JPH03215679A - Production of grain-oriented silicon steel sheet excellent in magnetic property - Google Patents

Production of grain-oriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH03215679A
JPH03215679A JP1091890A JP1091890A JPH03215679A JP H03215679 A JPH03215679 A JP H03215679A JP 1091890 A JP1091890 A JP 1091890A JP 1091890 A JP1091890 A JP 1091890A JP H03215679 A JPH03215679 A JP H03215679A
Authority
JP
Japan
Prior art keywords
steel sheet
film
grain
oriented silicon
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1091890A
Other languages
Japanese (ja)
Inventor
Shigeko Sujita
筋田 成子
Ujihiro Nishiike
西池 氏裕
Tsutomu Kami
力 上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1091890A priority Critical patent/JPH03215679A/en
Publication of JPH03215679A publication Critical patent/JPH03215679A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To produce a grain-oriented silicon steel sheet excellent in iron loss and magnetic flux density by applying composite plating in which ceramic grains are dispersed to the surface of a grain-oriented silicon steel sheet smoothed to specific roughness and further forming an insulating film on the above. CONSTITUTION:After oxides are removed from the surface of a finish-annealed grain-oriented silicon steel sheet by means of pickling, low strain mechanical polishing using an elastic body, etc., the surface of the steel sheet is finished into a smooth surface of >=0.3mu center line average height by means of chemical polishing, electropolishing, etc. Subsequently, a plating film (about 0.1-5mu thickness) in which metal (Ni, Cr, Cu, Co, Fe, Zn, etc.) is used as a matrix and fine grains of ceramics (SiC, Al2O3, TiN, etc.) are dispersed is formed on the above surface by a composite plating method. Further, a phosphate solution, etc., are applied to this plated film and baked, by which an insulating film is formed. By this method, the grain-oriented silicon steel sheet in which iron loss is reduced and magnetic flux density is increased can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁束密度および鉄損が極めて良好な方向性
けい素鋼板の製造方法に関し、特に鋼板表面の改質によ
り鉄損を減少させかつ磁束密度の増大を達成して磁気特
性を大幅に改良し得る製造方法について以下に述べる。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a grain-oriented silicon steel sheet that has extremely good magnetic flux density and iron loss, and in particular reduces iron loss and improves the surface of the steel sheet. A manufacturing method that can achieve an increase in magnetic flux density and significantly improve magnetic properties is described below.

(従来の技術) 方向性けい素鋼板の磁気特性は、主に磁束密度および鉄
損によって規定されていて、磁束密度(800A/mの
磁化力での磁束密度Bll(T)で代表される)は高い
方が望ましく、一方鉄損(1.7T. 50Hzの鉄損
h,7,。で代表される)は低い方が望ましい。
(Prior art) The magnetic properties of grain-oriented silicon steel sheets are mainly defined by magnetic flux density and iron loss, and are represented by magnetic flux density (magnetic flux density Bll(T) at a magnetizing force of 800 A/m). A higher value is desirable, while a lower iron loss (represented by iron loss h, 7, at 1.7 T. 50 Hz) is desirable.

また方向性けい素鋼板は積層して用いられるため鋼板表
面には絶縁被膜を施すことが必要であり、通常絶縁被膜
は、方向性けい素鋼板の製造工程において高温で行われ
る仕上げ焼鈍中に生成するフォルステライトを主とする
ガラス様被膜と、絶縁性を付与するために被成する燐酸
塩コーティングとの2層からなっている。
In addition, since grain-oriented silicon steel sheets are used in a laminated manner, it is necessary to apply an insulating film to the surface of the steel sheet, and the insulation film is usually formed during finish annealing at high temperatures in the manufacturing process of grain-oriented silicon steel sheets. It consists of two layers: a glass-like coating mainly made of forsterite, and a phosphate coating to provide insulation.

ところで近年、表面の改質により種々の物質の有する様
々な特性を充分に引き出そうとする研究が盛んである。
Incidentally, in recent years, research has been actively conducted to fully bring out the various properties of various substances through surface modification.

けい素鋼の分野においても、けい素鋼板の表面を平滑化
する、一種の表面改質技術によって、主として履歴損の
減少から鉄損が大幅に改良されることが以前から良く知
られている。
In the field of silicon steel, it has long been well known that a type of surface modification technology that smoothes the surface of a silicon steel sheet can significantly improve iron loss, mainly due to a reduction in hysteresis loss.

即ち上記ガラス様被膜と表層の内部酸化層(サブスケー
ル)を除去することによって表面を鏡面化すれば、鉄損
が大幅に改良されるわけである。
That is, if the surface is mirror-finished by removing the glass-like coating and the internal oxidation layer (subscale) on the surface layer, iron loss can be significantly improved.

しかし上記したようにけい素鋼板の表面には絶縁性が必
要なため、鏡面化したままの状態では鉄心材料として用
いることが出来なかった。しかも上記燐酸塩コーティン
グは鏡面に対しては密着性が不良であるために直接鏡面
上には成膜できなかった。そこでこれらの問題を解決す
るためにこれまで種々の技術的工夫が凝らされてきた。
However, as mentioned above, the surface of the silicon steel plate requires insulation, so it could not be used as a core material in its mirror-finished state. Furthermore, the phosphate coating described above has poor adhesion to mirror surfaces, so it could not be deposited directly on mirror surfaces. Therefore, various technical devices have been devised to solve these problems.

例えば特開昭49−96920号公報には、「鋼板表面
を化学研磨或は電解研磨し、次いで鏡面状態となった表
面にZn, Sn, Cu, Ni等の金属めっきを5
μI以下の厚さで施す」ことが開示されており、また特
公昭56−4150号公報には「化学研磨あるいは電解
研磨して得られる平滑面上にセラミックスを真空蒸着、
化学蒸着、スパッタリングあるいは溶射によって施すこ
と」が開示されている。
For example, Japanese Patent Application Laid-Open No. 49-96920 states, ``The surface of the steel plate is chemically polished or electrolytically polished, and then the mirror-like surface is plated with metals such as Zn, Sn, Cu, and Ni.
In addition, Japanese Patent Publication No. 56-4150 discloses that ``ceramics are vacuum-deposited on a smooth surface obtained by chemical polishing or electrolytic polishing.
application by chemical vapor deposition, sputtering or thermal spraying.

これらの技術はいずれも鏡面研磨を施した面には直接燐
酸塩等の絶縁コートを施すことが出来ないという問題に
対して解決を与えるものである。
All of these techniques provide a solution to the problem that it is not possible to directly apply an insulating coat such as phosphate to a mirror-polished surface.

(発明が解決しようとする課題) しかしなから上記の方法はいずれも工業化されるに至っ
ていない。というのは、特開昭49−96920号公報
においては金属めっきを施して平滑面を保ちつつコーテ
ィングを施すことが可能であることが示されているが、
実際にこの処理を行った場合鉄心素材であるけい素鋼板
において加工後に行われる歪取り焼鈍において金属めっ
きは綱中に拡散してけい素鋼板の磁性を劣化せしめ、ま
ためっき層による占積率の低下も大きく商品価値も大幅
に低下する. 一方特公昭56−4150号公報に開示されている技術
では、まず真空蒸着は反応速度や処理面積が限定されて
いるために生産性に難点があり、また化学蒸着は反応速
度および膜の均質性に難点があり、さらにスパッタリン
グは真空蒸着に比べても生産性は劣り、溶射は均質な薄
膜を作ることが非常に困難であり占積率は大幅に低下す
る。
(Problems to be Solved by the Invention) However, none of the above methods has yet been industrialized. This is because, although it is shown in JP-A No. 49-96920 that it is possible to apply a coating while maintaining a smooth surface by applying metal plating,
If this treatment is actually performed, the metal plating will diffuse into the steel during strain relief annealing performed after processing on the silicon steel sheet, which is the iron core material, and will deteriorate the magnetism of the silicon steel sheet, and the space factor due to the plating layer will decrease. The decline is large, and the product value is also significantly reduced. On the other hand, with the technology disclosed in Japanese Patent Publication No. 56-4150, vacuum evaporation has problems with productivity because the reaction rate and processing area are limited, and chemical vapor deposition has problems with the reaction rate and film homogeneity. In addition, sputtering has lower productivity than vacuum deposition, and thermal spraying makes it extremely difficult to form a homogeneous thin film, resulting in a significant decrease in space factor.

これらの理由から上記の手法は工業的に実施されるに至
っていない。
For these reasons, the above method has not been implemented industrially.

そこでこの発明は、平滑面化されたけい素鋼板が有する
優れた磁性を劣化させることなく、密着性の高い絶縁被
膜を広範な面積に対して均質に成膜できるコーティング
方法により、優れた占積率と低鉄損および高磁束密度と
を有する方向性けい素鋼板を製造する方法について提案
することを目的とする。
Therefore, the present invention has developed a coating method that can uniformly form a highly adhesive insulating film over a wide area without deteriorating the excellent magnetism of the smoothed silicon steel sheet. The purpose of the present invention is to propose a method for producing grain-oriented silicon steel sheets with low iron loss and high magnetic flux density.

(課題を解決するための手段) 発明者らは、上記の問題点を解決するため、方向性けい
素鋼板の表面を改質することにより磁気特性を改善する
技術について種々検討した結果、平滑化したけい素鋼板
の表面に、セラミック粒子を分散させた複合めっきを施
し、さらにその上に絶縁被膜を被成することにより、磁
気特性を劣化することなく、占積率に有利な、均質で密
着性の良好な絶縁被膜を成膜することに成功した。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the inventors investigated various techniques for improving the magnetic properties by modifying the surface of grain-oriented silicon steel sheets. Composite plating with dispersed ceramic particles is applied to the surface of the silicon steel sheet, and an insulating film is formed on top of it to create a homogeneous and close adhesion that is advantageous for space factor without deteriorating magnetic properties. We succeeded in forming an insulating film with good properties.

すなわちこの発明は、仕上げ焼鈍済みの方向性けい素鋼
板につき、その表面酸化物を除去し、次いで鋼板表面を
中心線平均粗さで0.3μm以下の平滑面としたのち、
この鋼板表面上にめっき処理により、金属をマトリック
スとしてセラミック粒子を分散させた被膜を被成し、さ
らにこの被膜上に絶縁被膜を被成することを特徴とする
磁気特性の優れた方向性珪素鋼板の製造方法及び仕上げ
焼鈍済みの方向性けい素鋼板につき、その表面酸化物を
除去し、ついで水溶性のハロゲン化物を用いた電解処理
により、鋼板表層を除去したのち、この鋼板表面上にめ
っき処理により、金属をマトリックスとしてセラミック
粒子を分散させた被膜を被成し、さらにこの被膜上に絶
縁被膜を被成することを特徴とする磁気特性の優れた方
同性けい素鋼板の製造方法 である。
That is, this invention removes surface oxides from a grain-oriented silicon steel sheet that has been finish annealed, and then makes the steel sheet surface a smooth surface with a centerline average roughness of 0.3 μm or less.
A grain-oriented silicon steel sheet with excellent magnetic properties, characterized in that a film containing ceramic particles dispersed in a metal matrix is formed on the surface of the steel sheet by plating, and an insulating film is further formed on this film. Manufacturing method and finish annealed grain-oriented silicon steel sheet, removing surface oxides, then removing the surface layer of the steel sheet by electrolytic treatment using a water-soluble halide, and plating treatment on the surface of the steel sheet. This is a method for producing an isotropic silicon steel sheet with excellent magnetic properties, which is characterized by forming a coating in which ceramic particles are dispersed using a metal as a matrix, and further forming an insulating coating on this coating.

まためっき被膜のセラミック粒子濃度を膜の表層で高め
ることによって、めっき被膜に絶縁性を付与できること
も判明し、絶縁被膜を省略可能な製造方法を新たに開発
するに到った。
It has also been found that insulation can be imparted to a plating film by increasing the concentration of ceramic particles in the surface layer of the film, leading to the development of a new manufacturing method that allows the insulating film to be omitted.

すなわち 仕上げ焼鈍済みの方向性けい素鋼板につき、その表面酸
化物を除去し、次いで鋼板表面を中心線平均粗さで0.
3μ−以下の平滑面としたのち、この鋼板表面上にめっ
き処理により、金属をマトリックスとしてセラミック粒
子を分散させた膜でかつ、そのセラミック粒子のマトリ
ックス金属に対する濃度を鋼板表面から膜表面へと高め
ためっき被膜を被成することを特徴とする磁気特性の優
れた方向性けい素鋼板の製造方法及び 仕上げ焼鈍済みの方向性けい素調板につき、その表面酸
化物を除去し、ついで水溶性のハロゲン化物を用いた電
解処理により、鋼板表層を除去したのち、この鋼板表面
上にめっき処理により、金属をマトリックスとしてセラ
ミンク粒子を分散させた膜でかつ、そのセラミック粒子
のマトリックス金属に対する濃度を鋼板表面から膜表面
へと高めためっき被膜を被成することを特徴とする磁気
特性の優れた方向性けい素鋼板の製造方法である。
That is, the surface oxide of a grain-oriented silicon steel sheet that has been finish annealed is removed, and then the steel sheet surface is roughened to a center line average roughness of 0.
After forming a smooth surface of 3μ or less, the steel sheet surface is plated to create a film in which ceramic particles are dispersed using metal as a matrix, and the concentration of the ceramic particles relative to the matrix metal is increased from the steel sheet surface to the film surface. A method for producing a grain-oriented silicon steel sheet with excellent magnetic properties characterized by being coated with a plating film, and a process for removing surface oxides from the grain-oriented silicon steel sheet that has been finish annealed, and then applying a water-soluble After the surface layer of the steel plate is removed by electrolytic treatment using a halide, the surface layer of the steel plate is plated on the surface of the steel plate to form a film in which ceramic particles are dispersed using metal as a matrix, and the concentration of the ceramic particles relative to the matrix metal is reduced on the surface of the steel plate. This is a method for producing a grain-oriented silicon steel sheet with excellent magnetic properties, which is characterized by forming a highly plating film from the top to the surface of the film.

(作 用) 次にこの発明を工程順に詳細に説明する。(for production) Next, this invention will be explained in detail in the order of steps.

この発明で用いる方向性けい素鋼板は、従来知られてい
る方法で2次再結晶処理が施された鋼板を用いる。すな
わち方向性けい素鋼板素材成分を含有する鋼塊を熱間圧
延し、さらに冷間圧延と焼鈍を繰り返して所定の板厚と
した後、1次再結晶焼鈍を行う。次に上該鋼板表面に焼
鈍分離材を塗布し2次再結晶焼鈍を施す。この発明法は
表面の改質によって磁性を改良するものであるので、素
材のインヒビターや圧延焼鈍方法等の製造方法に拘らず
、磁性の改善効果があることはいうまでもない。
The grain-oriented silicon steel sheet used in this invention is a steel sheet that has been subjected to secondary recrystallization treatment by a conventionally known method. That is, a steel ingot containing a grain-oriented silicon steel sheet material component is hot rolled, further cold rolled and annealed repeatedly to obtain a predetermined thickness, and then primary recrystallization annealing is performed. Next, an annealing separation material is applied to the surface of the steel plate and secondary recrystallization annealing is performed. Since this invention method improves magnetism by modifying the surface, it goes without saying that it has the effect of improving magnetism regardless of the inhibitor of the material or the manufacturing method such as rolling annealing method.

ちなみに代表的な成分組成を示すと、次に示すとおりで
ある。
Incidentally, typical component compositions are as shown below.

C : 0.01〜0.10wt%(以下単に%と示す
)Cは、熱間圧延、冷間圧延中の組織の均一微細化のみ
らなず、ゴス方位の発達に有用な元素であり、少なくと
も0.01%以上の添加が好ましい。しかしなから0.
10%を超えて含有されるとかえってゴス方位に乱れが
生じるので上限は0.10%程度が好ましい。
C: 0.01 to 0.10 wt% (hereinafter simply referred to as %) C is an element that is useful not only for uniform refinement of the structure during hot rolling and cold rolling, but also for the development of Goss orientation, It is preferable to add at least 0.01% or more. But 0.
If the content exceeds 10%, the Goss orientation will be disturbed, so the upper limit is preferably about 0.10%.

St : 2.0〜4.5% Siは、鋼板の比抵抗を高め鉄損の低減に有効に寄与す
るが、4.5%を上回ると冷延性が損なわれ、一方2.
0%に満たないと比抵抗が低下するだけでなく、2次再
結晶・純化のために行われる最終高温焼鈍中にα一γ変
態によって結晶方位のランダム化を生じ、十分な鉄損改
善効果が得られないので、Si量は2.0〜4.5%程
度とするのが好ましい。
St: 2.0 to 4.5% Si increases the specific resistance of the steel sheet and effectively contributes to reducing iron loss, but if it exceeds 4.5%, cold rollability is impaired;
If it is less than 0%, not only will the resistivity decrease, but also randomization of crystal orientation will occur due to α-γ transformation during the final high-temperature annealing performed for secondary recrystallization and purification, resulting in a sufficient iron loss improvement effect. is not obtained, the amount of Si is preferably about 2.0 to 4.5%.

Mn : 0.02〜0.12% Mnは、熱間詭化を防止するため少なくとも0.02%
程度を必要とするが、あまりに多すぎると磁気特性を劣
化させるので上限は0.12%程度に定めるのが好まし
い。
Mn: 0.02 to 0.12% Mn is at least 0.02% to prevent hot deterioration
It is preferable to set the upper limit at about 0.12%, since too much content deteriorates the magnetic properties.

インヒビターとしては、いわゆるMnS, MnSe系
とAIN系とがある。 MnS+ MnSe系の場合は
、Se, Sのうちから選ばれる少なくとも1種: o
.oos〜0.06% Se,  Sはいずれも、方向性けい素鋼板の2次再結
晶を制御するインヒビターとして有力な元素である。抑
制力確保の観点からは、少なくとも0.005%程度を
必要とするが、0.06%を超えるとその効果が損なわ
れるので、その下限、上限はそれぞれ0.01%. 0
.06%程度とするのが好ましい。
Inhibitors include so-called MnS, MnSe and AIN inhibitors. In the case of MnS+MnSe, at least one selected from Se and S: o
.. oos~0.06% Se and S are both effective elements as inhibitors that control secondary recrystallization of grain-oriented silicon steel sheets. From the viewpoint of ensuring suppressive power, it is necessary to have at least about 0.005%, but if it exceeds 0.06%, the effect will be impaired, so the lower and upper limits are respectively 0.01%. 0
.. It is preferable to set it to about 0.06%.

AIN系の場合は、 Al : 0.005〜0.10%, N : 0.0
04〜0.015%AIおよびNの範囲についても、上
述したMnS,HnSe系の場合と同様な理由により、
上記の範囲に定めた.ここに上記したMnS, MnS
e系およびAIN系はそれぞれ併用が可能である。
In the case of AIN type, Al: 0.005-0.10%, N: 0.0
Regarding the range of 04 to 0.015% AI and N, due to the same reason as in the case of MnS and HnSe systems mentioned above,
The above range is set. Here, the above-mentioned MnS, MnS
The e system and the AIN system can each be used in combination.

インヒビター成分としては上記したS. Se. AI
の他、Cu. Sn. Crs Ge, Sb+ Mo
+ 4e+ BtおよびPなども有利に適合するので、
それぞれ少量併せて含有させることもできる。ここに上
記成分の好適添加範囲はそれぞれ、Cu, Sn, C
r : 0.01〜0.15%、Ge, Sb. Mo
, Te, Bi : 0.005〜0.1%、P:0
.01〜0.2%であり、これらの各インヒビター成分
についても、単独使用および複合使用いずれもが可能で
ある。
As the inhibitor component, the above-mentioned S. Se. AI
Besides, Cu. Sn. CrsGe, Sb+Mo
+ 4e+ Bt and P etc. are also suitable, so
They can also be contained together in small amounts. Here, the preferred addition ranges of the above components are Cu, Sn, and C.
r: 0.01-0.15%, Ge, Sb. Mo
, Te, Bi: 0.005-0.1%, P: 0
.. 01 to 0.2%, and each of these inhibitor components can be used alone or in combination.

次いで仕上げ焼鈍の際に生じた表面の酸化物を除去して
鋼板表面を中心線平均粗さが0.3μm以下の平滑面に
仕上げる。この際表面に大きな塑性歪を残すことは製品
の磁気特性を劣化させるために避けなければならない。
Next, oxides on the surface generated during final annealing are removed to finish the steel plate surface into a smooth surface with a center line average roughness of 0.3 μm or less. At this time, it is necessary to avoid leaving large plastic strain on the surface since this will deteriorate the magnetic properties of the product.

そこで酸化物の除去には、酸洗や弾性体による低歪機械
研磨などを用いるのが好ましい.その後化学研磨あるい
は電解研磨で所定の表面粗さまで平滑化される。ここで
は鋼板表面を0.3μm Ra以下に仕上げる必要があ
る。
Therefore, it is preferable to use pickling or low-strain mechanical polishing using an elastic material to remove oxides. Thereafter, the surface is smoothed to a predetermined roughness by chemical polishing or electrolytic polishing. Here, it is necessary to finish the surface of the steel plate to 0.3 μm Ra or less.

なぜなら鋼板の表面粗さが0.3μrn Raをこえる
と、充分な履歴損の減少が得られない。
This is because if the surface roughness of the steel plate exceeds 0.3 μrn Ra, sufficient reduction in hysteresis loss cannot be obtained.

また化学研磨、電解研磨以外に平滑化する手段として、
水溶性のハロゲン化物による電解処理を用いてもよい。
Also, as a means of smoothing other than chemical polishing and electrolytic polishing,
Electrolytic treatment with a water-soluble halide may also be used.

ここで水溶性のハロゲン化物とは、HCI, NH4C
lおよび各種金属の塩化物、F, Br, Iを陰イオ
ンとする酸、アルカリ、アルカリ土類およびその他の金
属塩類、またはアンモニウム塩のうちの水溶性のもの、
さらにはほうふつか物(BF4塩)またはけいふっか物
(SiF6塩)のうちの水溶性のものを意味する。これ
らハロゲン化物の水溶液による電解処理によっては化学
研磨あるいは電解研磨のような、いわゆる鏡面を得るこ
とはできないが、表層が3μ閘以上の厚みにわたって減
少する電解処理を施せば鏡面と同様な履歴損減少の効果
を得ることができる。
Here, water-soluble halides include HCI, NH4C
1 and various metal chlorides, acid, alkali, alkaline earth and other metal salts with F, Br, I as anions, or water-soluble ammonium salts;
Furthermore, it means a water-soluble type of fluorine (BF4 salt) or silicone fluoride (SiF6 salt). Although electrolytic treatment using an aqueous solution of these halides cannot produce a so-called mirror surface like chemical polishing or electrolytic polishing, if electrolytic treatment is applied to reduce the surface layer over a thickness of 3 μm or more, the hysteresis loss can be reduced in the same way as a mirror surface. effect can be obtained.

その後平滑化した鋼板表面に、複合めっき法によって、
薄いめっき被膜を被成する。めっき被膜は、金属のマト
リックスにセラミックの微粒子を分散してなるもので、
鋼板平滑面への密着性にも優れ、歪取り焼鈍を施しても
めっきマトリックス金属はセラミック微粒子が分散して
いるために綱中に拡散することが少なく、磁性を劣化さ
せることがなく、さらにこのめっき被膜上に被成する絶
縁被膜の密着性も向上し得る。また絶縁被膜の焼付け処
理で、中間のめっき被膜層による張力が鋼板表面に加わ
りさらに磁性は向上する。
Then, the smoothed steel plate surface is coated with a composite plating method.
Coat with a thin plating film. The plating film is made by dispersing ceramic particles in a metal matrix.
It also has excellent adhesion to the smooth surface of steel plates, and even after strain relief annealing, the plating matrix metal has ceramic fine particles dispersed in it, so it hardly diffuses into the steel, so it does not deteriorate the magnetism. The adhesion of the insulating film formed on the plating film can also be improved. Furthermore, during the baking process of the insulating film, tension due to the intermediate plating film layer is applied to the surface of the steel sheet, further improving magnetism.

このめっき被膜においてマトリックスとする金属は、N
i, Cr. Cu, Co, Fe, Znがとりわ
け好適で、また分散させるセラミック微粒子としてはS
iC. WC等の炭化物、^120i+ TiOz, 
SiOz等の酸化物、TiN等の窒化物等が有利に適合
する。
The metal matrix in this plating film is N
i, Cr. Cu, Co, Fe, and Zn are particularly suitable, and S is particularly suitable as the ceramic fine particles to be dispersed.
iC. Carbide such as WC, ^120i+ TiOz,
Oxides such as SiOz, nitrides such as TiN, etc. are advantageously suitable.

また被膜の厚さが0.1 μm未満であると、均質な膜
をうることが困難で、一方5μmをこえるとめっき被膜
にクラックが入る上、絶縁被膜を被成した際に占積率の
低下も招くことから、被膜の厚みは0.1〜5μ一の範
囲とすることが好ましい。
Furthermore, if the thickness of the coating is less than 0.1 μm, it is difficult to obtain a homogeneous film, while if the thickness exceeds 5 μm, cracks will occur in the plating layer and the space factor will decrease when an insulating coating is applied. Since this may also lead to a decrease in the thickness of the film, it is preferable that the thickness of the coating is in the range of 0.1 to 5 μm.

ここで複合めっき法とは、電気めっきおよび無電解めっ
きのいずれを用いてもよ《、具体的には次の通りである
Here, the composite plating method may be either electroplating or electroless plating.Specifically, it is as follows.

まず電気めっきは、分散させるセラミック微粒子を懸濁
させた浴中に電極を配置し、陰極に被めっき材を、陽極
にマトリックス金属を配置して行う。めっき液はマトリ
ックス金属と同じ金属のイオンを供給する金属塩溶液で
あればよい。
First, electroplating is performed by placing an electrode in a bath in which ceramic fine particles to be dispersed are suspended, a material to be plated being placed at the cathode, and a matrix metal being placed at the anode. The plating solution may be any metal salt solution that supplies ions of the same metal as the matrix metal.

浴中に懸濁したセラミック微粒子は、浴の撹拌による流
動によりカソードとした被めっき材表面まで輸送され、
表面に衝突する。表面に衝突した微粒子は金属の電解析
出にともないマトリックス中に埋め込まれ複合めっき層
を形成する。
The ceramic fine particles suspended in the bath are transported to the surface of the material to be plated, which is used as a cathode, by the flow caused by the stirring of the bath.
Collision with a surface. The fine particles that collide with the surface are embedded in the matrix as metal is electrolytically deposited, forming a composite plating layer.

一方、無電解めっきは、マトリックス金属の金属塩溶液
に還元剤を加えた浴中に材料を浸漬することにより材料
表面にめっき膜を形成するもので、この発明では、この
浴中にセラミック微粒子を懸濁させておく。
On the other hand, electroless plating forms a plating film on the material surface by immersing the material in a bath containing a metal salt solution of the matrix metal and a reducing agent.In this invention, ceramic fine particles are added to the bath. Leave it suspended.

無電解のめっきの場合も同様に、金属の還元析出にとも
なって被めっき材表面に衝突した微粒子がマトリックス
中に埋め込まれ、複合めっき層を形成する。
Similarly, in the case of electroless plating, fine particles that collide with the surface of the material to be plated as the metal is reduced and deposited are embedded in the matrix, forming a composite plating layer.

次にめっき被膜を被成した後、絶縁被膜を形成するため
、例えば燐酸塩溶液を塗布する。もちろん従来知られて
いる、張力付与型の絶縁被膜形成液を塗布しても構わな
い。塗布はロールコータを用いてもスプレー法でも構わ
ない。
Next, after a plating film is formed, a phosphate solution, for example, is applied to form an insulating film. Of course, a conventionally known tension-applying insulating film forming liquid may be applied. Application may be performed using a roll coater or by a spray method.

上記の塗膜は焼付けられ、その際に中間のめっき被膜は
鋼板表面に張力を付与することになる。
The above-mentioned coating film is baked, and at that time, the intermediate plating film imparts tension to the surface of the steel sheet.

また上記平滑化した鋼板表面にめっき被膜を被成する際
に、鋼板表面から膜表面へと分散セラミック粒子のマト
リックス金属に対する濃度を高め、すなわち膜厚方向の
セラミック粒子濃度に勾配をつけて、めっき被膜の表層
に絶縁性を付与することによって絶縁被膜を省略し、鋼
板の占積率を向上することができる。
Furthermore, when forming a plating film on the smoothed steel sheet surface, the concentration of dispersed ceramic particles relative to the matrix metal is increased from the steel sheet surface to the film surface, that is, a gradient is created in the ceramic particle concentration in the film thickness direction. By imparting insulation to the surface layer of the coating, the insulation coating can be omitted and the space factor of the steel plate can be improved.

ここで濃度勾配は、地鉄側をマトリックスリッチに、一
方表層側をセラミックスリッチにすることが好ましい。
Here, the concentration gradient is preferably matrix-rich on the base metal side and ceramic-rich on the surface layer side.

特に表層組成がセラミックス100%となる被膜が好ま
しい。なぜなら表層にめっきマトリックス金属が多《存
在するほど、良好な絶縁性を実現できるからである。そ
して濃度勾配の付与は、例えばめっき液の懸濁濃度ある
いは液と被めっき材の相対運動を変化することで達成で
きる。
Particularly preferred is a coating whose surface layer composition is 100% ceramic. This is because the more plating matrix metal is present in the surface layer, the better the insulation can be achieved. The concentration gradient can be achieved by, for example, changing the suspension concentration of the plating solution or the relative movement between the solution and the material to be plated.

このめっき被膜にセラミック粒子の濃度勾配を設ける場
合においても、膜厚を0.5〜5μmにするとよい。す
なわち0.5μ鋼未満では膜厚方向に濃度勾配をつける
ことができず、一方5μmをこえると被膜にクラソクが
入るおそれがある。
Even when a concentration gradient of ceramic particles is provided in this plating film, the film thickness is preferably 0.5 to 5 μm. That is, if the thickness is less than 0.5 μm, it is impossible to create a concentration gradient in the direction of the film thickness, while if it exceeds 5 μm, there is a risk that krasok will enter the film.

なおこの絶縁性を付与しためっき被膜の表面に、さらに
通常の絶縁被膜を被成してもよい。
Note that an ordinary insulating film may be further formed on the surface of the plating film imparted with insulation.

(実施例) 実施■よ MnSeをインヒビターとし、Siを3.41%含有す
る仕上げ焼鈍済みの方向性けい素鋼板(0.23mm厚
)の表面酸化物を、塩酸による酸洗で除去し、その後表
1に示す条件の処理をそれぞれ行ってめっき被膜を被成
した後、めっき被膜上に燐酸系絶縁被膜を施した。
(Example) Implementation ■ Using MnSe as an inhibitor, the surface oxides of a finish-annealed grain-oriented silicon steel plate (0.23 mm thick) containing 3.41% Si were removed by pickling with hydrochloric acid, and then After forming a plating film by performing the treatments under the conditions shown in Table 1, a phosphoric acid-based insulating film was applied on the plating film.

かくして得られた鋼板の磁気特性、密着性及び占積率を
、仕上げ焼鈍ままの素材(比較例)と比較して表1に示
す。
The magnetic properties, adhesion, and space factor of the steel sheet thus obtained are shown in Table 1 in comparison with the as-finished annealed material (comparative example).

同表からわかるように、この発明方法によって優れた磁
気特性を劣化させることなく、密着性が良好で占積率を
高め得る絶縁被膜を効率よく成膜することができた。
As can be seen from the table, the inventive method was able to efficiently form an insulating film that had good adhesion and could increase the space factor without degrading the excellent magnetic properties.

なお同表における評価のうち、まず被膜の密着性は、円
柱の試験棒の周囲に鋼板を巻き付けたのち、それを延ば
し膜の剥離状態を観察して評価した。
Among the evaluations in the same table, the adhesion of the film was first evaluated by wrapping a steel plate around a cylindrical test rod, then stretching it and observing the peeling state of the film.

また占積率は絶縁被膜形成後の重量から得た、計算厚み
と実測厚みとの比から求め、膜厚のばらつきは板幅50
cmの試材における板厚のばらつきを測定した。
In addition, the space factor is determined from the ratio of the calculated thickness and the measured thickness obtained from the weight after forming the insulating film, and the variation in film thickness is determined by the board width 50.
The variation in plate thickness in sample materials of cm was measured.

実1l』λ AINをインヒビターとし、Siを3.20%含有する
仕上げ焼鈍済みの方向性けい素鋼板(0.23mm厚)
の表面酸化物を、平均粒度5μmのSiC砥粒とナイロ
ンブラシとを用いた遊離砥粒機械研磨により除去した後
、表2に示す条件の処理をそれぞれ行ってめっき被膜を
被成した後、めっき被膜上に燐酸系絶縁被膜を施した。
Finish annealed grain-oriented silicon steel plate (0.23 mm thick) containing 3.20% Si and using λ AIN as an inhibitor.
After removing surface oxides by free abrasive mechanical polishing using SiC abrasive grains with an average particle size of 5 μm and a nylon brush, a plating film was formed under the conditions shown in Table 2. A phosphoric acid-based insulating film was applied on the film.

かくして得られた銅板の磁気特性、密着性及び占積率を
、仕上げ焼鈍ままの素材(比較例)と比較して表2に示
す。
Table 2 shows the magnetic properties, adhesion, and space factor of the copper plate thus obtained in comparison with the as-finished annealed material (comparative example).

同表からわかるように、この発明方法によって優れた磁
気特性を劣化させることなく、密着性が良好で占積率を
高め得る絶縁被膜を効率よく成膜することができた。
As can be seen from the table, the inventive method was able to efficiently form an insulating film that had good adhesion and could increase the space factor without degrading the excellent magnetic properties.

実Jl1走 MnSeをインヒビターとし、Siを3.20%含有す
る仕上げ焼鈍済みの方向性けい素鋼板(0.23mm厚
)の表面酸化物を、塩酸による酸洗で除去し、その後表
3に示す条件の処理をそれぞれ行ってめっき被膜を被成
した。
The surface oxides of a finish-annealed grain-oriented silicon steel plate (0.23 mm thick) containing 3.20% Si and using MnSe as an inhibitor were removed by pickling with hydrochloric acid, and then the materials shown in Table 3 were removed. A plating film was formed under each condition.

かくして得られた鋼板の磁気特性、密着性及び占積率を
、仕上げ焼鈍ままの素材(比較例)と比較して表3に示
す。
The magnetic properties, adhesion, and space factor of the steel sheet thus obtained are shown in Table 3 in comparison with the as-finished annealed material (comparative example).

同表からわかるように、この発明方法によって優れた磁
気特性を劣化させることなく、密着性が良好で占積率を
大幅に高め得るめっき被膜を効率よく成膜することがで
きた。
As can be seen from the table, the method of the present invention was able to efficiently form a plating film that had good adhesion and could significantly increase the space factor without degrading the excellent magnetic properties.

実ll壓先 ^INをインヒビターとし、Siを3.1S%含有する
仕上げ焼鈍済みの方向性けい素鋼板(0.23mm厚)
の表面酸化物を、平均粒度5μmのSiC砥粒とナイロ
ンブラシとを用いた遊離砥粒S械研磨により除去した後
、表4に示す条件の処理をそれぞれ行ってめっき被膜を
被成した後、めっき被膜上に燐酸系絶縁被膜を施した。
Finish annealed grain-oriented silicon steel plate (0.23 mm thick) containing 3.1S% Si and using the real tip ^IN as an inhibitor.
After removing the surface oxides by free abrasive S mechanical polishing using SiC abrasive grains with an average particle size of 5 μm and a nylon brush, a plating film was formed by performing the treatments under the conditions shown in Table 4. A phosphoric acid-based insulating film was applied on the plating film.

かくして得られた鋼板の磁気特性、密着性及び占積率を
、仕上げ焼鈍ままの素材(比較例)と比較して表4に示
す。
Table 4 shows the magnetic properties, adhesion, and space factor of the steel sheet thus obtained in comparison with the as-finished annealed material (comparative example).

同表からわかるように、この発明方法によって優れた磁
気特性を劣化させることなく、密着性が良好で占積率を
高め得る絶縁被膜を効率よく成膜することができた。
As can be seen from the table, the inventive method was able to efficiently form an insulating film that had good adhesion and could increase the space factor without degrading the excellent magnetic properties.

(発明の効果) この発明によれば、鉄損および磁束密度の格段に優れた
方向性けい素鋼板を製造でき、したがって生産性の高い
工業的価値の非常に大きい製造方法を実現し得る。さら
に密着性に優れた被膜が得られるので、方向性けい素鋼
板の占積率を高めることが可能で、特にめっき被膜にセ
ラミック粒子の濃度勾配を与えたものにあっては絶縁被
膜の省略が可能で、占積率を大幅に高め得る。
(Effects of the Invention) According to the present invention, a grain-oriented silicon steel sheet with significantly superior iron loss and magnetic flux density can be manufactured, and therefore a manufacturing method with high productivity and great industrial value can be realized. Furthermore, since a coating with excellent adhesion can be obtained, it is possible to increase the space factor of the grain-oriented silicon steel sheet, and the insulation coating can be omitted, especially when the plating coating has a concentration gradient of ceramic particles. possible, and can significantly increase the floor space factor.

Claims (4)

【特許請求の範囲】[Claims] 1.仕上げ焼鈍済みの方向性けい素鋼板につき、その表
面酸化物を除去し、次いで鋼板表面を中心線平均粗さで
0.3μm以下の平滑面としたのち、この鋼板表面上に
めっき処理により、金属をマトリックスとしてセラミッ
ク粒子を分散させためっき被膜を被成し、さらにこのめ
っき被膜上に絶縁被膜を被成することを特徴とする磁気
特性の優れた方向性けい素鋼板の製造方法。
1. After removing the surface oxides from the finish-annealed grain-oriented silicon steel sheet and making the steel sheet surface smooth with a centerline average roughness of 0.3 μm or less, metal is coated on the surface of the steel sheet by plating. A method for producing a grain-oriented silicon steel sheet with excellent magnetic properties, characterized by forming a plating film in which ceramic particles are dispersed as a matrix, and further forming an insulating film on the plating film.
2.仕上げ焼鈍済みの方向性けい素鋼板につき、その表
面酸化物を除去し、ついで水溶性のハロゲン化物を用い
た電解処理により、鋼板表層を除去したのち、この鋼板
表面上にめっき処理により、金属をマトリックスとして
セラミック粒子を分散させためっき被膜を被成し、さら
にこのめっき被膜上に絶縁被膜を被成することを特徴と
する磁気特性の優れた方向性けい素鋼板の製造方法。
2. Surface oxides are removed from the finish-annealed grain-oriented silicon steel sheet, the surface layer of the steel sheet is removed by electrolytic treatment using a water-soluble halide, and then metal is applied to the surface of the steel sheet by plating. A method for producing grain-oriented silicon steel sheets with excellent magnetic properties, characterized by forming a plating film in which ceramic particles are dispersed as a matrix, and further forming an insulating film on the plating film.
3.仕上げ焼鈍済みの方向性けい素鋼板につき、その表
面酸化物を除去し、次いで鋼板表面を中心線平均粗さで
0.3μm以下の平滑面としたのち、この鋼板表面上に
めっき処理により、金属をマトリックスとしてセラミッ
ク粒子を分散させた膜でかつ、そのセラミック粒子のマ
トリックス金属に対する濃度を鋼板表面から膜表面へと
高めためっき被膜を被成することを特徴とする磁気特性
の優れた方向性けい素鋼板の製造方法。
3. After removing the surface oxides from the finish-annealed grain-oriented silicon steel sheet and making the steel sheet surface smooth with a centerline average roughness of 0.3 μm or less, metal is coated on the surface of the steel sheet by plating. A directional silicone film with excellent magnetic properties characterized in that it is a film in which ceramic particles are dispersed with a matrix of Manufacturing method of raw steel plate.
4.仕上げ焼鈍済みの方向性けい素鋼板につき、その表
面酸化物を除去し、ついで水溶性のハロゲン化物を用い
た電解処理により、鋼板表層を除去したのち、この鋼板
表面上にめっき処理により、金属をマトリックスとして
セラミック粒子を分散させた膜でかつ、そのセラミック
粒子のマトリックス金属に対する濃度を鋼板表面から膜
表面へと高めためっき被膜を被成することを特徴とする
磁気特性の優れた方向性けい素鋼板の製造方法。
4. Surface oxides are removed from the finish-annealed grain-oriented silicon steel sheet, the surface layer of the steel sheet is removed by electrolytic treatment using a water-soluble halide, and then metal is applied to the surface of the steel sheet by plating. Directional silicon with excellent magnetic properties, characterized by a film in which ceramic particles are dispersed as a matrix, and a plating film is formed that increases the concentration of the ceramic particles to the matrix metal from the surface of the steel plate to the surface of the film. Method of manufacturing steel plates.
JP1091890A 1990-01-20 1990-01-20 Production of grain-oriented silicon steel sheet excellent in magnetic property Pending JPH03215679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1091890A JPH03215679A (en) 1990-01-20 1990-01-20 Production of grain-oriented silicon steel sheet excellent in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1091890A JPH03215679A (en) 1990-01-20 1990-01-20 Production of grain-oriented silicon steel sheet excellent in magnetic property

Publications (1)

Publication Number Publication Date
JPH03215679A true JPH03215679A (en) 1991-09-20

Family

ID=11763632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1091890A Pending JPH03215679A (en) 1990-01-20 1990-01-20 Production of grain-oriented silicon steel sheet excellent in magnetic property

Country Status (1)

Country Link
JP (1) JPH03215679A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100344799C (en) * 2005-02-24 2007-10-24 上海交通大学 Composite electroforming preparing process for nano aluminium oxide particle reinforced copper base composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100344799C (en) * 2005-02-24 2007-10-24 上海交通大学 Composite electroforming preparing process for nano aluminium oxide particle reinforced copper base composite material

Similar Documents

Publication Publication Date Title
KR101596446B1 (en) Pre-coating composition for forsterite film-eliminated grain oriented electrical steels, grain oriented electrical steels manufactured by using the same, and method for manufacturing the same grain oriented electrical steels
KR20000075590A (en) Ultra-low core loss grain oriented silicon steel sheet and method of producing the same
KR100447048B1 (en) Grain-oriented electrical steel sheet in film adhesion and extremely low in core loss and its production method
JPH05311453A (en) Production of ultralow iron loss grain-oriented electrical steel sheet
EP0307163B1 (en) Silicon steel sheets having low iron loss and method of producing the same
JP2670155B2 (en) Method for producing unidirectional silicon steel sheet with extremely good magnetic properties
JPS62161915A (en) Manufacture of grain-oriented silicon steel sheet with superlow iron loss
JP5047466B2 (en) Super low iron loss directional electrical steel sheet with excellent coating adhesion
JP3280279B2 (en) Ultra-low iron loss grain-oriented electrical steel sheet
JP4635457B2 (en) A grain-oriented electrical steel sheet having a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance, and a method for forming a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance.
JPH03215679A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2703604B2 (en) Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties
JP2006253555A6 (en) Super low iron loss directional electrical steel sheet with excellent coating adhesion
JP3921199B2 (en) Method for producing unidirectional silicon steel sheet excellent in film adhesion of tension imparting insulating film
KR0178537B1 (en) Method of producing grain oriented silicon steel sheets having improved magnetic properties and bending rpoperties
JP2003034880A (en) Method for forming insulation film superior in adhesiveness on surface of grain-oriented electrical steel sheet, and method for manufacturing grain- oriented electrical steel sheet
JPH11181576A (en) Rain oriented silicon steel sheet good in film adhesion and extremely low in core loss value
JPS59215421A (en) Method for forming film containing zirconia on surface of silicon steel sheet
JP2004060029A (en) Method for manufacturing super low core loss grain oriented magnetic steel sheet having excellent film adhesion
JPS62103374A (en) Grain-oriented silicon steel sheet having superior magnetic characteristic
JPH11236682A (en) Superlow core loss grain oriented silicon steel sheet and its production
JP4725711B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
JPH1180909A (en) Low iron loss grain-oriented silicon steel sheet good in adhesion of tension-applied type coating
JPH11243005A (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacture thereof
JP2752682B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties