JP7040888B2 - Method of forming a tension insulating film for grain-oriented electrical steel sheets and grain-oriented electrical steel sheets - Google Patents
Method of forming a tension insulating film for grain-oriented electrical steel sheets and grain-oriented electrical steel sheets Download PDFInfo
- Publication number
- JP7040888B2 JP7040888B2 JP2016200819A JP2016200819A JP7040888B2 JP 7040888 B2 JP7040888 B2 JP 7040888B2 JP 2016200819 A JP2016200819 A JP 2016200819A JP 2016200819 A JP2016200819 A JP 2016200819A JP 7040888 B2 JP7040888 B2 JP 7040888B2
- Authority
- JP
- Japan
- Prior art keywords
- grain
- steel sheet
- oriented electrical
- electrical steel
- tension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Chemical Treatment Of Metals (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、方向性電磁鋼板及び方向性電磁鋼板の張力絶縁被膜形成方法に関する。 The present invention relates to a grain-oriented electrical steel sheet and a method for forming a tension insulating film of grain-oriented electrical steel sheet.
一般に、方向性電磁鋼板はトランスなどの鉄芯として用いられており、方向性電磁鋼板の磁気特性がトランスの性能に多大な影響を与えることから、磁気特性を改善するよう様々な研究開発がなされてきた。方向性電磁鋼板の鉄損を低減する手段として、例えば下記の特許文献1には、仕上げ焼鈍後の鋼板表面に対してコロイド状シリカとリン酸塩とを主成分とする溶液を塗布焼き付けることにより張力付与コーティングを形成して、鉄損を低減する技術が開示されている。更に、下記の特許文献2には、仕上げ焼鈍後の材料表面に対してレーザビームを照射して局部歪みを鋼板に付与することにより磁区を細分化して、鉄損を低減する技術が開示されている。下記特許文献1や特許文献2に示したようなこれらの技術により、鉄損は極めて良好なものとなってきている。 Generally, grain-oriented electrical steel sheets are used as iron cores for transformers, etc., and since the magnetic properties of grain-oriented electrical steel sheets have a great influence on the performance of transformers, various research and development have been done to improve the magnetic properties. I came. As a means for reducing iron loss of grain-oriented electrical steel sheets, for example, in Patent Document 1 below, a solution containing colloidal silica and phosphate as main components is applied and baked on the surface of the steel sheet after finish baking. A technique for forming a tensioning coating to reduce iron loss has been disclosed. Further, Patent Document 2 below discloses a technique of irradiating a material surface after finish annealing with a laser beam to apply local strain to a steel sheet to subdivide magnetic domains and reduce iron loss. There is. Due to these techniques as shown in Patent Document 1 and Patent Document 2 below, iron loss has become extremely good.
ところで、近年では、トランスの小型化や高性能化の要求が高まっており、トランスの小型化のためには、磁束密度の高い場合にも鉄損が良好である、高磁場鉄損に優れることが、方向性電磁鋼板に求められている。この高磁場鉄損を改善する手段として、通常の方向性電磁鋼板に存在する無機質系被膜を無くし、更に張力を付与することが研究されている。後に張力付与コーティングが形成されることから、無機質系被膜を1次被膜と称し、張力付与コーティングを2次被膜と称することもある。 By the way, in recent years, there has been an increasing demand for miniaturization and high performance of transformers, and for miniaturization of transformers, iron loss is good even when the magnetic flux density is high, and high magnetic field iron loss is excellent. However, it is required for grain-oriented electrical steel sheets. As a means for improving this high magnetic field iron loss, it is being studied to eliminate the inorganic film existing in the ordinary grain-oriented electrical steel sheet and further apply tension. Since the tension-applying coating is formed later, the inorganic coating may be referred to as a primary coating, and the tension-imparting coating may be referred to as a secondary coating.
方向性電磁鋼板の表面には、脱炭焼鈍工程で生じるシリカを主成分とする酸化層と、焼き付き防止のために表面に塗布された酸化マグネシウムと、が仕上げ焼鈍中に反応して、フォルステライトを主成分とする無機質系被膜を生成する。無機質系被膜には若干の張力効果があり、方向性電磁鋼板の鉄損を改善する効果がある。しかしながら、これまでの研究の結果、無機質系被膜は非磁性層であることにより、磁気特性、特に高磁場鉄損特性に悪影響を及ぼすことが明らかとなってきている。従って、無機質系被膜を研磨などの機械的あるいは酸洗などの化学的手段を用いて除去したり、あるいは、高温仕上げ焼鈍における無機質系被膜の生成を防止したりすることにより、無機質系被膜を有しない方向性電磁鋼板あるいは鋼板表面を鏡面状態とする技術が研究されている。 On the surface of grain-oriented electrical steel sheets, an oxide layer containing silica as a main component generated in the decarburization annealing process and magnesium oxide applied to the surface to prevent seizure react during finish annealing and forsterite. To produce an inorganic film containing the main component. The inorganic film has a slight tension effect and has an effect of improving the iron loss of the grain-oriented electrical steel sheet. However, as a result of the studies so far, it has become clear that the inorganic film is a non-magnetic layer, which adversely affects the magnetic properties, particularly the high magnetic field iron loss property. Therefore, the inorganic film can be obtained by removing the inorganic film by mechanical means such as polishing or by chemical means such as pickling, or by preventing the formation of the inorganic film in high-temperature finish annealing. Non-directional electromagnetic steel sheets or techniques for mirroring the surface of steel sheets are being researched.
このような無機質系被膜の生成防止あるいは鋼板表面の平滑化技術として、例えば下記の特許文献3には、通常の仕上げ焼鈍後に酸洗して表面形成物を除去した後、化学研磨あるいは電解研磨により鋼板表面を鏡面状態とする技術が開示されている。また、近年では、例えば下記の特許文献4に開示されているような、仕上げ焼鈍時に使用される焼鈍分離剤にビスマスあるいはビスマス化合物を添加することにより、無機質系被膜の生成を防止する技術などがある。 As a technique for preventing the formation of such an inorganic film or smoothing the surface of a steel sheet, for example, in Patent Document 3 below, after normal finish annealing, pickling is performed to remove surface formations, and then chemical polishing or electrolytic polishing is performed. A technique for making the surface of a steel sheet a mirror surface is disclosed. Further, in recent years, for example, as disclosed in Patent Document 4 below, a technique for preventing the formation of an inorganic film by adding bismuth or a bismuth compound to an annealing separator used at the time of finish annealing has been developed. be.
これら公知の方法により得られた、無機質系被膜を有しないあるいは磁気的平滑性に優れた方向性電磁鋼板の表面に対して、張力付与コーティングを施すことにより、更に優れた鉄損改善を効果が得られることが判明している。 By applying a tension-applying coating to the surface of grain-oriented electrical steel sheets that do not have an inorganic coating or have excellent magnetic smoothness, which are obtained by these known methods, it is effective to further improve iron loss. It is known to be obtained.
ところが、かかる無機質系被膜には、絶縁性を発現する働きと共に、張力付与コーティングを塗布する際に密着性を確保する中間層としての効果があり、無機質系被膜を有しない方向性電磁鋼板に張力付与型の2次被膜を施す場合には、密着性を確保する中間層としての役割を代用する必要がある。 However, such an inorganic-based coating has a function of exhibiting insulating properties and an effect as an intermediate layer for ensuring adhesion when a tension-imparting coating is applied, and tension is applied to grain-oriented electrical steel sheets having no inorganic-based coating. When applying the imparting type secondary coating, it is necessary to substitute the role as an intermediate layer for ensuring adhesion.
すなわち、方向性電磁鋼板を通常の製造工程で処理した場合、仕上げ焼鈍後の鋼板表面には無機系被膜が生成されると、この無機質層は、鋼板中に深く入り込んだ状態で形成されることから金属である鋼板との密着性に優れているため、コロイド状シリカやリン酸塩などを主成分とする張力付与型絶縁被膜を施すことが可能となる。ところが、一般に金属と酸化物との結合は困難であるため、無機質系被膜が無い場合には、張力付与型絶縁被膜と電磁鋼板表面との間では、十分な密着性の確保が困難であった。 That is, when a grain-oriented electrical steel sheet is processed in a normal manufacturing process, when an inorganic film is formed on the surface of the steel sheet after finish annealing, this inorganic layer is formed in a state of being deeply penetrated into the steel sheet. Since it has excellent adhesion to steel sheets, which are metals, it is possible to apply a tension-applied insulating film containing colloidal silica, phosphate, or the like as the main components. However, since it is generally difficult to bond a metal and an oxide, it is difficult to secure sufficient adhesion between the tension-applied insulating coating and the surface of the electrical steel sheet when there is no inorganic coating. ..
このような無機質系被膜を有しない鋼板と、張力付与型絶縁被膜との間の密着性を改善する方法として、例えば下記の特許文献5には、無機質系被膜を有しない方向性電磁鋼板を弱還元性雰囲気中で焼鈍し、ケイ素鋼板中に必然的に含有されているシリコンを選択的に熱酸化させることにより鋼板表面にSiO2層を形成した後、張力付与型絶縁被膜を施す技術が開示されている。また、例えば下記の特許文献6には、無機質系被膜を有しない方向性電磁鋼板をケイ酸塩水溶液中で陽極電解処理することにより鋼板表面にSiO2層を形成した後、張力付与型被膜を施す技術が開示されている。 As a method for improving the adhesion between the steel sheet having no inorganic coating and the tension-applied insulating coating, for example, in Patent Document 5 below, a grain-oriented electrical steel sheet having no inorganic coating is weakened. Disclosed is a technique for forming a SiO 2 layer on the surface of a steel sheet by annealing in a reducing atmosphere and selectively thermal-oxidizing the silicon inevitably contained in the silicon steel sheet, and then applying a tension-applied insulating film. Has been done. Further, for example, in Patent Document 6 below, a directional electromagnetic steel sheet having no inorganic film is electrolyzed in an aqueous silicate solution to form two layers of SiO on the surface of the steel sheet, and then a tension-applied film is formed. The technique to be applied is disclosed.
しかしながら、これら特許文献5や特許文献6に開示されている技術では、弱還元性雰囲気中で焼鈍する場合には、雰囲気制御可能な焼鈍設備が新たに必要となり処理コストに問題があり、ケイ酸塩水溶液中で陽極電解処理する場合においても、鋼板表面に張力付与型被膜と十分な密着性を保持するSiO2層を得るためには、新たな電解処理設備が必要となってコストが高い。 However, in the techniques disclosed in Patent Documents 5 and 6, when ablation is performed in a weakly reducing atmosphere, a new ablation facility capable of controlling the atmosphere is required, which causes a problem in processing cost and silicic acid. Even in the case of anode electrolytic treatment in a salt aqueous solution, a new electrolytic treatment facility is required and the cost is high in order to obtain a SiO 2 layer that maintains sufficient adhesion to the tension-applied film on the surface of the steel plate.
更に、下記の特許文献7には、張力付与コーティングを形成する際に予め中間層となるコーティングを施すことにより、張力付与型絶縁被膜の密着性を確保する技術が開示されており、下記の特許文献8には、無機質系被膜の無い方向性電磁鋼板の表面に対して絶縁被膜を塗布形成する際に、接触角が特定範囲となっている塗布液を用いることにより、密着性の優れた絶縁被膜を形成する技術が開示されている。 Further, the following Patent Document 7 discloses a technique for ensuring the adhesion of the tension-applied insulating coating by applying a coating as an intermediate layer in advance when forming the tension-applying coating. In Document 8, when an insulating film is applied and formed on the surface of a grain-oriented electrical steel sheet without an inorganic film, a coating liquid having a contact angle in a specific range is used to provide insulation with excellent adhesion. Techniques for forming a coating are disclosed.
また、下記の特許文献9には、鋼板の地鉄表面の平均粗さが0.4μm以下であり、線状又は点状の溝を圧延方向に対して45~90°の方向に2~15mm間隔に形成して耐SRA磁区制御をした一方向性電磁鋼板に対し、750℃超~950℃の温度範囲で張力付与コーティングを形成する超低鉄損一方向性電磁鋼板の製造において、コーティング処理前に、硫酸濃度として2~30%の硫酸あるいは硫酸塩を有する水溶液で鋼板を浸漬洗浄することを特徴とする技術が開示されている。 Further, in Patent Document 9 below, the average roughness of the surface of the base steel of the steel sheet is 0.4 μm or less, and the linear or dotted grooves are formed in the direction of 45 to 90 ° with respect to the rolling direction by 2 to 15 mm. Coating treatment in the production of ultra-low iron loss unidirectional steel sheets that form tension-applied coatings in the temperature range of over 750 ° C to 950 ° C for unidirectional steel sheets that are formed at intervals and controlled for SRA magnetic domain resistance. Previously, a technique has been disclosed characterized in that a steel sheet is immersed and washed with an aqueous solution having sulfuric acid or a sulfate having a sulfuric acid concentration of 2 to 30%.
しかしながら、上記特許文献7や特許文献8に開示された技術では、大きな張力を有する張力付与型絶縁被膜を密着性良く保持するには、不十分であり、上記特許文献9に開示された技術では、張力付与型絶縁被膜と鋼板との密着性が安定して得られず、バラツキが多いという問題があった。 However, the techniques disclosed in Patent Documents 7 and 8 are insufficient to maintain a tension-applied insulating film having a large tension with good adhesion, and the techniques disclosed in Patent Document 9 are insufficient. There is a problem that the adhesion between the tension-applied insulating film and the steel sheet cannot be stably obtained, and there is a lot of variation.
そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、無機質系被膜を有しない方向性電磁鋼板と張力付与型絶縁被膜との間の密着性に優れ、より優れた高磁場鉄損を工業的に十分安価に実現することが可能な、方向性電磁鋼板及び方向性電磁鋼板の張力付与型絶縁被膜形成方法を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is excellent adhesion between a grain-oriented electrical steel sheet having no inorganic film and a tension-applied insulating film. It is an object of the present invention to provide a method for forming a tension-applied insulating film of a grain-oriented electrical steel sheet and a grain-oriented electrical steel sheet, which can realize a more excellent high magnetic field iron loss industrially at a sufficiently low cost.
本発明の要旨は、以下のとおりである。
(1)方向性電磁鋼板の表面に設けられた張力付与型絶縁被膜を備え、前記方向性電磁鋼板の表面の一部又は全部は、フォルステライトを主成分とする無機質系被膜を有しておらず、前記張力付与型絶縁被膜が設けられた側の前記方向性電磁鋼板の表面は、矩形状の微細構造を有しており、前記方向性電磁鋼板の表面における前記微細構造の占める面積の割合である面積率が、50%以上であり、圧延方向の表面粗さが、算術平均粗さRaで0.10~0.35μmであり、圧延方向に対して直交する方向である直角方向の表面粗さが、算術平均粗さRaで0.15~0.45μmであり、前記矩形状の微細構造は、前記方向性電磁鋼板の結晶構造である(110)面が腐食することで形成されたエッチピットで構成される矩形状組織を有しており、1つの前記矩形状組織は、前記方向性電磁鋼板の圧延方向に平均0.01~0.1μm、前記圧延方向に対して直交する方向に平均0.005~0.05μmの大きさを有する、方向性電磁鋼板。
(2)前記張力付与型絶縁被膜は、リン酸塩又はコロイダルシリカの少なくとも一方を主成分とする被膜である、(1)に記載の方向性電磁鋼板。
(3)前記方向性電磁鋼板は、質量%で2~7%のSiを少なくとも含有する方向性電磁鋼板である、(1)又は(2)に記載の方向性電磁鋼板。
(4)表面の一部又は全部にフォルステライトを主成分とする無機質系被膜を有しない方向性電磁鋼板に対し、酸化性酸を含有する溶液として、10%以上の硫酸、硝酸、塩素酸、酸化クロム水溶液、クロム硫酸、過マンガン酸、ペルオキソ硫酸、ペルオキソリン酸の1種を含有する溶液或いは2種以上を含有する混合溶液を70℃以上の液温に加熱し、30秒以下の処理時間にて作用させた後、pH3以下の酸性溶液を接触させ、前記酸化性酸による処理と、前記pH3以下の酸性溶液による処理の後に、リン酸塩又はコロイダルシリカの少なくとも一方を含有する塗料を、前記方向性電磁鋼板の表面に塗布した後、所定の温度で乾燥させる処理を実施する、方向性電磁鋼板の張力付与型絶縁被膜形成方法。
(5)前記酸化性酸を含有する溶液として、20%以上の硫酸、酸化クロム水溶液、クロム硫酸、過マンガン酸、ペルオキソ硫酸、ペルオキソリン酸の1種を含有する溶液或いは2種以上を含有する混合溶液を用いる、(4)に記載の方向性電磁鋼板の張力付与型絶縁被膜形成方法。
(6)前記pH3以下の酸性溶液として、リン酸塩、ホウ酸塩、有機酸、有機酸塩の1種又は2種以上を含有する溶液を用いる、(4)又は(5)に記載の方向性電磁鋼板の張力付与型絶縁被膜形成方法。
(7)前記酸化性酸を含有する溶液を作用させるに先立ち、前記無機質系被膜を有しない方向性電磁鋼板に対して、フッ酸、又は、塩酸の少なくとも何れかを主成分とする混合溶液を用いて、1~60秒間酸洗処理を行う、(4)~(6)の何れか1つに記載の方向性電磁鋼板の張力付与型絶縁被膜形成方法。
(8)前記酸化性酸を含有する溶液は、更に、リン酸、又は、過酸化水素水の少なくとも何れかを含有する、(4)~(7)の何れか1項に記載の方向性電磁鋼板の張力付与型絶縁被膜形成方法。
(9)前記無機質系被膜を有しない方向性電磁鋼板として、質量%で2~7%のSiを少なくとも含有するケイ素鋼スラブを熱延し、必要に応じて焼鈍を施し、1回の冷延又は中間焼鈍を挟む2回以上の冷延を行い、脱炭焼鈍後、焼鈍分離剤としてAl2O3を主成分としたものを塗布・乾燥し、仕上げ焼鈍を行い鏡面化した方向性電磁鋼板を用いる、(4)~(8)の何れか1つに記載の方向性電磁鋼板の張力付与型絶縁被膜形成方法。
(10)前記無機質系被膜を有しない方向性電磁鋼板として、質量%で2~7%のSiを少なくとも含有するケイ素鋼スラブを熱延し、必要に応じて焼鈍を施し、1回の冷延又は中間焼鈍を挟む2回以上の冷延を行い、脱炭焼鈍後、焼鈍分離剤として、MgOとAl2O3の混合物に対してビスマス塩化物を添加したもの、又は、MgOとAl2O3の混合物に対してビスマス化合物及び金属の塩素化合物を添加したものを塗布・乾燥し、仕上げ焼鈍を行い鏡面化した方向性電磁鋼板を用いる、(4)~(8)の何れか1つに記載の方向性電磁鋼板の張力付与型絶縁被膜形成方法。
The gist of the present invention is as follows.
(1) A tension-applied insulating coating provided on the surface of the directional electromagnetic steel plate is provided, and a part or all of the surface of the directional electromagnetic steel plate has an inorganic coating containing forsterite as a main component. However, the surface of the directional electromagnetic steel plate on the side provided with the tension-applied insulating coating has a rectangular microstructure, and the ratio of the area occupied by the microstructure on the surface of the directional electromagnetic steel plate. The area ratio is 50% or more, the surface roughness in the rolling direction is 0.10 to 0.35 μm in arithmetic average roughness Ra, and the surface in the direction orthogonal to the rolling direction is orthogonal to the rolling direction. The roughness is 0.15 to 0.45 μm in arithmetic average roughness Ra, and the rectangular microstructure is formed by corroding the (110) surface, which is the crystal structure of the directional electromagnetic steel plate. It has a rectangular structure composed of etch pits, and one said rectangular structure has an average of 0.01 to 0.1 μm in the rolling direction of the directional electromagnetic steel plate, and a direction orthogonal to the rolling direction. A directional electromagnetic steel plate having an average size of 0.005 to 0.05 μm.
(2) The grain-oriented electrical steel sheet according to (1), wherein the tension-applied insulating coating is a coating containing at least one of phosphate or colloidal silica as a main component.
(3) The grain-oriented electrical steel sheet according to (1) or (2), wherein the grain-oriented electrical steel sheet is a grain-oriented electrical steel sheet containing at least 2 to 7% Si by mass.
(4) 10% or more sulfuric acid, nitric acid, chloric acid, as a solution containing an oxidizing acid for a directional electromagnetic steel plate having no inorganic coating containing forsterite as a main component on a part or all of the surface. A solution containing one of chromium oxide aqueous solution, chromium sulfuric acid, permanganic acid, peroxosulfate, and peroxophosphate or a mixed solution containing two or more of them is heated to a liquid temperature of 70 ° C. or higher, and the treatment time is 30 seconds or less. After the action with the acid solution having a pH of 3 or less, the paint containing at least one of the phosphate or colloidal silica is applied after the treatment with the oxidizing acid and the treatment with the acidic solution having a pH of 3 or less. A method for forming a tension-applied insulating film of a directional electromagnetic steel plate, which comprises applying the coating to the surface of the directional electromagnetic steel plate and then drying it at a predetermined temperature.
(5) As the solution containing the oxidizing acid, a solution containing one or more of sulfuric acid, an aqueous solution of chromium oxide, chromium sulfate, permanganate, peroxosulfate, and peroxophosphoric acid, or two or more thereof are contained. The method for forming a tension-applied insulating film of a directional electromagnetic steel plate according to (4), which uses a mixed solution.
(6) The direction according to (4) or (5), wherein a solution containing one or more of a phosphate, a borate, an organic acid, and an organic acid salt is used as the acidic solution having a pH of 3 or less. A method for forming a tension-applied insulating film for a sex electromagnetic steel plate.
(7) Prior to allowing the solution containing the oxidizing acid to act, a mixed solution containing at least one of hydrofluoric acid or hydrochloric acid as a main component is applied to the grain-oriented electrical steel sheet having no inorganic coating. The method for forming a tension-applied insulating film of a grain-oriented electrical steel sheet according to any one of (4) to (6), wherein the pickling treatment is performed for 1 to 60 seconds.
(8) The directional electromagnetic steel according to any one of (4) to (7), wherein the solution containing the oxidizing acid further contains at least one of phosphoric acid and hydrogen peroxide solution. A method for forming a tension-applied insulating film for steel sheets.
(9) As the grain-oriented electrical steel sheet having no inorganic coating, a silicon steel slab containing at least 2 to 7% Si by mass% is hot-rolled, annealed as necessary, and once cold-rolled. Alternatively, cold rolling is performed two or more times with intermediate annealing sandwiched between them, and after decarburization and annealing, a material containing Al 2 O 3 as the main component is applied and dried as an annealing separator, and finish annealing is performed to mirror grain grain-oriented electrical steel sheets. The method for forming a tension-applied insulating film of a grain-oriented electrical steel sheet according to any one of (4) to (8).
(10) As the directional electromagnetic steel sheet having no inorganic coating, a silicon steel slab containing at least 2 to 7% Si by mass% is hot-rolled, annealed as necessary, and once cold-rolled. Alternatively, cold rolling is performed two or more times with intermediate annealing sandwiched between them, and after decarburization annealing, bismuth chloride is added to a mixture of MgO and Al 2 O 3 as an annealing separator, or Mg O and Al 2 O. Apply a mixture of 3 to which a bismuth compound and a metallic chlorine compound are added, dry, finish annealing, and use a mirrored directional electromagnetic steel plate, to any one of (4) to (8). The method for forming a tension-applied insulating film of a directional electromagnetic steel sheet according to the description.
以上説明したように本発明によれば、無機質系被膜を有しない方向性電磁鋼板と張力付与型絶縁被膜との間の密着性に優れ、より優れた高磁場鉄損を工業的に十分安価に実現することが可能となる。 As described above, according to the present invention, the adhesiveness between the grain-oriented electrical steel sheet having no inorganic coating and the tension-applied insulating coating is excellent, and more excellent high magnetic field iron loss is industrially sufficiently inexpensive. It will be possible to realize it.
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
(方向性電磁鋼板について)
一般に、方向性電磁鋼板には、鋼成分としてシリコン(ケイ素)が含有されるが、鋼成分であるシリコン元素は極めて酸化され易いため、製造工程で実施される脱炭焼鈍の後の鋼板表面には、シリコン元素を含有する酸化被膜が形成される。一般的な方向性電磁鋼板の製造工程では、脱炭焼鈍後、鋼板表面に対して焼鈍分離剤を塗布した後でコイル状に巻き取り、仕上げ焼鈍を行うが、MgOを主成分とする焼鈍分離剤を用いた場合には、仕上げ焼鈍中にMgOと鋼板表面の酸化被膜とが反応して、フォルステライトを主成分とする無機質系被膜が形成される。
(About grain-oriented electrical steel sheets)
Generally, grain-oriented electrical steel sheets contain silicon as a steel component, but since the silicon element, which is a steel component, is extremely easily oxidized, it is applied to the surface of steel sheets after decarburization and quenching performed in the manufacturing process. Formes an oxide film containing silicon elements. In the general manufacturing process of directional electromagnetic steel sheets, after decarburization and annealing, an annealing separator is applied to the surface of the steel sheet, and then the steel sheet is wound into a coil and annealed for finishing. When the agent is used, MgO reacts with the oxide film on the surface of the steel sheet during finish annealing to form an inorganic film containing forsterite as a main component.
本発明者らは、(1)より優れた高磁場鉄損を実現するためには、方向性電磁鋼板の表面状態を磁気的平滑面に保持するよりも、フォルステライトなどの無機質系被膜を方向性電磁鋼板の表面に存在しないようにした場合の方が、鉄損低減効果が大きいこと、(2)1.0kg/mm2以上の高張力を発現する張力付与型絶縁被膜(以下、単に「張力付与被膜」ともいう。)を、無機質系被膜を有しない方向性電磁鋼板の表面に密着性良く形成するためには、方向性電磁鋼板の表面に矩形状の微細構造を形成することが重要であり、特定範囲の粗さを有する矩形状の微細構造を形成することにより、高磁場鉄損が良好となること、をそれぞれ見出し、本発明を完成させた。 In order to realize higher magnetic field iron loss than (1), the present inventors tend to use an inorganic film such as forsterite rather than keeping the surface state of the grain-oriented electrical steel sheet on a magnetically smooth surface. The effect of reducing iron loss is greater when the material is not present on the surface of the grain - oriented electrical steel sheet. It is important to form a rectangular microstructure on the surface of the grain-oriented electrical steel sheet in order to form the "tension-applied film") on the surface of the grain-oriented electrical steel sheet that does not have an inorganic film. The present invention has been completed by finding that the high magnetic field iron loss is improved by forming a rectangular microstructure having a specific range of roughness.
上記のような知見に基づき完成された、本発明の実施形態に係る方向性電磁鋼板は、方向性電磁鋼板の表面に設けられた張力付与型絶縁被膜を備え、かかる方向性電磁鋼板の表面の一部又は全部は、無機質系被膜を有していない。また、張力付与型絶縁被膜が設けられた側の方向性電磁鋼板の表面は、矩形状の微細構造を有しており、方向性電磁鋼板の表面における微細構造の占める面積の割合である面積率が、50%以上である。更に、本発明の実施形態に係る方向性電磁鋼板は、圧延方向の表面粗度が、算術平均粗さRaで0.10~0.35μmであり、圧延方向に対して直交する方向である直角方向の表面粗度が、算術平均粗さRaで0.15~0.45μmである。 The grain-oriented electrical steel sheet according to the embodiment of the present invention, which has been completed based on the above findings, is provided with a tension-applied insulating film provided on the surface of the grain-oriented electrical steel sheet, and is provided on the surface of the grain-oriented electrical steel sheet. Some or all do not have an inorganic coating. Further, the surface of the grain-oriented electrical steel sheet on the side where the tension-applied insulating film is provided has a rectangular microstructure, and is an area ratio which is a ratio of the area occupied by the microstructure on the surface of the grain-oriented electrical steel sheet. However, it is 50% or more. Further, the directional electromagnetic steel plate according to the embodiment of the present invention has a surface roughness in the rolling direction of 0.10 to 0.35 μm in arithmetic average roughness Ra, which is a right angle in the direction orthogonal to the rolling direction. The surface roughness in the direction is 0.15 to 0.45 μm in arithmetic average roughness Ra.
<母材鋼板とする方向性電磁鋼板について>
本実施形態に係る方向性電磁鋼板において、張力付与型絶縁被膜の母材鋼板として用いられる方向性電磁鋼板は、特に限定されるものではなく、公知の鋼成分からなる方向性電磁鋼板を利用することが可能である。このような方向性電磁鋼板として、例えば、質量%で2~7%のSiを少なくとも含有する方向性電磁鋼板を挙げることができる。鋼成分中のSi濃度を2%以上とすることで、所望の磁気特性を実現することが可能となる。一方、鋼成分中のSi濃度が7%超となる場合には、鋼板の脆性が低く、製造が困難となるため、鋼成分中のSi濃度は7%以下であることが好ましい。
<About grain-oriented electrical steel sheet used as base steel sheet>
In the directional electromagnetic steel plate according to the present embodiment, the directional electromagnetic steel plate used as the base steel plate of the tension-applied insulating coating is not particularly limited, and a directional electromagnetic steel plate made of a known steel component is used. It is possible. Examples of such grain-oriented electrical steel sheets include grain-oriented electrical steel sheets containing at least 2 to 7% Si in mass%. By setting the Si concentration in the steel component to 2% or more, it is possible to realize desired magnetic properties. On the other hand, when the Si concentration in the steel component is more than 7%, the brittleness of the steel sheet is low and manufacturing becomes difficult. Therefore, the Si concentration in the steel component is preferably 7% or less.
ここで、母材鋼板として用いられる方向性電磁鋼板は、その表面の一部又は全部に上記のようなフォルステライトを主成分とする無機質系被膜を有しないものとする。ここで、母材鋼板である方向性電磁鋼板の表面が無機質系被膜を有しないとは、母材鋼板である方向性電磁鋼板の表面の全面に無機質系被膜を有しないことを基本とするが、一部分に無機質系被膜を有する場合も含むものとする。 Here, it is assumed that the grain-oriented electrical steel sheet used as the base steel sheet does not have the above-mentioned inorganic film containing forsterite as a main component on a part or all of the surface thereof. Here, the fact that the surface of the grain-oriented electrical steel sheet, which is the base steel sheet, does not have an inorganic coating is basically that the entire surface of the grain-oriented electrical steel sheet, which is the base steel sheet, does not have an inorganic coating. , Including the case where an inorganic film is partially provided.
<母材鋼板とする方向性電磁鋼板の表面構造について>
母材鋼板である方向性電磁鋼板の表面(張力付与被膜側の表面)には、矩形状の微細構造が形成されている。この微細構造は、無機質系被膜を有しない母材鋼板に対して、以下で詳述する所定の処理を施すことで、形成される。ここで、矩形状の微細構造は、方向性電磁鋼板の結晶構造である(110)面が腐食することで形成されたエッチピットで構成される矩形状組織を有しており、方向性電磁鋼板の表面を所定倍率の走査型電子顕微鏡(Scanning Electron Microscope:SEM)で観察した場合に、鋼板表面が微小な矩形で被覆されたように見える構造となっている。1つの矩形状組織(エッチピット)の大きさ(平均の大きさ)は、母材鋼板である方向性電磁鋼板の圧延方向については、0.01~0.1μm程度であり、圧延方向に対して直交する方向である直角方向については、0.005~0.05μm程度である。
<About the surface structure of grain-oriented electrical steel sheet used as the base steel sheet>
A rectangular fine structure is formed on the surface of the grain-oriented electrical steel sheet (the surface on the tension-applied film side), which is the base steel. This microstructure is formed by subjecting a base steel sheet having no inorganic coating to a predetermined treatment described in detail below. Here, the rectangular microstructure has a rectangular structure composed of etch pits formed by corrosion of the (110) surface, which is the crystal structure of the directional electromagnetic steel plate, and has a directional electromagnetic steel plate. When the surface of the steel plate is observed with a scanning electron microscope (SEM) having a predetermined magnification, the surface of the steel plate appears to be covered with a minute rectangular shape. The size (average size) of one rectangular structure (etch pit) is about 0.01 to 0.1 μm in the rolling direction of the directional electromagnetic steel sheet which is the base steel sheet, with respect to the rolling direction. The direction perpendicular to the rolling direction is about 0.005 to 0.05 μm.
また、母材鋼板である方向性電磁鋼板の表面において、上記のような矩形状の微細構造の占める面積の割合である面積率は、母材鋼板である方向性電磁鋼板の張力付与被膜側の表面積に対して、50%以上となっている。上記のような微細構造が、面積率90%以上で形成されることで、母材鋼板である方向性電磁鋼板と、張力付与被膜と、の間の密着性が、より向上する。かかる面積率の上限値は、特に規定するものではなく、面積率の値は、大きければ大きいほど好ましい。かかる面積率の下限値は、より好ましくは、70%であり、更に好ましくは、90%である。 Further, on the surface of the grain-oriented electrical steel sheet which is the base steel sheet, the area ratio, which is the ratio of the area occupied by the rectangular fine structure as described above, is the tension-applied film side of the grain-oriented electrical steel sheet which is the base steel sheet. It is 50% or more of the surface area. When the fine structure as described above is formed with an area ratio of 90% or more, the adhesion between the grain-oriented electrical steel sheet, which is the base steel sheet, and the tension-applied film is further improved. The upper limit of the area ratio is not particularly specified, and the larger the value of the area ratio, the more preferable. The lower limit of the area ratio is more preferably 70%, still more preferably 90%.
また、本実施形態に係る方向性電磁鋼板は、圧延方向の表面粗さが、JIS B0601で規定される算術平均粗さRaで0.10~0.35μmの範囲にあり、直角方向の表面粗さが、算術平均粗さRaで0.15~0.45μmの範囲にある。圧延方向の表面粗さを、算術平均粗さRaで0.1μm未満にするためには、工業的にコストがかかり過ぎるため、好ましくない。また、圧延方向の表面粗さが、算術平均粗さRaで0.35μm超となる場合には、高磁場鉄損改善効果が小さくなるため、好ましくない。同様に、直角方向の表面粗さを、算術平均粗さRaで0.15μm未満とするためには、工業的にコストがかかり過ぎるため、好ましくない。また、直角方向の表面粗さが、0.45μm超となる場合には、高磁場鉄損改善効果が小さくなるため、好ましくない。 Further, in the directional electromagnetic steel plate according to the present embodiment, the surface roughness in the rolling direction is in the range of 0.10 to 0.35 μm in the arithmetic average roughness Ra defined by JIS B0601, and the surface roughness in the perpendicular direction is rough. The arithmetic average roughness Ra is in the range of 0.15 to 0.45 μm. It is not preferable to make the surface roughness in the rolling direction less than 0.1 μm in arithmetic average roughness Ra because it is industrially too costly. Further, when the surface roughness in the rolling direction exceeds 0.35 μm in the arithmetic average roughness Ra, the effect of improving the high magnetic field iron loss becomes small, which is not preferable. Similarly, it is not preferable to make the surface roughness in the right angle direction less than 0.15 μm in arithmetic average roughness Ra because it is industrially too costly. Further, when the surface roughness in the perpendicular direction exceeds 0.45 μm, the effect of improving the high magnetic field iron loss becomes small, which is not preferable.
上記のような圧延方向の表面粗さは、より好ましくは、算術平均粗さRaで0.10μm~0.30μmであり、直角方向の表面粗さは、より好ましくは、算術平均粗さRaで0.15μm~0.40μmである。 The surface roughness in the rolling direction as described above is more preferably 0.10 μm to 0.30 μm in arithmetic average roughness Ra, and the surface roughness in the perpendicular direction is more preferably arithmetic average roughness Ra. It is 0.15 μm to 0.40 μm.
ここで、上記のような1つの矩形状組織の大きさや微細構造の面積率は、上記のような微細構造が形成され、かつ、張力付与被膜が形成される前の方向性電磁鋼板の表面を、走査型電子顕微鏡(SEM)で観察することにより測定することができる。すなわち、かかる方向性電磁鋼板の任意の表面を、3000倍程度の所定の倍率で観察し、例えば10視野程度の複数の視野での平均を算出することで、矩形状組織の大きさを特定することができる。また、微細構造の面積率についても、上記と同様にして、複数の視野それぞれについて、面分法又はポイントカウンティング法等の公知の方法により微細構造の面積率を特定し、得られた結果の平均を、本実施形態に係る方向性電磁鋼板での微細構造の面積率とすればよい。 Here, the size of one rectangular structure and the area ratio of the microstructure as described above are set on the surface of the directional electromagnetic steel plate before the microstructure as described above is formed and the tension applying film is formed. , Can be measured by observing with a scanning electron microscope (SEM). That is, the size of the rectangular structure is specified by observing an arbitrary surface of the grain-oriented electrical steel sheet at a predetermined magnification of about 3000 times and calculating the average in a plurality of fields of view of, for example, about 10 fields of view. be able to. As for the area ratio of the fine structure, the area ratio of the fine structure is specified by a known method such as a surface division method or a point counting method for each of a plurality of visual fields in the same manner as described above, and the average of the obtained results. May be the area ratio of the fine structure of the directional electromagnetic steel plate according to the present embodiment.
また、圧延方向及び直角方向に沿った表面粗さ(算術平均粗さRa)についても、JIS B0601に則して、公知の方法により測定することが可能である。この場合においても、方向性電磁鋼板の表面の複数の位置で算術平均粗さRaの測定を実施し、得られた複数の測定値の平均値を、着目している方向性電磁鋼板の表面粗さRaとすることが好ましい。 Further, the surface roughness (arithmetic mean roughness Ra) along the rolling direction and the perpendicular direction can also be measured by a known method in accordance with JIS B0601. Also in this case, the arithmetic average roughness Ra is measured at a plurality of positions on the surface of the directional electromagnetic steel plate, and the average value of the obtained multiple measured values is used as the surface roughness of the directional electromagnetic steel plate of interest. It is preferably Ra.
なお、既に張力付与被膜が形成されている方向性電磁鋼板について、1つの矩形状組織の大きさや微細構造の面積率を測定する場合には、既に形成されている張力付与被膜を公知の方法を利用して剥離し、剥離後の方向性電磁鋼板の表面について、上記と同様にして観察すればよい。 For grain-oriented electrical steel sheets on which a tension-applying film has already been formed, when measuring the size of one rectangular structure or the area ratio of a microstructure, a method known for the already-formed tension-applying film is used. It may be peeled off by using it, and the surface of the grain-oriented electrical steel sheet after peeling may be observed in the same manner as described above.
<張力付与型絶縁被膜について>
以上のような微細構造を有する方向性電磁鋼板上には、張力付与被膜が形成される。かかる張力付与被膜は、特に限定されるものではなく、従来方向性電磁鋼板の張力付与被膜として用いられてきたものを適用することが可能である。このような張力付与被膜として、例えば、リン酸塩又はコロイダルシリカの少なくとも一方を主成分とする被膜等を挙げることができる。
<About tension-applied insulation film>
A tension-applying film is formed on the grain-oriented electrical steel sheet having the above-mentioned fine structure. The tension-applying film is not particularly limited, and those used as the tension-applying film of the conventional grain-oriented electrical steel sheet can be applied. Examples of such a tension-applying film include a film containing at least one of phosphate and colloidal silica as a main component.
かかる張力付与被膜の付着量については、特に限定されるものではないが、1.0kg/mm2以上の高張力を実現可能な付着量とすることが好ましい。本実施形態に係る張力付与被膜の付着量は、例えば、2.0g/m2~7.0g/m2程度である。 The amount of the tension-applied film adhered is not particularly limited, but it is preferable that the amount of adhesion is such that a high tension of 1.0 kg / mm 2 or more can be realized. The amount of the tension-applying film adhered to the present embodiment is, for example, about 2.0 g / m 2 to 7.0 g / m 2 .
以上説明したような本実施形態に係る方向性電磁鋼板は、上記のような特定の微細構造を有することで、より優れた密着性を実現しつつ張力付与型絶縁被膜を保持することが可能となり、また、1.7T~1.9Tといった、高磁場鉄損の極めて低い方向性電磁鋼板を実現することが可能となる。 By having the specific fine structure as described above, the grain-oriented electrical steel sheet according to the present embodiment as described above can hold the tension-applied insulating film while realizing better adhesion. Further, it is possible to realize a grain-oriented electrical steel sheet having an extremely low magnetic field iron loss such as 1.7T to 1.9T.
(方向性電磁鋼板の張力付与型絶縁被膜形成方法について)
続いて、本実施形態に係る方向性電磁鋼板の張力付与型絶縁被膜形成方法について、詳細に説明する。
(About the method of forming a tension-applied insulating film on grain-oriented electrical steel sheets)
Subsequently, the method for forming the tension-applied insulating film of the grain-oriented electrical steel sheet according to the present embodiment will be described in detail.
本発明の実施形態では、無機質系被膜を有しない方向性電磁鋼板の表面に対して、張力付与型絶縁被膜を形成する。従って、母材鋼板として用いられる方向性電磁鋼板を製造する際に、仕上げ焼鈍において無機質系被膜が形成される場合には、公知の方法で無機質系被膜を除去した方向性電磁鋼板が用いられる。無機質系被膜を除去する方法としては、機械研磨、電解研磨、化学研磨など、公知の方法を用いて行うのが良い。 In the embodiment of the present invention, a tension-applied insulating film is formed on the surface of a grain-oriented electrical steel sheet having no inorganic film. Therefore, when an inorganic film is formed by finish annealing when manufacturing a grain-oriented electrical steel sheet used as a base steel sheet, the grain-oriented electrical steel sheet from which the inorganic film is removed by a known method is used. As a method for removing the inorganic film, it is preferable to use a known method such as mechanical polishing, electrolytic polishing, or chemical polishing.
また、本発明の実施形態では、無機質系被膜が形成されないような方法で製造された方向性電磁鋼板を用いても良い。無機質系被膜が形成されない方法としては、仕上げ焼鈍の際の焼鈍分離剤としてアルミナを用いる方法を挙げることができる。また、同様に、仕上げ焼鈍の際に、ビスマス塩化物、又は、ビスマス化合物及び金属塩化物を焼鈍分離剤(より詳細には、MgO及びアルミナの混合物を含む焼鈍分離剤)中に存在させたものを用いる方法を利用しても良い。 Further, in the embodiment of the present invention, a grain-oriented electrical steel sheet manufactured by a method such that an inorganic film is not formed may be used. As a method in which an inorganic film is not formed, a method of using alumina as an annealing separator at the time of finish annealing can be mentioned. Similarly, at the time of finish annealing, a bismuth chloride, or a bismuth compound and a metal chloride are present in an annealing separator (more specifically, an annealing separator containing a mixture of MgO and alumina). You may use the method using.
ここで、焼鈍分離剤中に存在させるビスマス塩化物としては、例えば、BiOCl(オキシ塩化ビスマス)やBiCl3(三塩化ビスマス)等を挙げることができる。また、ビスマス化合物及び金属塩化物の両方を焼鈍分離剤中に含有させた場合には、仕上げ焼鈍に際しての昇温中にBiOClが生成されることが判明しているため、ビスマス塩化物と同様に取り扱うことが可能である。 Here, examples of the bismuth chloride present in the quenching separator include BiOCl (bismuth oxychloride) and BiCl 3 (bismuth trichloride). Further, when both the bismuth compound and the metal chloride are contained in the annealing separator, it has been found that BiOCl is generated during the temperature rise during the finish annealing, so that the same as for the bismuth chloride. It is possible to handle.
本発明の実施形態では、無機質系被膜を有しない方向性電磁鋼板を用いるためにどのような方法を採用しても良いが、仕上げ焼鈍時の焼鈍分離剤としてアルミナを用いる方法や、ビスマス塩化物等を仕上げ焼鈍時に用いる焼鈍分離剤中に添加する方法が、無機質系被膜の除去が容易で鋼板表面状態が良好であるため好適である。 In the embodiment of the present invention, any method may be adopted for using a directional electromagnetic steel sheet having no inorganic coating, but a method using alumina as an annealing separator at the time of finish annealing or bismuth chloride The method of adding the above to the annealing separator used at the time of finish annealing is suitable because the inorganic film can be easily removed and the surface condition of the steel sheet is good.
通常、方向性電磁鋼板を製造する場合には、仕上げ焼鈍の次工程において、余分に付着した焼鈍分離剤を洗浄した後、平坦化焼鈍を施す。本発明の特徴は、余剰の焼鈍分離剤を除去した後、酸化性酸を用いて表面処理を行い、更にその後に、所定範囲のpHを持つ処理液を作用させることにより、先だって説明したような矩形状の微細構造を有する鋼板表面状態を発現させて、張力付与被膜を密着性よく形成したところにある。本発明者らは、先だって説明したような矩形状組織を含む表面状態を形成するためには、酸化性酸による腐食処理だけでは形成できず、腐食処理の後に特定の処理液を作用させることによって初めて形成可能であることを見出し、本発明の実施形態に係る方向性電磁鋼板の張力付与型絶縁被膜形成方法を完成した。 Normally, in the case of manufacturing grain-oriented electrical steel sheets, in the next step of finish annealing, after cleaning the excess annealing separator, flattening annealing is performed. The feature of the present invention is as described above by removing the excess quenching separator, then performing a surface treatment with an oxidizing acid, and then allowing a treatment liquid having a pH in a predetermined range to act. The surface state of the steel sheet having a rectangular fine structure is expressed, and the tension-applying film is formed with good adhesion. In order to form a surface state containing a rectangular structure as described above, the present inventors cannot form the surface state only by the corrosion treatment with an oxidizing acid, but by applying a specific treatment liquid after the corrosion treatment. It was found that it can be formed for the first time, and the method for forming a tension-applied insulating film of a directional electromagnetic steel plate according to an embodiment of the present invention was completed.
かかる知見に基づき完成された張力付与型絶縁被膜形成方法では、表面の一部又は全部に無機質系被膜を有しない方向性電磁鋼板に対し、酸化性酸を含有する溶液として、10%以上の硫酸、硝酸、塩素酸、酸化クロム水溶液、クロム硫酸、過マンガン酸、ペルオキソ硫酸、ペルオキソリン酸の1種を含有する溶液或いは2種以上を含有する混合溶液を作用させた後、pH3以下の酸性溶液を接触させる。 In the tension-applied insulating film forming method completed based on such findings, 10% or more sulfuric acid is used as a solution containing an oxidizing acid for a directional electromagnetic steel plate having no inorganic film on a part or all of the surface. , Nitrate, chloric acid, aqueous chromium oxide solution, chromium sulfuric acid, permanganic acid, peroxosulfate, peroxophosphate, or a mixed solution containing two or more, and then an acidic solution with a pH of 3 or less. To contact.
<酸化性酸を含有する溶液による処理>
本実施形態で使用する酸化性酸とは、酸としての働きと、酸化剤としての働きと、を兼ね備えた状態の酸であり、酸としてアルカリや金属を腐食するだけでなく、酸化剤としての酸素付与機能をも併せ持つものである。
<Treatment with a solution containing an oxidizing acid>
The oxidizing acid used in the present embodiment is an acid in a state in which it has both a function as an acid and a function as an oxidizing agent, and it not only corrodes alkalis and metals as an acid but also acts as an oxidizing agent. It also has an oxygen-imparting function.
一般に、酸には、塩酸、酢酸などのように事実上酸化性及び還元性を持たないものや、硫酸や硝酸などのように酸化性を有するものや、亜硫酸、ホスホン酸などのように還元性を有するものが知られている。従来、鋼板の酸洗処理に用いられる酸は、希塩酸や希硫酸、リン酸等であるが、本発明で用いられる酸化性酸とは物性や働きが異なり、鉄や酸化鉄を溶解し除去する酸としての目的で使用されており、本発明で特徴的な酸化性を発現する状態で使用される例は無く、また、本発明で開示された技術を示唆するものでも無い。 In general, acids are those that are virtually non-oxidizing and reducing, such as hydrochloric acid and acetic acid, those that are oxidizing, such as sulfuric acid and nitric acid, and those that are reducing, such as sulfurous acid and phosphonic acid. Is known to have. Conventionally, the acid used for pickling a steel plate is dilute hydrochloric acid, dilute sulfuric acid, phosphoric acid, etc., but the physical properties and functions are different from those of the oxidizing acid used in the present invention, and iron and iron oxide are dissolved and removed. It is used for the purpose of acid, and there is no example of using it in a state of exhibiting the characteristic oxidative property in the present invention, and it does not suggest the technique disclosed in the present invention.
本発明における酸化性とは、鉄に対する酸化力を有することを意味し、更に具体的には、少なくともSiを2~7質量%程度含有する方向性電磁鋼板に対する酸化力を有することを意味する。従って、本発明においての鉄に対する酸化力とは、当然ながら、ステンレス鋼や高張力鋼に対する酸化力とは全く異なるものである。 The oxidizing property in the present invention means having an oxidizing power for iron, and more specifically, having an oxidizing power for a grain-oriented electrical steel sheet containing at least 2 to 7% by mass of Si. Therefore, the oxidizing power for iron in the present invention is, of course, completely different from the oxidizing power for stainless steel and high-strength steel.
本実施形態に係る酸化性酸は、具体的には、硫酸、硝酸、塩素酸、過塩素酸、亜塩素酸、酸化クロム水溶液、クロム硫酸、過マンガン酸、ペルオキソ硫酸、ペルオキソリン酸などの酸素酸であって、酸化力を有するものであり、酸としての働きだけでなく、鉄を酸化して酸化鉄を形成する能力を持つものである。 Specifically, the oxidizing acid according to the present embodiment is oxygen such as sulfuric acid, nitric acid, chloric acid, perchloric acid, chloric acid, chromium oxide aqueous solution, chromium sulfate, permanganic acid, peroxosulfate, and peroxophosphate. It is an acid and has an oxidizing power, and has not only a function as an acid but also an ability to oxidize iron to form iron oxide.
硫酸、ペルオキソ硫酸、ペルオキソリン酸などの場合には、状態により酸化力が異なるが、例えば硫酸の場合では、溶液における硫酸濃度を10%以上とし、50℃以上に加熱することで、鉄に対する酸化力を有するようになるが、本実施形態においては、70℃以上に加熱して用いる。 In the case of sulfuric acid, peroxosulfuric acid, peroxophosphoric acid, etc., the oxidizing power differs depending on the state. For example, in the case of sulfuric acid, the sulfuric acid concentration in the solution is set to 10% or more, and by heating to 50 ° C or more, oxidation to iron Although it has power, in this embodiment, it is used by heating it to 70 ° C. or higher.
また、他の酸化性酸についても、溶液における濃度を10%以上とし、70℃以上(好ましくは75℃以上)に加熱することで、本実施形態において用いることが可能となる。 Further, other oxidizing acids can also be used in the present embodiment by setting the concentration in the solution to 10% or more and heating to 70 ° C. or higher (preferably 75 ° C. or higher).
酸化性酸を含有する溶液の液温を70℃以上とするのは、液温が70℃未満の低温である場合には液の酸化力が低く、十分な酸化力が得られないために密着性が低下する場合があり、高磁束密度改善効果が得られないからである。また、酸化性酸の濃度を10%以上とするのは、濃度が10%未満の希釈溶液では酸化反応が生じにくく、処理時間が長時間になり工業的に不利になるためである。酸化性酸を含有する溶液の液温は、好ましくは75℃以上であり、酸化性酸の濃度は、より好ましくは20%以上である。このような条件とすることで、工業的にもコストをより低く抑制することが可能となる。 The reason why the liquid temperature of the solution containing an oxidizing acid is set to 70 ° C. or higher is that when the liquid temperature is a low temperature of less than 70 ° C., the oxidizing power of the liquid is low and sufficient oxidizing power cannot be obtained. This is because the property may be deteriorated and the effect of improving the high magnetic flux density cannot be obtained. Further, the reason why the concentration of the oxidizing acid is set to 10% or more is that a diluted solution having a concentration of less than 10% is unlikely to cause an oxidation reaction, and the treatment time becomes long, which is industrially disadvantageous. The liquid temperature of the solution containing the oxidizing acid is preferably 75 ° C. or higher, and the concentration of the oxidizing acid is more preferably 20% or higher. Under such conditions, it is possible to keep the cost lower industrially.
本実施形態では、上記のような酸化性酸を単独で使用してもよいし、2種以上を混合して使用してもよい。 In this embodiment, the above-mentioned oxidizing acid may be used alone or in combination of two or more.
ここで、上記のような酸化性酸を含有する溶液の処理時間は、30秒以下とすることが好ましい。処理時間が30秒超である場合には、工業的にコストが高くなり、好ましくない。なお、酸化性酸を含有する溶液の処理時間の下限値は、特に規定するものではないが、鋼板表面の均一性という観点から、10秒以上とすることが好ましい。酸化性酸を含有する溶液の処理時間は、より好ましくは、15秒~30秒である。 Here, the treatment time of the solution containing the oxidizing acid as described above is preferably 30 seconds or less. If the processing time is more than 30 seconds, the cost is industrially high, which is not preferable. The lower limit of the treatment time of the solution containing the oxidizing acid is not particularly specified, but is preferably 10 seconds or more from the viewpoint of the uniformity of the surface of the steel sheet. The treatment time of the solution containing the oxidizing acid is more preferably 15 seconds to 30 seconds.
また、本実施形態に係る酸化性酸を含有する溶液において、上記のような酸化性酸を、塩酸、過酸化水素水、フッ酸、リン酸等と併用することにより、更に、高磁場鉄損改善効果を得ることができる。塩酸又はフッ酸を併用する場合には、これらの酸には鋼板を活性表面にする働きがあることから、酸化性酸で処理する前に使用するのが好適であり、リン酸又は過酸化水素水を併用する場合には、酸化性酸と同時に用いるのが好適である。また、酸化性酸としてペルオキソ酸を用いる場合には、溶液の安定性向上のために、過酸化水素水を添加することが好ましい。 Further, in the solution containing the oxidizing acid according to the present embodiment, by using the oxidizing acid as described above in combination with hydrochloric acid, hydrogen peroxide solution, phosphoric acid, phosphoric acid and the like, further high magnetic field iron loss An improvement effect can be obtained. When hydrochloric acid or hydrofluoric acid is used in combination, these acids have the function of making the steel plate an active surface, so it is preferable to use them before treatment with an oxidizing acid, and phosphoric acid or hydrogen peroxide. When water is used in combination, it is preferable to use it at the same time as oxidizing acid. When peroxo acid is used as the oxidizing acid, it is preferable to add hydrogen peroxide solution in order to improve the stability of the solution.
なお、塩酸又はフッ酸を酸化性酸と併用する場合には、処理時間は、1~60秒間とすることが好ましい。処理時間が1秒未満である場合には、上記のような活性表面化の効果を得ることが困難となり、好ましくない。また、処理時間が60秒超である場合には、酸による鉄の溶解量が多くなるため、好ましくない。 When hydrochloric acid or hydrofluoric acid is used in combination with an oxidizing acid, the treatment time is preferably 1 to 60 seconds. When the treatment time is less than 1 second, it becomes difficult to obtain the above-mentioned effect of active surface formation, which is not preferable. Further, when the treatment time is more than 60 seconds, the amount of iron dissolved by the acid increases, which is not preferable.
<pH3以下の酸性溶液による処理>
本実施形態に係る張力付与型絶縁被膜形成方法では、上記のような酸化性酸を含有する溶液による処理の後に、処理後の方向性電磁鋼板に対してpH3以下の酸性溶液を接触させる処理を実施する。
<Treatment with an acidic solution with a pH of 3 or less>
In the tension-applied insulating film forming method according to the present embodiment, after the treatment with the solution containing the oxidizing acid as described above, the treatment of contacting the treated grain-oriented electrical steel sheet with an acidic solution having a pH of 3 or less is performed. implement.
ここで、本実施形態で使用するpH3以下の酸性溶液は、各種の酸、塩類、有機酸類、有機酸塩を含有する強酸性の水溶液であり、pH3以下のものに限定される。pHが3超である場合には、上記のような矩形状組織を有する微細構造を形成することができず、好ましくない。一方、酸性溶液のpHの下限値は特に規定するものではないが、0.5以上であれば、取り扱いの観点から好ましい。なお、pH3以下の酸性溶液のpHは、より好ましくは2以下である。酸性溶液のpHを2以下とすることで、処理時間を短縮することが可能となり、コスト削減につながる。 Here, the acidic solution having a pH of 3 or less used in the present embodiment is a strongly acidic aqueous solution containing various acids, salts, organic acids, and organic acid salts, and is limited to those having a pH of 3 or less. When the pH is more than 3, it is not possible to form a microstructure having a rectangular structure as described above, which is not preferable. On the other hand, the lower limit of the pH of the acidic solution is not particularly specified, but if it is 0.5 or more, it is preferable from the viewpoint of handling. The pH of the acidic solution having a pH of 3 or less is more preferably 2 or less. By setting the pH of the acidic solution to 2 or less, it is possible to shorten the treatment time, which leads to cost reduction.
また、pH3以下の酸性溶液を用いた処理時間については、特に限定するものではないが、1秒~30秒とすることが好ましい。処理時間が1秒未満である場合には、上記のような矩形状組織を有する微細構造を形成することができず、好ましくない。また、処理時間が30秒超である場合には、工業的にコストが高くなり、好ましくない。pH3以下の酸性溶液を用いた処理時間は、より好ましくは、3秒~10秒である。 The treatment time using an acidic solution having a pH of 3 or less is not particularly limited, but is preferably 1 to 30 seconds. If the treatment time is less than 1 second, it is not possible to form a microstructure having a rectangular structure as described above, which is not preferable. Further, when the processing time is more than 30 seconds, the cost is industrially high, which is not preferable. The treatment time using an acidic solution having a pH of 3 or less is more preferably 3 to 10 seconds.
本実施形態で使用するpH3以下の酸性溶液は、具体的には、硫酸、塩酸、リン酸、ホウ酸等の無機酸、硫酸塩、塩酸塩、リン酸塩、ホウ酸塩等の無機塩類、酢酸、カルボン酸含有物等の有機酸、酢酸塩、カルボン酸塩等の有機酸塩を含有する、pH3以下の溶液である。 Specific examples of the acidic solution having a pH of 3 or less used in the present embodiment include inorganic acids such as sulfuric acid, hydrochloric acid, phosphoric acid and boric acid, and inorganic salts such as sulfates, hydrochlorides, phosphates and borates. It is a solution having a pH of 3 or less, which contains an organic acid such as acetic acid and a carboxylic acid-containing substance, and an organic acid salt such as an acetate and a carboxylate.
また、上記のような酸性溶液に対して、コロイダルシリカ、炭酸カルシウム、酸化チタン、タルク等の無機塩類を更に添加しても良い。 Further, inorganic salts such as colloidal silica, calcium carbonate, titanium oxide and talc may be further added to the acidic solution as described above.
以上のような処理を実施することで、母材鋼板として用いた、無機質系被膜を有しない方向性電磁鋼板の表面に、先だって説明したような矩形状組織を有する微細構造が形成される。 By carrying out the above treatment, a fine structure having a rectangular structure as described above is formed on the surface of the grain-oriented electrical steel sheet used as the base steel sheet without the inorganic film.
図1に、上記のような一連の処理(30%硫酸、液温75℃処理後、pH1.6の処理液に浸漬)に従って製造した方向性電磁鋼板の表面のSEMによる観察結果を示し、図2に、上記のような条件を満足していない一連の処理(25%硫酸、液温70℃、pH3以下の酸性溶液による処理を実施せず。)に従って製造した方向性電磁鋼板の表面のSEMによる観察結果を示した。 FIG. 1 shows the observation results of the surface of grain-oriented electrical steel sheets manufactured by a series of treatments as described above (30% sulfuric acid, liquid temperature 75 ° C., and then immersed in a treatment liquid of pH 1.6) by SEM. 2. SEM on the surface of grain-oriented electrical steel sheet manufactured according to a series of treatments that do not satisfy the above conditions (without treatment with 25% sulfuric acid, liquid temperature 70 ° C., and acidic solution with pH 3 or less). The observation result by is shown.
図1から明らかなように、上記のような一連の処理を実施することで、方向性電磁鋼板の表面には、先だって説明したような微細構造が形成されていることがわかる。一方で、pH3以下の酸性溶液による処理を実施しなかった場合には、図2から明らかなように、先だって説明したような微細構造が形成されておらず、図1と図2とは異なる表面構造となっていることがわかる。 As is clear from FIG. 1, by carrying out the series of treatments as described above, it can be seen that the fine structure as described above is formed on the surface of the grain-oriented electrical steel sheet. On the other hand, when the treatment with an acidic solution having a pH of 3 or less was not carried out, as is clear from FIG. 2, the microstructure as described above was not formed, and the surfaces different from those in FIGS. 1 and 2 were formed. It can be seen that it has a structure.
本発明の詳細メカニズムは、未だ不明であるが、本発明者は、以下のように推定している。すなわち、上記のような矩形状組織を有する微細構造を形成することで高磁場鉄損改善効果が発現するのは、従来の方式では鋼板表面全面に凹凸が形成されるのに対し、微小なレベルで表面の均一性が達成されているからであり、形成された張力付与型絶縁被膜から鋼板に与えられる応力についても、ミクロなレベルで均一に与えられるためであると推定している。 The detailed mechanism of the present invention is still unknown, but the present inventor presumes as follows. That is, the effect of improving high magnetic field iron loss is exhibited by forming a microstructure having a rectangular structure as described above, whereas the conventional method forms irregularities on the entire surface of the steel sheet, but it is at a minute level. It is presumed that this is because the surface uniformity is achieved, and the stress applied to the steel sheet from the formed tension-applied insulating film is also uniformly applied at the micro level.
<張力付与型絶縁被膜の形成処理>
以上説明したようなpH3以下の酸性溶液による処理の後段に、張力付与型絶縁被膜の形成処理が実施される。かかる張力付与型絶縁被膜の形成処理は、リン酸塩又はコロイダルシリカの少なくとも一方を含有する塗料を、上記のような処理後の方向性電磁鋼板の表面に塗布した後、所定の温度で乾燥させる処理となる。
<Formation of tension-applied insulating film>
After the treatment with the acidic solution having a pH of 3 or less as described above, the tension-applied insulating coating is formed. In the tension-applying insulating film forming treatment, a paint containing at least one of phosphate or colloidal silica is applied to the surface of the grain-oriented electrical steel sheet after the treatment as described above, and then dried at a predetermined temperature. It becomes a process.
張力付与型絶縁被膜の形成処理については、特に限定されるものではなく、公知の塗料を用いて公知の方法により、張力付与型絶縁被膜を形成すればよい。 The treatment for forming the tension-applying type insulating film is not particularly limited, and the tension-applying type insulating film may be formed by a known method using a known paint.
なお、先だって説明したように、pH3以下の酸性溶液は、リン酸塩を用いて構成することが可能であるし、pH3以下の酸性溶液に対して、コロイダルシリカ等を添加することも可能である。従って、pH3以下の酸性溶液の成分として、所望の張力付与型絶縁被膜を構成するための成分を含有させて、pH3以下の酸性溶液を用いた処理と、張力付与型絶縁被膜の形成処理と、を同時に実施することも可能である。この場合においても、酸性溶液の液性をpH3以下とすることが必要である。 As described above, the acidic solution having a pH of 3 or less can be formed by using a phosphate, and colloidal silica or the like can be added to the acidic solution having a pH of 3 or less. .. Therefore, as a component of the acidic solution having a pH of 3 or less, a component for forming a desired tension-imparting insulating film is contained, and a treatment using the acidic solution having a pH of 3 or less, a treatment for forming the tension-applying insulating film, and the treatment are performed. It is also possible to carry out at the same time. Even in this case, it is necessary to set the liquid property of the acidic solution to pH 3 or less.
続いて、実施例及び比較例を示しながら、本発明に係る方向性電磁鋼板及び方向性電磁鋼板の張力付与型絶縁被膜形成方法について、具体的に説明する。なお、以下に示す実施例は、本発明に係る方向性電磁鋼板及び方向性電磁鋼板の張力付与型絶縁被膜形成方法のあくまでも一例であって、本発明に係る方向性電磁鋼板及び方向性電磁鋼板の張力付与型絶縁被膜形成方法が下記の例に限定されるものではない。 Subsequently, the method for forming the tension-applied insulating film of the grain-oriented electrical steel sheet and the grain-oriented electrical steel sheet according to the present invention will be specifically described with reference to Examples and Comparative Examples. The examples shown below are merely examples of the method for forming a tension-applied insulating film of a grain-oriented electrical steel sheet and a grain-oriented electrical steel sheet according to the present invention, and the grain-oriented electrical steel sheet and the grain-oriented electrical steel sheet according to the present invention. The method for forming a tension-applied insulating film is not limited to the following examples.
(試験例1)
質量%で、C:0.08%、Si:3.23%、Al:0.028%、N:0.008%を含み、残部がFe及び不純物であるケイ素鋼スラブを鋳造し、スラブ加熱後熱延して、2.2mmの熱延板とした。続いて、1100℃で焼鈍後、0.22mmまで冷延し、830℃で脱炭焼鈍を行った。そして、Al2O3を主成分とする焼鈍分離剤を塗布乾燥し、1200℃で20時間の仕上げ焼鈍を行った。その後、水洗して余剰のAl2O3を取り除いたところ、鋼板表面には、無機質系被膜は形成されていなかった。
(Test Example 1)
By mass%, a silicon steel slab containing C: 0.08%, Si: 3.23%, Al: 0.028%, N: 0.008% and the balance being Fe and impurities is cast and slab heated. After hot rolling, it was made into a 2.2 mm hot rolled plate. Subsequently, after annealing at 1100 ° C., the mixture was cooled to 0.22 mm, and decarburized and annealed at 830 ° C. Then, an annealing separator containing Al 2 O 3 as a main component was applied and dried, and finish annealing was performed at 1200 ° C. for 20 hours. After that, when the excess Al 2 O 3 was removed by washing with water, no inorganic film was formed on the surface of the steel sheet.
得られた鋼板に対し、以下の表1に示す処理液(酸化性酸含有溶液及び酸性溶液の組み合わせ)を用いて浸漬処理を行い、No.2とNo.3の処理液については、浸漬後処理液が付着した状態でそのまま焼付処理を行うことで、鋼板表面に目付量4.5g/m2の張力付与型絶縁被膜を形成した。また、その他の処理液については、浸漬後処理液が付着した状態でそのまま焼付処理を行い、更に続いて、リン酸アルミニウムとシリカとを主成分とする水溶液を塗布して850℃の炉中で1分間焼付けることで、鋼板表面に目付量4.5g/m2の張力付与型絶縁被膜を形成した。 The obtained steel sheet was immersed in the treatment liquid (combination of an oxidizing acid-containing solution and an acidic solution) shown in Table 1 below to obtain No. 2 and No. With respect to the treatment liquid of No. 3, a tension-applied insulating film having a basis weight of 4.5 g / m 2 was formed on the surface of the steel sheet by performing the baking treatment as it was with the treatment liquid attached after immersion. For other treatment liquids, the baking treatment is performed as it is with the treatment liquid attached after immersion, and then an aqueous solution containing aluminum phosphate and silica as main components is applied and in a furnace at 850 ° C. By baking for 1 minute, a tension-applied insulating film having a basis weight of 4.5 g / m 2 was formed on the surface of the steel sheet.
このようにして製造された張力付与型絶縁被膜が施された方向性電磁鋼板について、絶縁被膜密着性と、レーザビームを照射し磁区細分化処理した後の高磁場鉄損(1.7Tと1.9Tにおける50Hzのもとでの鉄損)とを評価し、得られた結果を、以下の表2に示した。 Regarding the directional electromagnetic steel sheet with the tension-applied insulating coating produced in this way, the insulation coating adhesion and the high magnetic field iron loss (1.7T and 1) after the magnetic domain subdivision treatment by irradiating the laser beam. The iron loss at .9T under 50Hz) was evaluated, and the obtained results are shown in Table 2 below.
<微細構造の測定>
No.2とNo.3の例については、磁区細分化処理が施された後の方向性電磁鋼板の張力付与型絶縁被膜を剥離することで、母材となっている方向性電磁鋼板の表面を露出させ、上記の方法により微細構造の表面粗さについて、計測・評価を行った。また、その他の例については、浸漬後処理液の焼付処理が終了した後、張力付与型絶縁被膜を形成する前のタイミングで、上記の方法により微細構造の表面粗さについて、計測・評価を行った。また、かかる測定処理とあわせて、SEMによる微細構造の観察を実施して、上記の方法により矩形状組織の面積率を測定した。なお、SEMの倍率は、3000倍とし、10視野での測定値の平均値を、以下の表2に記載した。なお、以下の表2に示した表面粗さにおいて、「L方向」は、圧延方向に対応し、「C方向」は、直角方向に対応している。
<Measurement of fine structure>
No. 2 and No. In the case of No. 3, the surface of the grain-oriented electrical steel sheet, which is the base material, is exposed by peeling off the tension-applied insulating film of the grain-oriented electrical steel sheet after the magnetic domain subdivision treatment. The surface roughness of the microstructure was measured and evaluated by the method. For other examples, the surface roughness of the fine structure is measured and evaluated by the above method at the timing after the baking treatment of the post-immersion treatment liquid is completed and before the tension-applied insulating film is formed. rice field. In addition to the measurement process, the microstructure was observed by SEM, and the area ratio of the rectangular structure was measured by the above method. The SEM magnification was 3000 times, and the average value of the measured values in 10 fields of view is shown in Table 2 below. In the surface roughness shown in Table 2 below, the "L direction" corresponds to the rolling direction and the "C direction" corresponds to the right angle direction.
<密着性の評価>
密着性は、幅30mm、長さ300mmのサンプルを800℃で2時間、窒素気流中で歪取り焼鈍後に、10mmφの円柱を用いた曲げ密着試験にて評価した。その評価基準は、以下の通りであり、評価○以上を合格とした。
◎:剥離無し
○:殆ど剥離していない
△:数mmの剥離が見られる
×:1/3~1/2の剥離が見られる
××:全面剥離
<Evaluation of adhesion>
The adhesion was evaluated by a bending adhesion test using a 10 mmφ cylinder after strain-removing and annealing a sample having a width of 30 mm and a length of 300 mm at 800 ° C. for 2 hours in a nitrogen stream. The evaluation criteria are as follows, and evaluation ○ or higher was regarded as acceptable.
⊚: No peeling ○: Almost no peeling △: Peeling of several mm is seen ×: 1/3 to 1/2 peeling is seen XX: Full peeling
<高磁場鉄損の評価>
高磁場鉄損は、JIS C2556に規定されている単板磁気特性試験(SST試験)により測定した。
<Evaluation of high magnetic field iron loss>
The high magnetic field iron loss was measured by a single plate magnetic property test (SST test) specified in JIS C2556.
SEMによる観察の結果、本発明例に該当する方向性電磁鋼板では、図1に示したような矩形状組織を有する微細構造が、母材である方向性電磁鋼板の表面に形成されていることが確認された。また、以下に示す表2から明らかなように、本発明例に該当する方向性電磁鋼板は、密着性が極めて優れており、高磁場鉄損が改善されていることがわかる。 As a result of observation by SEM, in the grain-oriented electrical steel sheet corresponding to the example of the present invention, a fine structure having a rectangular structure as shown in FIG. 1 is formed on the surface of the grain-oriented electrical steel sheet which is a base material. Was confirmed. Further, as is clear from Table 2 shown below, it can be seen that the grain-oriented electrical steel sheet corresponding to the example of the present invention has extremely excellent adhesion and improved high magnetic field iron loss.
(試験例2)
質量%で、C:0.08%、Si:3.30%、Al:0.025%、N:0.008%、Bi:0.01%、Mn:0.08%、Se:0.025%を含み、残部がFe及び不純物であるケイ素鋼スラブを鋳造し、スラブ加熱後、熱間圧延を行い、1100℃で5分間熱延板を焼鈍した後、冷間圧延により0.22mm厚にした。その後、脱炭焼鈍し、BiCl3を5%含有するMgOを主成分とする焼鈍分離剤を塗布乾燥し、1200℃で20時間の仕上げ焼鈍を行った。水洗して余剰のMgOを取り除いたところ、鋼板表面には無機質系被膜は形成されていなかった。
(Test Example 2)
By mass%, C: 0.08%, Si: 3.30%, Al: 0.025%, N: 0.008%, Bi: 0.01%, Mn: 0.08%, Se: 0. A silicon steel slab containing 025% and having Fe and impurities in the balance is cast, heated by the slab, hot-rolled, annealed at 1100 ° C. for 5 minutes, and then cold-rolled to a thickness of 0.22 mm. I made it. Then, it was decarburized and annealed, and an annealing separator containing 5% of BiCl 3 as a main component was applied and dried, and finish annealing was performed at 1200 ° C. for 20 hours. When the excess MgO was removed by washing with water, no inorganic film was formed on the surface of the steel sheet.
得られた鋼板に対し、上記表1に示す処理液を用いて浸漬処理を行い、No.2とNo.3の処理液については浸漬後処理液が付着した状態でそのまま焼付処理を行うことで、鋼板表面に目付量4.5g/m2の張力付与型絶縁被膜を形成した。また、その他の処理液については、浸漬後処理液が付着した状態でそのまま焼付処理を行い、続いて、リン酸アルミニウムとシリカとを主成分とする水溶液を塗布し、850℃の炉中で1分間焼付けることで、鋼板表面に目付量4.5g/m2の張力付与型絶縁被膜を形成した。 The obtained steel sheet was immersed in the treatment liquid shown in Table 1 above to obtain No. 2 and No. As for the treatment liquid of No. 3, a tension-applied insulating film having a basis weight of 4.5 g / m 2 was formed on the surface of the steel sheet by performing the baking treatment as it was with the treatment liquid attached after immersion. For other treatment liquids, the baking treatment is performed as it is with the treatment liquid attached after immersion, and then an aqueous solution containing aluminum phosphate and silica as main components is applied, and the mixture is placed in a furnace at 850 ° C. By baking for a minute, a tension-applied insulating film having a basis weight of 4.5 g / m 2 was formed on the surface of the steel sheet.
このようにして製造された張力付与型絶縁被膜が施された方向性電磁鋼板について、絶縁被膜密着性と、レーザビームを照射し磁区細分化処理した後の高磁場鉄損(1.7Tと1.9Tにおける50Hzのもとでの鉄損)とを評価し、得られた結果を、以下の表2に示した。 Regarding the directional electromagnetic steel sheet with the tension-applied insulating coating produced in this way, the insulation coating adhesion and the high magnetic field iron loss (1.7T and 1) after the magnetic domain subdivision treatment by irradiating the laser beam. The iron loss at .9T under 50Hz) was evaluated, and the obtained results are shown in Table 2 below.
なお、微細構造の表面粗さの測定方法、密着性の評価方法及び高磁場鉄損の測定方法は、上記試験例1と同様である。 The method for measuring the surface roughness of the fine structure, the method for evaluating the adhesion, and the method for measuring the high magnetic field iron loss are the same as those in Test Example 1.
SEMによる観察の結果、本発明例に該当する方向性電磁鋼板では、図1に示したような矩形状組織を有する微細構造が、母材である方向性電磁鋼板の表面に形成されていることが確認された。また、以下に示す表2から明らかなように、本発明例に該当する方向性電磁鋼板は、密着性が極めて優れており、高磁場鉄損が改善されていることがわかる。 As a result of observation by SEM, in the grain-oriented electrical steel sheet corresponding to the example of the present invention, a fine structure having a rectangular structure as shown in FIG. 1 is formed on the surface of the grain-oriented electrical steel sheet which is a base material. Was confirmed. Further, as is clear from Table 2 shown below, it can be seen that the grain-oriented electrical steel sheet corresponding to the example of the present invention has extremely excellent adhesion and improved high magnetic field iron loss.
(試験例3)
質量%で、C:0.08%、Si:3.21%、Al:0.027%、N:0.008%を含み、残部がFe及び不純物であるケイ素鋼スラブを鋳造し、スラブ加熱後、熱間圧延を行い、1100℃で5分間熱延板を焼鈍した後、冷間圧延により0.22mm厚にした。得られた鋼板を、加熱速度400℃/秒で850℃まで昇温した後、脱炭焼鈍し、TiO2を5%含有するMgOを主成分とする焼鈍分離剤を塗布乾燥し、1200℃で20時間の仕上げ焼鈍を行った。その後水洗して余剰のMgOを取り除いたところ、鋼板表面にはフォルステライトを主体とする無機質系被膜が形成されていた。そこで、得られた鋼板に対して硫フッ酸処理を行い、完全に無機質系被膜を除去した後、表1に示す処理液を用いて浸漬処理を行った。
(Test Example 3)
By mass%, a silicon steel slab containing C: 0.08%, Si: 3.21%, Al: 0.027%, N: 0.008% and the balance being Fe and impurities is cast and slab heated. After that, hot rolling was performed, and the hot-rolled plate was annealed at 1100 ° C. for 5 minutes, and then cold-rolled to a thickness of 0.22 mm. The obtained steel sheet was heated to 850 ° C. at a heating rate of 400 ° C./sec, then annealed by decarburization, and annealed separator containing 5% of TiO 2 as a main component was applied and dried at 1200 ° C. Finish annealing was performed for 20 hours. After that, when the excess MgO was removed by washing with water, an inorganic film mainly composed of forsterite was formed on the surface of the steel sheet. Therefore, the obtained steel sheet was subjected to a sulfurous acid treatment to completely remove the inorganic film, and then a dipping treatment was carried out using the treatment liquid shown in Table 1.
No.2とNo.3の処理液については、浸漬後処理液が付着した状態でそのまま焼付処理を行うことで、鋼板表面に目付量4.5g/m2の張力付与型絶縁被膜を形成した。また、その他の処理液については、浸漬後処理液が付着した状態でそのまま焼付処理を行い、続いて、リン酸アルミニウムとシリカとを主成分とする水溶液を塗布し、850℃の炉中で1分間焼付け、鋼板表面に目付量4.5g/m2の張力付与型絶縁被膜を形成した。 No. 2 and No. With respect to the treatment liquid of No. 3, a tension-applied insulating film having a basis weight of 4.5 g / m 2 was formed on the surface of the steel sheet by performing the baking treatment as it was with the treatment liquid attached after immersion. For other treatment liquids, the baking treatment is performed as it is with the treatment liquid attached after immersion, and then an aqueous solution containing aluminum phosphate and silica as main components is applied, and the mixture is placed in a furnace at 850 ° C. After baking for a minute, a tension-applied insulating film having a basis weight of 4.5 g / m 2 was formed on the surface of the steel sheet.
このようにして製造された張力付与型絶縁被膜が施された方向性電磁鋼板について、絶縁被膜密着性、レーザビームを照射し磁区細分化処理した後の高磁場鉄損(1.7Tと1.9Tにおける50Hzのもとでの鉄損)とを評価し、得られた結果を、以下の表2に示した。 Regarding the directional electromagnetic steel sheet having the tension-applied insulating film produced in this way, the high magnetic field iron loss (1.7T and 1.) after the insulating film adhesion and the magnetic domain subdivision treatment by irradiating the laser beam. The iron loss at 9T under 50Hz) was evaluated, and the obtained results are shown in Table 2 below.
なお、微細構造の表面粗さの測定方法、密着性の評価方法及び高磁場鉄損の測定方法は、上記試験例1と同様である。 The method for measuring the surface roughness of the fine structure, the method for evaluating the adhesion, and the method for measuring the high magnetic field iron loss are the same as those in Test Example 1.
SEMによる観察の結果、本発明例に該当する方向性電磁鋼板では、図1に示したような矩形状組織を有する微細構造が、母材である方向性電磁鋼板の表面に形成されていることが確認された。また、以下に示す表2から明らかなように、本発明例に該当する方向性電磁鋼板は、密着性が極めて優れており、高磁場鉄損が改善されていることがわかる。 As a result of observation by SEM, in the grain-oriented electrical steel sheet corresponding to the example of the present invention, a fine structure having a rectangular structure as shown in FIG. 1 is formed on the surface of the grain-oriented electrical steel sheet which is a base material. Was confirmed. Further, as is clear from Table 2 shown below, it can be seen that the grain-oriented electrical steel sheet corresponding to the example of the present invention has extremely excellent adhesion and improved high magnetic field iron loss.
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
Although the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, the present invention is not limited to these examples. It is clear that a person having ordinary knowledge in the field of technology to which the present invention belongs can come up with various modifications or modifications within the scope of the technical ideas described in the claims. , These are also naturally understood to belong to the technical scope of the present invention.
Claims (10)
前記方向性電磁鋼板の表面の一部又は全部は、フォルステライトを主成分とする無機質系被膜を有しておらず、
前記張力付与型絶縁被膜が設けられた側の前記方向性電磁鋼板の表面は、矩形状の微細構造を有しており、前記方向性電磁鋼板の表面における前記微細構造の占める面積の割合である面積率が、50%以上であり、
圧延方向の表面粗さが、算術平均粗さRaで0.10~0.35μmであり、圧延方向に対して直交する方向である直角方向の表面粗さが、算術平均粗さRaで0.15~0.45μmであり、
前記矩形状の微細構造は、前記方向性電磁鋼板の結晶構造である(110)面が腐食することで形成されたエッチピットで構成される矩形状組織を有しており、1つの前記矩形状組織は、前記方向性電磁鋼板の圧延方向に平均0.01~0.1μm、前記圧延方向に対して直交する方向に平均0.005~0.05μmの大きさを有する、方向性電磁鋼板。 Equipped with a tension-applied insulating coating provided on the surface of grain-oriented electrical steel sheets,
Part or all of the surface of the grain-oriented electrical steel sheet does not have an inorganic coating containing forsterite as a main component .
The surface of the grain-oriented electrical steel sheet on the side provided with the tension-applied insulating film has a rectangular fine structure, which is the ratio of the area occupied by the grain structure on the surface of the grain-oriented electrical steel sheet. The area ratio is 50% or more,
The surface roughness in the rolling direction is 0.10 to 0.35 μm in the arithmetic average roughness Ra, and the surface roughness in the direction perpendicular to the rolling direction is 0 in the arithmetic average roughness Ra. It is 15 to 0.45 μm,
The rectangular microstructure has a rectangular structure composed of etch pits formed by corrosion of the (110) surface, which is the crystal structure of the directional electromagnetic steel plate, and has one rectangular structure. The structure is a directional electromagnetic steel plate having an average size of 0.01 to 0.1 μm in the rolling direction of the directional electromagnetic steel plate and an average size of 0.005 to 0.05 μm in the direction orthogonal to the rolling direction.
前記酸化性酸による処理と、前記pH3以下の酸性溶液による処理の後に、リン酸塩又はコロイダルシリカの少なくとも一方を含有する塗料を、前記方向性電磁鋼板の表面に塗布した後、所定の温度で乾燥させる処理を実施する、方向性電磁鋼板の張力付与型絶縁被膜形成方法。 10% or more sulfuric acid, nitric acid, chloric acid, chromium oxide aqueous solution as a solution containing an oxidizing acid for a directional electromagnetic steel plate having no inorganic coating containing forsterite as a main component on a part or all of the surface. , Chloric acid, permanganic acid, peroxosulfate, peroxophosphate, or a mixed solution containing two or more, heated to a liquid temperature of 70 ° C or higher and acted in a treatment time of 30 seconds or less. After that, contact with an acidic solution having a pH of 3 or less.
After the treatment with the oxidizing acid and the treatment with the acidic solution having a pH of 3 or less, a coating material containing at least one of phosphate or colloidal silica is applied to the surface of the grain-oriented electrical steel sheet, and then at a predetermined temperature. A method for forming a tension-applied insulating film of grain-oriented electrical steel sheets, which is subjected to a drying process.
質量%で2~7%のSiを少なくとも含有するケイ素鋼スラブを熱延し、必要に応じて焼鈍を施し、1回の冷延又は中間焼鈍を挟む2回以上の冷延を行い、脱炭焼鈍後、焼鈍分離剤としてAl2O3を主成分としたものを塗布・乾燥し、仕上げ焼鈍を行い鏡面化した方向性電磁鋼板を用いる、請求項4~8の何れか1項に記載の方向性電磁鋼板の張力付与型絶縁被膜形成方法。 As a grain-oriented electrical steel sheet having no inorganic coating,
A silicon steel slab containing at least 2 to 7% Si by mass is hot-rolled, annealed as necessary, and then one cold-rolled or two or more cold-rolled with intermediate annealing in between to decarburize. The invention according to any one of claims 4 to 8, wherein after annealing, a directional electromagnetic steel sheet containing Al 2 O 3 as a main component as an annealing separator is applied and dried, and a mirror-finished directional electromagnetic steel sheet is used after finish annealing. A method for forming a tension-applied insulating coating on a directional electromagnetic steel plate.
質量%で2~7%のSiを少なくとも含有するケイ素鋼スラブを熱延し、必要に応じて焼鈍を施し、1回の冷延又は中間焼鈍を挟む2回以上の冷延を行い、脱炭焼鈍後、焼鈍分離剤として、MgOとAl2O3の混合物に対してビスマス塩化物を添加したもの、又は、MgOとAl2O3の混合物に対してビスマス化合物及び金属の塩素化合物を添加したものを塗布・乾燥し、仕上げ焼鈍を行い鏡面化した方向性電磁鋼板を用いる、請求項4~8の何れか1項に記載の方向性電磁鋼板の張力付与型絶縁被膜形成方法。
As a grain-oriented electrical steel sheet having no inorganic coating,
A silicon steel slab containing at least 2 to 7% Si by mass is hot-rolled, annealed as necessary, and then one cold-rolled or two or more cold-rolled with intermediate annealing in between to decarburize. After annealing, as an annealing separator, a bismuth chloride was added to a mixture of MgO and Al 2 O 3 , or a bismuth compound and a metallic chlorine compound were added to a mixture of Mg O and Al 2 O 3 . The method for forming a tension-applied insulating film of a directional electromagnetic steel sheet according to any one of claims 4 to 8, wherein the directional electromagnetic steel sheet is coated, dried, finished and annealed, and mirrored.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016200819A JP7040888B2 (en) | 2016-10-12 | 2016-10-12 | Method of forming a tension insulating film for grain-oriented electrical steel sheets and grain-oriented electrical steel sheets |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016200819A JP7040888B2 (en) | 2016-10-12 | 2016-10-12 | Method of forming a tension insulating film for grain-oriented electrical steel sheets and grain-oriented electrical steel sheets |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018062682A JP2018062682A (en) | 2018-04-19 |
JP7040888B2 true JP7040888B2 (en) | 2022-03-23 |
Family
ID=61966514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016200819A Active JP7040888B2 (en) | 2016-10-12 | 2016-10-12 | Method of forming a tension insulating film for grain-oriented electrical steel sheets and grain-oriented electrical steel sheets |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7040888B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109777160B (en) * | 2019-01-08 | 2020-02-14 | 南京宝淳新材料科技有限公司 | Coating for oriented electromagnetic steel plate and preparation method thereof |
EP3913074A4 (en) | 2019-01-16 | 2022-10-26 | Nippon Steel Corporation | Grain-oriented electromagnetic steel sheet, and steel sheet which can be used as raw material sheet for grain-oriented electromagnetic steel |
KR102582914B1 (en) * | 2019-01-16 | 2023-09-27 | 닛폰세이테츠 가부시키가이샤 | Manufacturing method of grain-oriented electrical steel sheet |
KR102613708B1 (en) * | 2019-01-16 | 2023-12-20 | 닛폰세이테츠 가부시키가이샤 | Grain-oriented electrical steel sheet and its manufacturing method |
WO2020149340A1 (en) | 2019-01-16 | 2020-07-23 | 日本製鉄株式会社 | Grain-oriented electrical steel sheet and method for manufacturing same |
WO2020149329A1 (en) * | 2019-01-16 | 2020-07-23 | 日本製鉄株式会社 | Grain-oriented electromagnetic steel sheet and method for manufacturing same |
JP7265122B2 (en) * | 2019-01-16 | 2023-04-26 | 日本製鉄株式会社 | Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet |
KR102557225B1 (en) * | 2019-01-16 | 2023-07-19 | 닛폰세이테츠 가부시키가이샤 | Unidirectional electrical steel sheet and manufacturing method thereof |
KR102561510B1 (en) * | 2019-02-08 | 2023-08-02 | 닛폰세이테츠 가부시키가이샤 | Grain-oriented electrical steel sheet, method of forming an insulating film on grain-oriented electrical steel sheet, and method of manufacturing grain-oriented electrical steel sheet |
WO2022215710A1 (en) | 2021-04-06 | 2022-10-13 | 日本製鉄株式会社 | Grain-oriented electrical steel sheet and method for forming insulating film |
WO2023188594A1 (en) * | 2022-03-30 | 2023-10-05 | Jfeスチール株式会社 | Pre-treatment liquid and method for manufacturing electromagnetic steel sheet provided with insulating film |
JP7311075B1 (en) * | 2022-03-30 | 2023-07-19 | Jfeスチール株式会社 | Method for manufacturing electrical steel sheet with pretreatment liquid and insulation coating |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002249880A (en) | 2001-02-22 | 2002-09-06 | Nippon Steel Corp | Method for forming insulating coating film of grain oriented electrical steel sheet |
JP2011515573A (en) | 2008-02-12 | 2011-05-19 | ティッセンクルップ エレクトリカル スティール ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method for producing directional magnetic strip |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5309735B2 (en) * | 2008-07-03 | 2013-10-09 | 新日鐵住金株式会社 | Insulating coating treatment agent, grain-oriented electrical steel sheet coated with the coating treatment agent, and insulation coating treatment method thereof |
-
2016
- 2016-10-12 JP JP2016200819A patent/JP7040888B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002249880A (en) | 2001-02-22 | 2002-09-06 | Nippon Steel Corp | Method for forming insulating coating film of grain oriented electrical steel sheet |
JP2011515573A (en) | 2008-02-12 | 2011-05-19 | ティッセンクルップ エレクトリカル スティール ゲゼルシャフト ミット ベシュレンクテル ハフツング | Method for producing directional magnetic strip |
Also Published As
Publication number | Publication date |
---|---|
JP2018062682A (en) | 2018-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7040888B2 (en) | Method of forming a tension insulating film for grain-oriented electrical steel sheets and grain-oriented electrical steel sheets | |
JP7265122B2 (en) | Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet | |
JP7196939B2 (en) | Grain-oriented electrical steel sheet, method for forming insulating coating on grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet | |
KR102579758B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
KR102577485B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP4018878B2 (en) | Method for forming insulating coating on grain-oriented electrical steel sheet | |
JP7196622B2 (en) | Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet | |
WO2019013355A9 (en) | Oriented electromagnetic steel plate | |
JP2001303215A (en) | Low core loss grain oriented silicon steel sheet and its producing method | |
JP2592740B2 (en) | Ultra-low iron loss unidirectional electrical steel sheet and method of manufacturing the same | |
JPS6376819A (en) | Grain-oriented electrical steel sheet having small iron loss and its manufacture | |
JP6844110B2 (en) | Manufacturing method of grain-oriented electrical steel sheet and manufacturing method of original sheet for grain-oriented electrical steel sheet | |
JP3921199B2 (en) | Method for producing unidirectional silicon steel sheet excellent in film adhesion of tension imparting insulating film | |
KR102576546B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
KR102583464B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP7230930B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP2703604B2 (en) | Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties | |
JPH1112755A (en) | Super-low core loss grain-oriented silicon steel sheet | |
KR102582914B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP7230929B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
WO2023195517A1 (en) | Grain-oriented electrical steel sheet and formation method for insulating coating film | |
JP7311075B1 (en) | Method for manufacturing electrical steel sheet with pretreatment liquid and insulation coating | |
KR102583079B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP4025514B2 (en) | Insulating film forming method for unidirectional silicon steel sheet with excellent magnetic properties and film adhesion | |
JPH01259199A (en) | Manufacture of grain-oriented silicon steel sheet with low iron loss |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20190208 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20190508 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190605 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200319 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200804 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201023 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20201023 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20201104 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20201110 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20201204 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20201208 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20210615 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20211116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211126 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20220208 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20220308 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20220308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220310 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7040888 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |