properties

Publications (2)

Publication Number Publication Date
JPH03130376A true JPH03130376A (en) 1991-06-04
JP2670155B2 JP2670155B2 (en) 1997-10-29

Family

ID=17454826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1268166A Expired - Fee Related JP2670155B2 (en) 1989-10-17 1989-10-17 Method for producing unidirectional silicon steel sheet with extremely good magnetic properties

Country Status (1)

Country Link
JP (1) JP2670155B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287765A (en) * 1993-04-02 1994-10-11 Nippon Steel Corp Formation of tension coating film of grain oriented silicon steel sheet
JPH0741958A (en) * 1993-07-27 1995-02-10 Kawasaki Steel Corp Formation of insulating coating film on grain-oriented silicon steel sheet
US5411808A (en) * 1992-02-13 1995-05-02 Nippon Steel Corporation Oriented electrical steel sheet having low core loss and method of manufacturing same
JPH0813153A (en) * 1994-06-30 1996-01-16 Korea Advanced Inst Of Sci Technol Method of forming insulating coating film of amorphous magnetic alloy thin belt
JPH0978252A (en) * 1995-09-13 1997-03-25 Nippon Steel Corp Formation of insulating film on grain-oriented silicon steel sheet
WO2019013353A1 (en) 2017-07-13 2019-01-17 新日鐵住金株式会社 Oriented electromagnetic steel plate
WO2019013347A1 (en) 2017-07-13 2019-01-17 新日鐵住金株式会社 Oriented electromagnetic steel sheet, and manufacturing method of oriented electromagnetic steel sheet
WO2019013350A1 (en) 2017-07-13 2019-01-17 新日鐵住金株式会社 Oriented electromagnetic steel plate
US11186891B2 (en) 2017-07-13 2021-11-30 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090636A1 (en) * 2004-03-19 2005-09-29 Jfe Steel Corporation Electromagnetic steel sheet having insulating coating

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411808A (en) * 1992-02-13 1995-05-02 Nippon Steel Corporation Oriented electrical steel sheet having low core loss and method of manufacturing same
US5679177A (en) * 1992-02-13 1997-10-21 Nippon Steel Corporation Oriented electrical steel sheet having low core loss and method of manufacturing same
US5753051A (en) * 1992-02-13 1998-05-19 Nippon Steel Corporation Oriented electrical steel sheet having low core loss and method of manufacturing same
JPH06287765A (en) * 1993-04-02 1994-10-11 Nippon Steel Corp Formation of tension coating film of grain oriented silicon steel sheet
JPH0741958A (en) * 1993-07-27 1995-02-10 Kawasaki Steel Corp Formation of insulating coating film on grain-oriented silicon steel sheet
JPH0813153A (en) * 1994-06-30 1996-01-16 Korea Advanced Inst Of Sci Technol Method of forming insulating coating film of amorphous magnetic alloy thin belt
JPH0978252A (en) * 1995-09-13 1997-03-25 Nippon Steel Corp Formation of insulating film on grain-oriented silicon steel sheet
WO2019013347A1 (en) 2017-07-13 2019-01-17 新日鐵住金株式会社 Oriented electromagnetic steel sheet, and manufacturing method of oriented electromagnetic steel sheet
WO2019013353A1 (en) 2017-07-13 2019-01-17 新日鐵住金株式会社 Oriented electromagnetic steel plate
WO2019013350A1 (en) 2017-07-13 2019-01-17 新日鐵住金株式会社 Oriented electromagnetic steel plate
KR20200017457A (en) 2017-07-13 2020-02-18 닛폰세이테츠 가부시키가이샤 Directional electronic steel sheet
KR20200018669A (en) 2017-07-13 2020-02-19 닛폰세이테츠 가부시키가이샤 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
KR20200020848A (en) 2017-07-13 2020-02-26 닛폰세이테츠 가부시키가이샤 Directional electronic steel sheet
US11060159B2 (en) 2017-07-13 2021-07-13 Nippon Steel Corporation Grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet
US11186891B2 (en) 2017-07-13 2021-11-30 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for producing same
US11346005B2 (en) 2017-07-13 2022-05-31 Nippon Steel Corporation Grain-oriented electrical steel sheet
US11450460B2 (en) 2017-07-13 2022-09-20 Nippon Steel Corporation Grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2670155B2 (en) 1997-10-29

Similar Documents

Publication Publication Date Title
KR100479353B1 (en) Ultra-low core loss grain oriented silicon steel sheet and method of producing the same
KR960015212B1 (en) Oriented electrical steel sheet having low core loss and method of manufacturing the same
JPH03130376A (en) Production of unidirectionally oriented silicon steel sheet excellent in magnetic characteristic
JPH05279864A (en) Formation of insulated film for grain oriented silicon steel sheet
JPH11209891A (en) Formation of insulated film on silicon steel sheet
JPH1171683A (en) Grain oriented silicon steel sheet having high-tension insulating coating film and its treatment
JPH08222423A (en) Grain oriented silicon steel plate of low core loss and its manufacture
JP4635457B2 (en) A grain-oriented electrical steel sheet having a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance, and a method for forming a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance.
JPH07228977A (en) Grain oriented electrical steel sheet, insulating coating agent therefor and formation of insulating film
JP3280279B2 (en) Ultra-low iron loss grain-oriented electrical steel sheet
US3705826A (en) Insulating coating and method of making the same
JPS6332849B2 (en)
JP2703604B2 (en) Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties
JP2667098B2 (en) Manufacturing method of low iron loss grain-oriented electrical steel sheet
JPH09157861A (en) Coating agent for insulating coating film excellent in bendability of non-oriented silicon steel sheet and heat resistance and formation of coating film
JP2002180134A (en) Method for depositing insulation film on grain oriented silicon steel sheet
JPH11181576A (en) Rain oriented silicon steel sheet good in film adhesion and extremely low in core loss value
EP0985743B1 (en) Method of forming an insulating film on a magnetic steel sheet
JPH08333640A (en) Grain oriented silicon steel sheet extremely excellent in heat resistance and adhesion and formation of insulating film on it
JP2003034880A (en) Method for forming insulation film superior in adhesiveness on surface of grain-oriented electrical steel sheet, and method for manufacturing grain- oriented electrical steel sheet
JPS59215421A (en) Method for forming film containing zirconia on surface of silicon steel sheet
JPS6387716A (en) Surface treatment of amorphous alloy material
JPH11236682A (en) Superlow core loss grain oriented silicon steel sheet and its production
JPS621820A (en) Grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPH03215679A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees