JP2018062682A - Grain oriented silicon steel sheet and method for forming tension insulating coating thereof - Google Patents

Grain oriented silicon steel sheet and method for forming tension insulating coating thereof Download PDF

Info

Publication number
JP2018062682A
JP2018062682A JP2016200819A JP2016200819A JP2018062682A JP 2018062682 A JP2018062682 A JP 2018062682A JP 2016200819 A JP2016200819 A JP 2016200819A JP 2016200819 A JP2016200819 A JP 2016200819A JP 2018062682 A JP2018062682 A JP 2018062682A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
electrical steel
oriented electrical
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016200819A
Other languages
Japanese (ja)
Other versions
JP7040888B2 (en
Inventor
竹田 和年
Kazutoshi Takeda
和年 竹田
雄樹 国田
Yuki Kunida
雄樹 国田
新井 聡
Satoshi Arai
聡 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016200819A priority Critical patent/JP7040888B2/en
Publication of JP2018062682A publication Critical patent/JP2018062682A/en
Application granted granted Critical
Publication of JP7040888B2 publication Critical patent/JP7040888B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grain oriented silicon steel sheet excellent in adhesion between the grain oriented silicon steel sheet without having an inorganic coating and a tension applying type insulating coating and capable of industrially sufficiently achieving a more excellent high magnetic field core loss at low cost.SOLUTION: The grain oriented silicon steel sheet includes a tension applying type insulating coating provided on the surface of the grain oriented silicon steel sheet. A part or all of the surface of the grain oriented silicon steel sheet does not have an inorganic coating, and the surface of the grain oriented silicon steel sheet on a side having the tension applying type insulating coating has a fine rectangular structure. An area ratio being a ratio of area occupied by the fine structure on the surface of the grain oriented silicon steel sheet is 50% or more; a surface roughness in the rolling direction is 0.10-0.35 μm in an arithmetic average roughness Ra; and a surface roughness in a rectangular direction orthogonal to the rolling direction is 0.15-0.45 μm in the arithmetic average roughness Ra.SELECTED DRAWING: Figure 1

Description

本発明は、方向性電磁鋼板及び方向性電磁鋼板の張力絶縁被膜形成方法に関する。   The present invention relates to a grain-oriented electrical steel sheet and a method for forming a tensile insulating coating on the grain-oriented electrical steel sheet.

一般に、方向性電磁鋼板はトランスなどの鉄芯として用いられており、方向性電磁鋼板の磁気特性がトランスの性能に多大な影響を与えることから、磁気特性を改善するよう様々な研究開発がなされてきた。方向性電磁鋼板の鉄損を低減する手段として、例えば下記の特許文献1には、仕上げ焼鈍後の鋼板表面に対してコロイド状シリカとリン酸塩とを主成分とする溶液を塗布焼き付けることにより張力付与コーティングを形成して、鉄損を低減する技術が開示されている。更に、下記の特許文献2には、仕上げ焼鈍後の材料表面に対してレーザビームを照射して局部歪みを鋼板に付与することにより磁区を細分化して、鉄損を低減する技術が開示されている。下記特許文献1や特許文献2に示したようなこれらの技術により、鉄損は極めて良好なものとなってきている。   In general, grain-oriented electrical steel sheets are used as iron cores for transformers, and the magnetic properties of grain-oriented electrical steel plates have a great influence on the performance of transformers. Therefore, various research and development efforts have been made to improve the magnetic properties. I came. As a means for reducing the iron loss of grain-oriented electrical steel sheets, for example, in Patent Document 1 below, by applying and baking a solution containing colloidal silica and phosphate as main components on the steel sheet surface after finish annealing. Techniques have been disclosed for reducing the iron loss by forming a tensioning coating. Furthermore, the following Patent Document 2 discloses a technique for reducing the iron loss by subdividing the magnetic domain by irradiating the surface of the material after finish annealing with a laser beam to impart local strain to the steel sheet. Yes. With these techniques as shown in the following Patent Document 1 and Patent Document 2, the iron loss has become extremely good.

ところで、近年では、トランスの小型化や高性能化の要求が高まっており、トランスの小型化のためには、磁束密度の高い場合にも鉄損が良好である、高磁場鉄損に優れることが、方向性電磁鋼板に求められている。この高磁場鉄損を改善する手段として、通常の方向性電磁鋼板に存在する無機質系被膜を無くし、更に張力を付与することが研究されている。後に張力付与コーティングが形成されることから、無機質系被膜を1次被膜と称し、張力付与コーティングを2次被膜と称することもある。   By the way, in recent years, there is an increasing demand for transformer miniaturization and high performance. For transformer miniaturization, iron loss is good even when the magnetic flux density is high. However, there is a demand for grain-oriented electrical steel sheets. As a means for improving this high magnetic field iron loss, it has been studied to eliminate the inorganic coating film present in the normal grain-oriented electrical steel sheet and to impart tension. Since the tension imparting coating is formed later, the inorganic coating may be referred to as a primary coating and the tension imparting coating may be referred to as a secondary coating.

方向性電磁鋼板の表面には、脱炭焼鈍工程で生じるシリカを主成分とする酸化層と、焼き付き防止のために表面に塗布された酸化マグネシウムと、が仕上げ焼鈍中に反応して、フォルステライトを主成分とする無機質系被膜を生成する。無機質系被膜には若干の張力効果があり、方向性電磁鋼板の鉄損を改善する効果がある。しかしながら、これまでの研究の結果、無機質系被膜は非磁性層であることにより、磁気特性、特に高磁場鉄損特性に悪影響を及ぼすことが明らかとなってきている。従って、無機質系被膜を研磨などの機械的あるいは酸洗などの化学的手段を用いて除去したり、あるいは、高温仕上げ焼鈍における無機質系被膜の生成を防止したりすることにより、無機質系被膜を有しない方向性電磁鋼板あるいは鋼板表面を鏡面状態とする技術が研究されている。   On the surface of grain-oriented electrical steel sheet, a forsterite reacts during finish annealing with an oxide layer mainly composed of silica generated in the decarburization annealing process and magnesium oxide applied to the surface to prevent seizure. An inorganic coating film mainly composed of is produced. The inorganic coating film has a slight tension effect, and has an effect of improving the iron loss of the grain-oriented electrical steel sheet. However, as a result of research so far, it has been clarified that the inorganic coating film is a nonmagnetic layer, and thus adversely affects the magnetic characteristics, particularly the high magnetic field iron loss characteristics. Therefore, it is possible to remove the inorganic coating by using mechanical means such as polishing or chemical means such as pickling, or by preventing the formation of the inorganic coating during high-temperature finish annealing. Research has been conducted on a technology for making the grain-oriented electrical steel sheet or the steel sheet surface into a mirror state.

このような無機質系被膜の生成防止あるいは鋼板表面の平滑化技術として、例えば下記の特許文献3には、通常の仕上げ焼鈍後に酸洗して表面形成物を除去した後、化学研磨あるいは電解研磨により鋼板表面を鏡面状態とする技術が開示されている。また、近年では、例えば下記の特許文献4に開示されているような、仕上げ焼鈍時に使用される焼鈍分離剤にビスマスあるいはビスマス化合物を添加することにより、無機質系被膜の生成を防止する技術などがある。   As a technique for preventing the formation of such an inorganic coating or smoothing the surface of a steel sheet, for example, in Patent Document 3 below, after normal finish annealing, pickling is performed to remove surface formations, and then chemical polishing or electrolytic polishing is performed. A technique for making a steel plate surface into a mirror state is disclosed. In recent years, for example, a technique for preventing the formation of an inorganic coating by adding bismuth or a bismuth compound to an annealing separator used during finish annealing, as disclosed in, for example, Patent Document 4 below. is there.

これら公知の方法により得られた、無機質系被膜を有しないあるいは磁気的平滑性に優れた方向性電磁鋼板の表面に対して、張力付与コーティングを施すことにより、更に優れた鉄損改善を効果が得られることが判明している。   By applying a tension-imparting coating to the surface of a grain-oriented electrical steel sheet that has no inorganic coating or is excellent in magnetic smoothness obtained by these known methods, it is possible to further improve iron loss. It has been found that it can be obtained.

ところが、かかる無機質系被膜には、絶縁性を発現する働きと共に、張力付与コーティングを塗布する際に密着性を確保する中間層としての効果があり、無機質系被膜を有しない方向性電磁鋼板に張力付与型の2次被膜を施す場合には、密着性を確保する中間層としての役割を代用する必要がある。   However, such an inorganic coating has an effect as an intermediate layer for ensuring adhesion when applying a tension-imparting coating, as well as a function of expressing insulation, and tension to a grain-oriented electrical steel sheet that does not have an inorganic coating. When an application-type secondary coating is applied, it is necessary to substitute for a role as an intermediate layer that ensures adhesion.

すなわち、方向性電磁鋼板を通常の製造工程で処理した場合、仕上げ焼鈍後の鋼板表面には無機系被膜が生成されると、この無機質層は、鋼板中に深く入り込んだ状態で形成されることから金属である鋼板との密着性に優れているため、コロイド状シリカやリン酸塩などを主成分とする張力付与型絶縁被膜を施すことが可能となる。ところが、一般に金属と酸化物との結合は困難であるため、無機質系被膜が無い場合には、張力付与型絶縁被膜と電磁鋼板表面との間では、十分な密着性の確保が困難であった。   That is, when a grain-oriented electrical steel sheet is processed in a normal manufacturing process, when an inorganic coating is formed on the steel sheet surface after finish annealing, this inorganic layer must be formed in a state of deeply penetrating into the steel sheet. Therefore, it is possible to apply a tension-imparting insulating coating mainly composed of colloidal silica or phosphate. However, since it is generally difficult to bond a metal and an oxide, it is difficult to ensure sufficient adhesion between the tension applying insulating coating and the surface of the electrical steel sheet when there is no inorganic coating. .

このような無機質系被膜を有しない鋼板と、張力付与型絶縁被膜との間の密着性を改善する方法として、例えば下記の特許文献5には、無機質系被膜を有しない方向性電磁鋼板を弱還元性雰囲気中で焼鈍し、ケイ素鋼板中に必然的に含有されているシリコンを選択的に熱酸化させることにより鋼板表面にSiO層を形成した後、張力付与型絶縁被膜を施す技術が開示されている。また、例えば下記の特許文献6には、無機質系被膜を有しない方向性電磁鋼板をケイ酸塩水溶液中で陽極電解処理することにより鋼板表面にSiO層を形成した後、張力付与型被膜を施す技術が開示されている。 As a method for improving the adhesion between a steel sheet not having such an inorganic coating and the tension-imparting insulating coating, for example, Patent Document 5 listed below describes a directional electrical steel sheet having no inorganic coating as a weakness. Disclosed is a technology for applying a tension-imparting insulating coating after forming a SiO 2 layer on the surface of a steel sheet by annealing in a reducing atmosphere and selectively thermally oxidizing silicon inevitably contained in the silicon steel sheet. Has been. Further, for example, in Patent Document 6 below, a directional electrical steel sheet not having an inorganic coating film is subjected to an anodic electrolysis treatment in a silicate aqueous solution to form a SiO 2 layer on the steel sheet surface, and then a tension imparting coating film is provided. Techniques to apply are disclosed.

しかしながら、これら特許文献5や特許文献6に開示されている技術では、弱還元性雰囲気中で焼鈍する場合には、雰囲気制御可能な焼鈍設備が新たに必要となり処理コストに問題があり、ケイ酸塩水溶液中で陽極電解処理する場合においても、鋼板表面に張力付与型被膜と十分な密着性を保持するSiO層を得るためには、新たな電解処理設備が必要となってコストが高い。 However, in the techniques disclosed in Patent Document 5 and Patent Document 6, when annealing is performed in a weakly reducing atmosphere, an annealing facility capable of controlling the atmosphere is newly required, and there is a problem in processing cost. Even in the case of anodic electrolysis in an aqueous salt solution, in order to obtain a SiO 2 layer that maintains sufficient adhesion to the tension-imparting film on the steel sheet surface, new electrolysis equipment is required and the cost is high.

更に、下記の特許文献7には、張力付与コーティングを形成する際に予め中間層となるコーティングを施すことにより、張力付与型絶縁被膜の密着性を確保する技術が開示されており、下記の特許文献8には、無機質系被膜の無い方向性電磁鋼板の表面に対して絶縁被膜を塗布形成する際に、接触角が特定範囲となっている塗布液を用いることにより、密着性の優れた絶縁被膜を形成する技術が開示されている。   Furthermore, the following Patent Document 7 discloses a technique for ensuring the adhesion of a tension-imparting insulating film by applying a coating as an intermediate layer in advance when forming a tension-imparting coating. In Document 8, when an insulating coating is applied to the surface of a grain-oriented electrical steel sheet without an inorganic coating, an insulating material having excellent adhesion can be obtained by using a coating solution having a contact angle in a specific range. A technique for forming a coating is disclosed.

また、下記の特許文献9には、鋼板の地鉄表面の平均粗さが0.4μm以下であり、線状又は点状の溝を圧延方向に対して45〜90°の方向に2〜15mm間隔に形成して耐SRA磁区制御をした一方向性電磁鋼板に対し、750℃超〜950℃の温度範囲で張力付与コーティングを形成する超低鉄損一方向性電磁鋼板の製造において、コーティング処理前に、硫酸濃度として2〜30%の硫酸あるいは硫酸塩を有する水溶液で鋼板を浸漬洗浄することを特徴とする技術が開示されている。   Further, in Patent Document 9 below, the average roughness of the steel sheet surface is 0.4 μm or less, and a linear or dotted groove is 2 to 15 mm in the direction of 45 to 90 ° with respect to the rolling direction. In the production of ultra-low iron loss unidirectional electrical steel sheet that forms a tension-imparting coating in the temperature range of 750 ° C. to 950 ° C. with respect to the unidirectional electrical steel plate formed at intervals and subjected to SRA magnetic domain control. Previously, a technique characterized by dipping and washing a steel sheet with an aqueous solution containing 2 to 30% sulfuric acid or sulfate as the sulfuric acid concentration has been disclosed.

特開昭48‐39338号公報JP 48-39338 A 特開昭58−26405号公報JP 58-26405 A 特開昭49−96920号公報JP-A 49-96920 特開平7−54155号公報JP-A-7-54155 特開平6−184762号公報JP-A-6-184762 特開平11−209891号公報JP 11-209891 A 特開平5−279747号公報Japanese Patent Laid-Open No. 5-279747 特開2003−34880号公報Japanese Patent Laid-Open No. 2003-34880 特許2671076号Japanese Patent No. 2671076

しかしながら、上記特許文献7や特許文献8に開示された技術では、大きな張力を有する張力付与型絶縁被膜を密着性良く保持するには、不十分であり、上記特許文献9に開示された技術では、張力付与型絶縁被膜と鋼板との密着性が安定して得られず、バラツキが多いという問題があった。   However, the techniques disclosed in Patent Document 7 and Patent Document 8 are insufficient to hold a tension-imparting insulating film having a large tension with good adhesion, and the technique disclosed in Patent Document 9 described above is insufficient. In addition, there is a problem in that the adhesion between the tension-imparting insulating coating and the steel sheet cannot be stably obtained and there are many variations.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、無機質系被膜を有しない方向性電磁鋼板と張力付与型絶縁被膜との間の密着性に優れ、より優れた高磁場鉄損を工業的に十分安価に実現することが可能な、方向性電磁鋼板及び方向性電磁鋼板の張力付与型絶縁被膜形成方法を提供することにある。   Accordingly, the present invention has been made in view of the above problems, and the object of the present invention is to provide excellent adhesion between a grain-oriented electrical steel sheet having no inorganic coating and a tension-imparting insulating coating. An object of the present invention is to provide a grain-oriented electrical steel sheet and a method for forming a tension-imparting insulating coating for the grain-oriented electrical steel sheet, which can realize a superior high magnetic field iron loss industrially sufficiently inexpensively.

本発明の要旨は、以下のとおりである。
(1)方向性電磁鋼板の表面に設けられた張力付与型絶縁被膜を備え、前記方向性電磁鋼板の表面の一部又は全部は、無機質系被膜を有しておらず、前記張力付与型絶縁被膜が設けられた側の前記方向性電磁鋼板の表面は、矩形状の微細構造を有しており、前記方向性電磁鋼板の表面における前記微細構造の占める面積の割合である面積率が、50%以上であり、圧延方向の表面粗さが、算術平均粗さRaで0.10〜0.35μmであり、圧延方向に対して直交する方向である直角方向の表面粗さが、算術平均粗さRaで0.15〜0.45μmである、方向性電磁鋼板。
(2)前記張力付与型絶縁被膜は、リン酸塩又はコロイダルシリカの少なくとも一方を主成分とする被膜である、(1)に記載の方向性電磁鋼板。
(3)前記方向性電磁鋼板は、質量%で2〜7%のSiを少なくとも含有する方向性電磁鋼板である、(1)又は(2)に記載の方向性電磁鋼板。
(4)表面の一部又は全部に無機質系被膜を有しない方向性電磁鋼板に対し、酸化性酸を含有する溶液として、10%以上の硫酸、硝酸、塩素酸、酸化クロム水溶液、クロム硫酸、過マンガン酸、ペルオキソ硫酸、ペルオキソリン酸の1種を含有する溶液或いは2種以上を含有する混合溶液を作用させた後、pH3以下の酸性溶液を接触させる、方向性電磁鋼板の張力付与型絶縁被膜形成方法。
(5)前記酸化性酸を含有する溶液を、70℃以上の液温に加熱し、30秒以下の処理時間にて用いる、(4)に記載の方向性電磁鋼板の張力付与型絶縁被膜形成方法。
(6)前記酸化性酸を含有する溶液として、20%以上の硫酸、酸化クロム水溶液、クロム硫酸、過マンガン酸、ペルオキソ硫酸、ペルオキソリン酸の1種を含有する溶液或いは2種以上を含有する混合溶液を用いる、(4)又は(5)に記載の方向性電磁鋼板の張力付与型絶縁被膜形成方法。
(7)前記pH3以下の酸性溶液として、リン酸塩、ホウ酸塩、有機酸、有機酸塩の1種又は2種以上を含有する溶液を用いる、(4)〜(6)の何れか1つに記載の方向性電磁鋼板の張力付与型絶縁被膜形成方法。
(8)前記酸化性酸を含有する溶液を作用させるに先立ち、前記無機質系被膜を有しない方向性電磁鋼板に対して、フッ酸、又は、塩酸の少なくとも何れかを主成分とする混合溶液を用いて、1〜60秒間酸洗処理を行う、(4)〜(7)の何れか1つに記載の方向性電磁鋼板の張力付与型絶縁被膜形成方法。
(9)前記酸化性酸を含有する溶液は、更に、リン酸、又は、過酸化水素水の少なくとも何れかを含有する、(4)〜(7)の何れか1項に記載の方向性電磁鋼板の張力付与型絶縁被膜形成方法。
(10)前記無機質系被膜を有しない方向性電磁鋼板として、質量%で2〜7%のSiを少なくとも含有するケイ素鋼スラブを熱延し、必要に応じて焼鈍を施し、1回の冷延又は中間焼鈍を挟む2回以上の冷延を行い、脱炭焼鈍後、焼鈍分離剤としてAlを主成分としたものを塗布・乾燥し、仕上げ焼鈍を行い鏡面化した方向性電磁鋼板を用いる、(4)〜(9)の何れか1つに記載の方向性電磁鋼板の張力付与型絶縁被膜形成方法。
(11)前記無機質系被膜を有しない方向性電磁鋼板として、質量%で2〜7%のSiを少なくとも含有するケイ素鋼スラブを熱延し、必要に応じて焼鈍を施し、1回の冷延又は中間焼鈍を挟む2回以上の冷延を行い、脱炭焼鈍後、焼鈍分離剤として、MgOとAlの混合物に対してビスマス塩化物を添加したもの、又は、MgOとAlの混合物に対してビスマス化合物及び金属の塩素化合物を添加したものを塗布・乾燥し、仕上げ焼鈍を行い鏡面化した方向性電磁鋼板を用いる、(4)〜(9)の何れか1つに記載の方向性電磁鋼板の張力付与型絶縁被膜形成方法。
The gist of the present invention is as follows.
(1) A tension-imparting insulating coating provided on the surface of the grain-oriented electrical steel sheet, wherein a part or all of the surface of the grain-oriented electrical steel sheet does not have an inorganic coating, and the tension-imparting insulation The surface of the grain-oriented electrical steel sheet on the side provided with the coating has a rectangular microstructure, and the area ratio, which is the ratio of the area occupied by the microstructure on the surface of the grain-oriented electrical steel sheet, is 50. The surface roughness in the rolling direction is 0.10 to 0.35 μm in terms of arithmetic average roughness Ra, and the surface roughness in the direction perpendicular to the rolling direction is arithmetic average roughness. A grain-oriented electrical steel sheet having a thickness Ra of 0.15 to 0.45 μm.
(2) The grain-oriented electrical steel sheet according to (1), wherein the tension-imparting insulating coating is a coating mainly composed of at least one of phosphate and colloidal silica.
(3) The grain-oriented electrical steel sheet according to (1) or (2), wherein the grain-oriented electrical steel sheet is a grain-oriented electrical steel sheet containing at least 2 to 7% Si by mass%.
(4) 10% or more sulfuric acid, nitric acid, chloric acid, chromium oxide aqueous solution, chromium sulfuric acid, as a solution containing an oxidizing acid with respect to a grain-oriented electrical steel sheet having no inorganic coating on part or all of the surface, Tension-providing insulation for grain-oriented electrical steel sheets, in which a solution containing one kind of permanganic acid, peroxosulfuric acid, peroxophosphoric acid or a mixed solution containing two or more kinds is allowed to contact an acidic solution having a pH of 3 or less Film formation method.
(5) Forming the tension-imparting insulating coating of the grain-oriented electrical steel sheet according to (4), wherein the solution containing the oxidizing acid is heated to a liquid temperature of 70 ° C. or higher and used for a treatment time of 30 seconds or shorter. Method.
(6) The solution containing the oxidizing acid contains 20% or more of sulfuric acid, chromium oxide aqueous solution, chromium sulfuric acid, permanganic acid, peroxosulfuric acid, peroxophosphoric acid containing one kind or two or more kinds. The tension imparting type insulating film forming method for grain-oriented electrical steel sheets according to (4) or (5), wherein a mixed solution is used.
(7) Any one of (4) to (6), wherein a solution containing one or more of phosphate, borate, organic acid, and organic acid salt is used as the acidic solution having a pH of 3 or lower. A method for forming a tension-imparting insulating coating on a grain-oriented electrical steel sheet according to claim 1.
(8) Prior to allowing the solution containing the oxidizing acid to act, a mixed solution mainly containing at least one of hydrofluoric acid and hydrochloric acid is applied to the grain-oriented electrical steel sheet not having the inorganic coating. The tension imparting type insulating film forming method for a grain-oriented electrical steel sheet according to any one of (4) to (7), wherein the pickling treatment is performed for 1 to 60 seconds.
(9) The directional electromagnetic wave according to any one of (4) to (7), wherein the solution containing the oxidizing acid further contains at least one of phosphoric acid and hydrogen peroxide water. A method for forming a tension-applying insulating coating on a steel sheet.
(10) As a grain-oriented electrical steel sheet having no inorganic coating, a silicon steel slab containing at least 2 to 7% Si by mass is hot-rolled, annealed as necessary, and cold-rolled once. Or, a cold-rolled grain-oriented electrical steel sheet that has been subjected to cold rolling at least twice with intermediate annealing, coated and dried with a main component of Al 2 O 3 as an annealing separator, and mirror-finished by finishing annealing. The method for forming a tension-imparting type insulating coating for a grain-oriented electrical steel sheet according to any one of (4) to (9).
(11) As a grain-oriented electrical steel sheet having no inorganic coating, a silicon steel slab containing at least 2 to 7% Si by mass is hot-rolled, annealed as necessary, and cold-rolled once. Alternatively, cold rolling is performed twice or more with intermediate annealing, and after decarburization annealing, bismuth chloride is added to a mixture of MgO and Al 2 O 3 as an annealing separator, or MgO and Al 2 O In any one of (4) to (9), using a grain-oriented electrical steel sheet coated and dried with a bismuth compound and a metal chlorine compound added to the mixture of 3 , and subjected to finish annealing to make a mirror surface A method for forming a tension-imparting insulating coating on the grain-oriented electrical steel sheet.

以上説明したように本発明によれば、無機質系被膜を有しない方向性電磁鋼板と張力付与型絶縁被膜との間の密着性に優れ、より優れた高磁場鉄損を工業的に十分安価に実現することが可能となる。   As described above, according to the present invention, the adhesion between the grain-oriented electrical steel sheet having no inorganic coating film and the tension-imparting insulating coating film is excellent, and more excellent high magnetic field iron loss is industrially sufficiently inexpensive. It can be realized.

本発明の実施形態に係る方向性電磁鋼板の張力絶縁被膜形成方法に則って製造した方向性電磁鋼板の表面の走査型電子顕微鏡による観察結果を示した図である。It is the figure which showed the observation result by the scanning electron microscope of the surface of the grain-oriented electrical steel sheet manufactured according to the tension insulation film formation method of the grain-oriented electrical steel sheet which concerns on embodiment of this invention. 本発明の実施形態に係る方向性電磁鋼板の張力絶縁被膜形成方法に則らずに製造した方向性電磁鋼板の表面の走査型電子顕微鏡による観察結果を示した図である。It is the figure which showed the observation result by the scanning electron microscope of the surface of the grain-oriented electrical steel sheet manufactured not in accordance with the tension insulation film formation method of the grain-oriented electrical steel sheet concerning the embodiment of the present invention.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

(方向性電磁鋼板について)
一般に、方向性電磁鋼板には、鋼成分としてシリコン(ケイ素)が含有されるが、鋼成分であるシリコン元素は極めて酸化され易いため、製造工程で実施される脱炭焼鈍の後の鋼板表面には、シリコン元素を含有する酸化被膜が形成される。一般的な方向性電磁鋼板の製造工程では、脱炭焼鈍後、鋼板表面に対して焼鈍分離剤を塗布した後でコイル状に巻き取り、仕上げ焼鈍を行うが、MgOを主成分とする焼鈍分離剤を用いた場合には、仕上げ焼鈍中にMgOと鋼板表面の酸化被膜とが反応して、フォルステライトを主成分とする無機質系被膜が形成される。
(About grain-oriented electrical steel sheets)
Generally, grain-oriented electrical steel sheets contain silicon (silicon) as a steel component. However, since silicon element, which is a steel component, is very easily oxidized, the steel sheet surface after decarburization annealing performed in the manufacturing process is used. An oxide film containing silicon element is formed. In a general grain-oriented electrical steel sheet manufacturing process, after decarburization annealing, an annealing separator is applied to the surface of the steel sheet, and then wound into a coil shape and subjected to finish annealing. When the agent is used, MgO reacts with the oxide film on the surface of the steel plate during finish annealing to form an inorganic film mainly composed of forsterite.

本発明者らは、(1)より優れた高磁場鉄損を実現するためには、方向性電磁鋼板の表面状態を磁気的平滑面に保持するよりも、フォルステライトなどの無機質系被膜を方向性電磁鋼板の表面に存在しないようにした場合の方が、鉄損低減効果が大きいこと、(2)1.0kg/mm以上の高張力を発現する張力付与型絶縁被膜(以下、単に「張力付与被膜」ともいう。)を、無機質系被膜を有しない方向性電磁鋼板の表面に密着性良く形成するためには、方向性電磁鋼板の表面に矩形状の微細構造を形成することが重要であり、特定範囲の粗さを有する矩形状の微細構造を形成することにより、高磁場鉄損が良好となること、をそれぞれ見出し、本発明を完成させた。 In order to achieve a higher magnetic field iron loss than (1), the inventors have directed an inorganic coating such as forsterite to a direction rather than maintaining the surface state of a grain-oriented electrical steel sheet on a magnetically smooth surface. The effect of reducing iron loss is greater when it is made not to exist on the surface of the heat-resistant electrical steel sheet, and (2) a tension-imparting insulating coating that expresses a high tension of 1.0 kg / mm 2 or more (hereinafter simply referred to as “ It is important to form a rectangular microstructure on the surface of the grain-oriented electrical steel sheet in order to form a good tension on the surface of the grain-oriented electrical steel sheet that does not have an inorganic coating. Thus, the present inventors have found that high magnetic field iron loss is improved by forming a rectangular fine structure having a specific range of roughness, thereby completing the present invention.

上記のような知見に基づき完成された、本発明の実施形態に係る方向性電磁鋼板は、方向性電磁鋼板の表面に設けられた張力付与型絶縁被膜を備え、かかる方向性電磁鋼板の表面の一部又は全部は、無機質系被膜を有していない。また、張力付与型絶縁被膜が設けられた側の方向性電磁鋼板の表面は、矩形状の微細構造を有しており、方向性電磁鋼板の表面における微細構造の占める面積の割合である面積率が、50%以上である。更に、本発明の実施形態に係る方向性電磁鋼板は、圧延方向の表面粗度が、算術平均粗さRaで0.10〜0.35μmであり、圧延方向に対して直交する方向である直角方向の表面粗度が、算術平均粗さRaで0.15〜0.45μmである。   The grain-oriented electrical steel sheet according to the embodiment of the present invention, which has been completed based on the knowledge as described above, includes a tension-imparting type insulating coating provided on the surface of the grain-oriented electrical steel sheet, and the surface of the grain-oriented electrical steel sheet. Part or all of them do not have an inorganic coating. Further, the surface of the grain-oriented electrical steel sheet on the side provided with the tension-imparting insulating coating has a rectangular microstructure, and the area ratio that is the ratio of the area occupied by the microstructure on the surface of the grain-oriented electrical steel sheet However, it is 50% or more. Furthermore, in the grain-oriented electrical steel sheet according to the embodiment of the present invention, the surface roughness in the rolling direction is 0.10 to 0.35 μm in arithmetic average roughness Ra, and is a right angle that is perpendicular to the rolling direction. The surface roughness in the direction is 0.15 to 0.45 μm in terms of arithmetic average roughness Ra.

<母材鋼板とする方向性電磁鋼板について>
本実施形態に係る方向性電磁鋼板において、張力付与型絶縁被膜の母材鋼板として用いられる方向性電磁鋼板は、特に限定されるものではなく、公知の鋼成分からなる方向性電磁鋼板を利用することが可能である。このような方向性電磁鋼板として、例えば、質量%で2〜7%のSiを少なくとも含有する方向性電磁鋼板を挙げることができる。鋼成分中のSi濃度を2%以上とすることで、所望の磁気特性を実現することが可能となる。一方、鋼成分中のSi濃度が7%超となる場合には、鋼板の脆性が低く、製造が困難となるため、鋼成分中のSi濃度は7%以下であることが好ましい。
<Regarding grain-oriented electrical steel sheets used as base steel sheets>
In the grain-oriented electrical steel sheet according to the present embodiment, the grain-oriented electrical steel sheet used as a base steel sheet for the tension-imparting insulating coating is not particularly limited, and a grain-oriented electrical steel sheet made of a known steel component is used. It is possible. As such a grain-oriented electrical steel sheet, for example, a grain-oriented electrical steel sheet containing at least 2 to 7% Si by mass% can be cited. By setting the Si concentration in the steel component to 2% or more, it is possible to realize desired magnetic characteristics. On the other hand, when the Si concentration in the steel component exceeds 7%, the steel plate is less brittle and difficult to manufacture. Therefore, the Si concentration in the steel component is preferably 7% or less.

ここで、母材鋼板として用いられる方向性電磁鋼板は、その表面の一部又は全部に上記のようなフォルステライトを主成分とする無機質系被膜を有しないものとする。ここで、母材鋼板である方向性電磁鋼板の表面が無機質系被膜を有しないとは、母材鋼板である方向性電磁鋼板の表面の全面に無機質系被膜を有しないことを基本とするが、一部分に無機質系被膜を有する場合も含むものとする。   Here, the grain-oriented electrical steel sheet used as the base steel sheet does not have an inorganic coating mainly composed of forsterite as described above on part or all of its surface. Here, the fact that the surface of the grain-oriented electrical steel sheet that is the base steel sheet does not have an inorganic coating is based on the fact that the entire surface of the grain-oriented electrical steel sheet that is the base steel sheet does not have an inorganic coating. In addition, a case where an inorganic coating film is partially included is included.

<母材鋼板とする方向性電磁鋼板の表面構造について>
母材鋼板である方向性電磁鋼板の表面(張力付与被膜側の表面)には、矩形状の微細構造が形成されている。この微細構造は、無機質系被膜を有しない母材鋼板に対して、以下で詳述する所定の処理を施すことで、形成される。ここで、矩形状の微細構造は、方向性電磁鋼板の結晶構造である(110)面が腐食することで形成されたエッチピットで構成される矩形状組織を有しており、方向性電磁鋼板の表面を所定倍率の走査型電子顕微鏡(Scanning Electron Microscope:SEM)で観察した場合に、鋼板表面が微小な矩形で被覆されたように見える構造となっている。1つの矩形状組織(エッチピット)の大きさ(平均の大きさ)は、母材鋼板である方向性電磁鋼板の圧延方向については、0.01〜0.1μm程度であり、圧延方向に対して直交する方向である直角方向については、0.005〜0.05μm程度である。
<Surface structure of grain-oriented electrical steel sheet as base steel sheet>
A rectangular microstructure is formed on the surface of the grain-oriented electrical steel sheet, which is the base steel sheet (the surface on the tension-imparting film side). This fine structure is formed by subjecting a base steel sheet having no inorganic coating to a predetermined treatment described in detail below. Here, the rectangular microstructure has a rectangular structure composed of etch pits formed by corrosion of the (110) plane which is the crystal structure of the grain-oriented electrical steel sheet, and the grain-oriented electrical steel sheet When the surface of the steel sheet is observed with a scanning electron microscope (SEM) at a predetermined magnification, the steel sheet surface appears to be covered with a minute rectangle. The size (average size) of one rectangular structure (etch pit) is about 0.01 to 0.1 μm with respect to the rolling direction of the grain-oriented electrical steel sheet, which is a base steel sheet, The perpendicular direction, which is a direction perpendicular to each other, is about 0.005 to 0.05 μm.

また、母材鋼板である方向性電磁鋼板の表面において、上記のような矩形状の微細構造の占める面積の割合である面積率は、母材鋼板である方向性電磁鋼板の張力付与被膜側の表面積に対して、50%以上となっている。上記のような微細構造が、面積率90%以上で形成されることで、母材鋼板である方向性電磁鋼板と、張力付与被膜と、の間の密着性が、より向上する。かかる面積率の上限値は、特に規定するものではなく、面積率の値は、大きければ大きいほど好ましい。かかる面積率の下限値は、より好ましくは、70%であり、更に好ましくは、90%である。   In addition, on the surface of the grain-oriented electrical steel sheet, which is the base steel sheet, the area ratio, which is the ratio of the area occupied by the rectangular fine structure as described above, is on the tension applying film side of the grain-oriented electrical steel sheet, which is the base steel sheet. It is 50% or more with respect to the surface area. By forming such a fine structure with an area ratio of 90% or more, the adhesion between the grain-oriented electrical steel sheet, which is the base steel sheet, and the tension-imparting coating is further improved. The upper limit value of the area ratio is not particularly specified, and the area ratio value is preferably as large as possible. The lower limit of the area ratio is more preferably 70%, and still more preferably 90%.

また、本実施形態に係る方向性電磁鋼板は、圧延方向の表面粗さが、JIS B0601で規定される算術平均粗さRaで0.10〜0.35μmの範囲にあり、直角方向の表面粗さが、算術平均粗さRaで0.15〜0.45μmの範囲にある。圧延方向の表面粗さを、算術平均粗さRaで0.1μm未満にするためには、工業的にコストがかかり過ぎるため、好ましくない。また、圧延方向の表面粗さが、算術平均粗さRaで0.35μm超となる場合には、高磁場鉄損改善効果が小さくなるため、好ましくない。同様に、直角方向の表面粗さを、算術平均粗さRaで0.15μm未満とするためには、工業的にコストがかかり過ぎるため、好ましくない。また、直角方向の表面粗さが、0.45μm超となる場合には、高磁場鉄損改善効果が小さくなるため、好ましくない。   Further, the grain-oriented electrical steel sheet according to the present embodiment has a surface roughness in the rolling direction in the range of 0.10 to 0.35 μm in arithmetic average roughness Ra defined by JIS B0601, and the surface roughness in the perpendicular direction. However, the arithmetic average roughness Ra is in the range of 0.15 to 0.45 μm. In order to reduce the surface roughness in the rolling direction to an arithmetic average roughness Ra of less than 0.1 μm, it is not preferable because it is industrially expensive. In addition, when the surface roughness in the rolling direction exceeds 0.35 μm in terms of arithmetic average roughness Ra, the effect of improving the high magnetic field iron loss is reduced, which is not preferable. Similarly, it is not preferable that the surface roughness in the perpendicular direction is less than 0.15 μm in arithmetic mean roughness Ra because it is industrially expensive. Moreover, when the surface roughness in the perpendicular direction exceeds 0.45 μm, the effect of improving the high magnetic field iron loss is reduced, which is not preferable.

上記のような圧延方向の表面粗さは、より好ましくは、算術平均粗さRaで0.10μm〜0.30μmであり、直角方向の表面粗さは、より好ましくは、算術平均粗さRaで0.15μm〜0.40μmである。   The surface roughness in the rolling direction as described above is more preferably 0.10 μm to 0.30 μm in arithmetic average roughness Ra, and the surface roughness in the perpendicular direction is more preferably in arithmetic average roughness Ra. It is 0.15 μm to 0.40 μm.

ここで、上記のような1つの矩形状組織の大きさや微細構造の面積率は、上記のような微細構造が形成され、かつ、張力付与被膜が形成される前の方向性電磁鋼板の表面を、走査型電子顕微鏡(SEM)で観察することにより測定することができる。すなわち、かかる方向性電磁鋼板の任意の表面を、3000倍程度の所定の倍率で観察し、例えば10視野程度の複数の視野での平均を算出することで、矩形状組織の大きさを特定することができる。また、微細構造の面積率についても、上記と同様にして、複数の視野それぞれについて、面分法又はポイントカウンティング法等の公知の方法により微細構造の面積率を特定し、得られた結果の平均を、本実施形態に係る方向性電磁鋼板での微細構造の面積率とすればよい。   Here, the size of one rectangular structure as described above and the area ratio of the microstructure are the surface of the grain-oriented electrical steel sheet before the tension application film is formed and the microstructure as described above is formed. It can be measured by observing with a scanning electron microscope (SEM). That is, an arbitrary surface of the grain-oriented electrical steel sheet is observed at a predetermined magnification of about 3000 times, and the size of a rectangular structure is specified by calculating an average of a plurality of fields of view, for example, about 10 fields of view. be able to. As for the area ratio of the fine structure, the area ratio of the fine structure is specified for each of a plurality of visual fields by a known method such as a surface segmentation method or a point counting method in the same manner as described above, and the average of the obtained results Is the area ratio of the fine structure in the grain-oriented electrical steel sheet according to the present embodiment.

また、圧延方向及び直角方向に沿った表面粗さ(算術平均粗さRa)についても、JIS B0601に則して、公知の方法により測定することが可能である。この場合においても、方向性電磁鋼板の表面の複数の位置で算術平均粗さRaの測定を実施し、得られた複数の測定値の平均値を、着目している方向性電磁鋼板の表面粗さRaとすることが好ましい。   Further, the surface roughness (arithmetic average roughness Ra) along the rolling direction and the perpendicular direction can also be measured by a known method in accordance with JIS B0601. Also in this case, the arithmetic average roughness Ra is measured at a plurality of positions on the surface of the grain-oriented electrical steel sheet, and the average value of the obtained plurality of measured values is determined as the surface roughness of the grain-oriented electrical steel sheet of interest. Ra is preferable.

なお、既に張力付与被膜が形成されている方向性電磁鋼板について、1つの矩形状組織の大きさや微細構造の面積率を測定する場合には、既に形成されている張力付与被膜を公知の方法を利用して剥離し、剥離後の方向性電磁鋼板の表面について、上記と同様にして観察すればよい。   In the case of measuring the size of one rectangular structure and the area ratio of a fine structure for a grain-oriented electrical steel sheet on which a tension-imparting film has already been formed, a known method is used for the tension-imparting film that has already been formed. What is necessary is just to observe similarly to the above about the surface of the grain-oriented electrical steel sheet after peeling using.

<張力付与型絶縁被膜について>
以上のような微細構造を有する方向性電磁鋼板上には、張力付与被膜が形成される。かかる張力付与被膜は、特に限定されるものではなく、従来方向性電磁鋼板の張力付与被膜として用いられてきたものを適用することが可能である。このような張力付与被膜として、例えば、リン酸塩又はコロイダルシリカの少なくとも一方を主成分とする被膜等を挙げることができる。
<About tension-imparting insulation coating>
A tension-imparting coating is formed on the grain-oriented electrical steel sheet having the fine structure as described above. Such a tension imparting coating is not particularly limited, and those conventionally used as a tension imparting coating for a grain-oriented electrical steel sheet can be applied. Examples of such a tension-imparting coating include a coating composed mainly of at least one of phosphate and colloidal silica.

かかる張力付与被膜の付着量については、特に限定されるものではないが、1.0kg/mm以上の高張力を実現可能な付着量とすることが好ましい。本実施形態に係る張力付与被膜の付着量は、例えば、2.0g/m〜7.0g/m程度である。 The adhesion amount of the tension-imparting coating is not particularly limited, but is preferably an adhesion amount capable of realizing a high tension of 1.0 kg / mm 2 or more. Adhesion amount of tensioning the film according to the present embodiment, for example, a 2.0g / m 2 ~7.0g / m 2 approximately.

以上説明したような本実施形態に係る方向性電磁鋼板は、上記のような特定の微細構造を有することで、より優れた密着性を実現しつつ張力付与型絶縁被膜を保持することが可能となり、また、1.7T〜1.9Tといった、高磁場鉄損の極めて低い方向性電磁鋼板を実現することが可能となる。   The grain-oriented electrical steel sheet according to the present embodiment as described above has the specific fine structure as described above, so that it is possible to hold the tension-imparting insulating coating while realizing better adhesion. In addition, it is possible to realize a grain-oriented electrical steel sheet having an extremely low high magnetic field iron loss, such as 1.7T to 1.9T.

(方向性電磁鋼板の張力付与型絶縁被膜形成方法について)
続いて、本実施形態に係る方向性電磁鋼板の張力付与型絶縁被膜形成方法について、詳細に説明する。
(Regarding the method of forming a tension-imparting insulating coating on a grain-oriented electrical steel sheet)
Then, the tension | pulling provision type insulation film forming method of the grain-oriented electrical steel sheet which concerns on this embodiment is demonstrated in detail.

本発明の実施形態では、無機質系被膜を有しない方向性電磁鋼板の表面に対して、張力付与型絶縁被膜を形成する。従って、母材鋼板として用いられる方向性電磁鋼板を製造する際に、仕上げ焼鈍において無機質系被膜が形成される場合には、公知の方法で無機質系被膜を除去した方向性電磁鋼板が用いられる。無機質系被膜を除去する方法としては、機械研磨、電解研磨、化学研磨など、公知の方法を用いて行うのが良い。   In the embodiment of the present invention, a tension-imparting insulating coating is formed on the surface of a grain-oriented electrical steel sheet that does not have an inorganic coating. Therefore, when producing a grain-oriented electrical steel sheet used as a base steel sheet, when the inorganic coating film is formed by finish annealing, the grain-oriented electrical steel sheet from which the inorganic coating film has been removed by a known method is used. As a method for removing the inorganic coating film, a known method such as mechanical polishing, electrolytic polishing, or chemical polishing may be used.

また、本発明の実施形態では、無機質系被膜が形成されないような方法で製造された方向性電磁鋼板を用いても良い。無機質系被膜が形成されない方法としては、仕上げ焼鈍の際の焼鈍分離剤としてアルミナを用いる方法を挙げることができる。また、同様に、仕上げ焼鈍の際に、ビスマス塩化物、又は、ビスマス化合物及び金属塩化物を焼鈍分離剤(より詳細には、MgO及びアルミナの混合物を含む焼鈍分離剤)中に存在させたものを用いる方法を利用しても良い。   In the embodiment of the present invention, a grain-oriented electrical steel sheet manufactured by a method in which an inorganic coating film is not formed may be used. Examples of the method in which the inorganic coating film is not formed include a method using alumina as an annealing separator in the finish annealing. Similarly, bismuth chloride, or a bismuth compound and a metal chloride are present in an annealing separator (more specifically, an annealing separator containing a mixture of MgO and alumina) during finish annealing. You may utilize the method of using.

ここで、焼鈍分離剤中に存在させるビスマス塩化物としては、例えば、BiOCl(オキシ塩化ビスマス)やBiCl(三塩化ビスマス)等を挙げることができる。また、ビスマス化合物及び金属塩化物の両方を焼鈍分離剤中に含有させた場合には、仕上げ焼鈍に際しての昇温中にBiOClが生成されることが判明しているため、ビスマス塩化物と同様に取り扱うことが可能である。 Here, examples of the bismuth chloride present in the annealing separator include BiOCl (bismuth oxychloride) and BiCl 3 (bismuth trichloride). In addition, when both the bismuth compound and the metal chloride are contained in the annealing separator, it has been found that BiOCl is generated during the temperature rise during the finish annealing, and thus, similarly to the bismuth chloride. It is possible to handle.

本発明の実施形態では、無機質系被膜を有しない方向性電磁鋼板を用いるためにどのような方法を採用しても良いが、仕上げ焼鈍時の焼鈍分離剤としてアルミナを用いる方法や、ビスマス塩化物等を仕上げ焼鈍時に用いる焼鈍分離剤中に添加する方法が、無機質系被膜の除去が容易で鋼板表面状態が良好であるため好適である。   In the embodiment of the present invention, any method may be adopted to use the grain-oriented electrical steel sheet having no inorganic coating, but a method using alumina as an annealing separator during finish annealing, or bismuth chloride Is preferably added to the annealing separator used during finish annealing because the inorganic coating can be easily removed and the surface state of the steel sheet is good.

通常、方向性電磁鋼板を製造する場合には、仕上げ焼鈍の次工程において、余分に付着した焼鈍分離剤を洗浄した後、平坦化焼鈍を施す。本発明の特徴は、余剰の焼鈍分離剤を除去した後、酸化性酸を用いて表面処理を行い、更にその後に、所定範囲のpHを持つ処理液を作用させることにより、先だって説明したような矩形状の微細構造を有する鋼板表面状態を発現させて、張力付与被膜を密着性よく形成したところにある。本発明者らは、先だって説明したような矩形状組織を含む表面状態を形成するためには、酸化性酸による腐食処理だけでは形成できず、腐食処理の後に特定の処理液を作用させることによって初めて形成可能であることを見出し、本発明の実施形態に係る方向性電磁鋼板の張力付与型絶縁被膜形成方法を完成した。   Usually, when manufacturing a grain-oriented electrical steel sheet, in the next process of finish annealing, after the excess adhering annealing separator is washed, planarization annealing is performed. The feature of the present invention is that after the excess annealing separator is removed, surface treatment is performed using an oxidizing acid, and then a treatment liquid having a predetermined range of pH is applied to act as described above. A steel sheet surface state having a rectangular fine structure is developed to form a tension-imparting film with good adhesion. In order to form a surface state including a rectangular structure as described above, the present inventors cannot form only by a corrosion treatment with an oxidizing acid, but by applying a specific treatment liquid after the corrosion treatment. It was found that it can be formed for the first time, and a tension-providing insulating film forming method for a grain-oriented electrical steel sheet according to an embodiment of the present invention was completed.

かかる知見に基づき完成された張力付与型絶縁被膜形成方法では、表面の一部又は全部に無機質系被膜を有しない方向性電磁鋼板に対し、酸化性酸を含有する溶液として、10%以上の硫酸、硝酸、塩素酸、酸化クロム水溶液、クロム硫酸、過マンガン酸、ペルオキソ硫酸、ペルオキソリン酸の1種を含有する溶液或いは2種以上を含有する混合溶液を作用させた後、pH3以下の酸性溶液を接触させる。   In the tension-applying insulating film forming method completed based on such knowledge, 10% or more of sulfuric acid as a solution containing an oxidizing acid is applied to a grain-oriented electrical steel sheet having no inorganic coating on part or all of its surface. , Nitric acid, chloric acid, chromium oxide aqueous solution, chromium sulfuric acid, permanganic acid, peroxosulfuric acid, peroxophosphoric acid containing solution or a mixed solution containing two or more acidic solution with pH 3 or less Contact.

<酸化性酸を含有する溶液による処理>
本実施形態で使用する酸化性酸とは、酸としての働きと、酸化剤としての働きと、を兼ね備えた状態の酸であり、酸としてアルカリや金属を腐食するだけでなく、酸化剤としての酸素付与機能をも併せ持つものである。
<Treatment with a solution containing an oxidizing acid>
The oxidizing acid used in the present embodiment is an acid that has both the function as an acid and the function as an oxidant, and not only corrodes alkali or metal as an acid, but also as an oxidant. It also has an oxygen-providing function.

一般に、酸には、塩酸、酢酸などのように事実上酸化性及び還元性を持たないものや、硫酸や硝酸などのように酸化性を有するものや、亜硫酸、ホスホン酸などのように還元性を有するものが知られている。従来、鋼板の酸洗処理に用いられる酸は、希塩酸や希硫酸、リン酸等であるが、本発明で用いられる酸化性酸とは物性や働きが異なり、鉄や酸化鉄を溶解し除去する酸としての目的で使用されており、本発明で特徴的な酸化性を発現する状態で使用される例は無く、また、本発明で開示された技術を示唆するものでも無い。   In general, acids include acids that are virtually non-oxidative and reducible such as hydrochloric acid and acetic acid, those that are oxidizing such as sulfuric acid and nitric acid, and those that are reducible such as sulfurous acid and phosphonic acid. Are known. Conventionally, acids used for pickling treatment of steel sheets are dilute hydrochloric acid, dilute sulfuric acid, phosphoric acid, etc., but the properties and functions are different from the oxidizing acid used in the present invention, and iron and iron oxide are dissolved and removed. It is used for the purpose as an acid, and there is no example used in a state in which the characteristic oxidation property of the present invention is expressed, and it does not suggest the technique disclosed in the present invention.

本発明における酸化性とは、鉄に対する酸化力を有することを意味し、更に具体的には、少なくともSiを2〜7質量%程度含有する方向性電磁鋼板に対する酸化力を有することを意味する。従って、本発明においての鉄に対する酸化力とは、当然ながら、ステンレス鋼や高張力鋼に対する酸化力とは全く異なるものである。   The oxidizability in the present invention means having an oxidizing power for iron, and more specifically, having an oxidizing power for grain-oriented electrical steel sheets containing at least about 2 to 7% by mass of Si. Accordingly, the oxidizing power for iron in the present invention is of course completely different from the oxidizing power for stainless steel and high-tensile steel.

本実施形態に係る酸化性酸は、具体的には、硫酸、硝酸、塩素酸、過塩素酸、亜塩素酸、酸化クロム水溶液、クロム硫酸、過マンガン酸、ペルオキソ硫酸、ペルオキソリン酸などの酸素酸であって、酸化力を有するものであり、酸としての働きだけでなく、鉄を酸化して酸化鉄を形成する能力を持つものである。   Specifically, the oxidizing acid according to this embodiment is oxygen such as sulfuric acid, nitric acid, chloric acid, perchloric acid, chlorous acid, aqueous chromium oxide, chromium sulfuric acid, permanganic acid, peroxosulfuric acid, peroxophosphoric acid, and the like. It is an acid and has an oxidizing power and has not only a function as an acid but also an ability to oxidize iron to form iron oxide.

硫酸、ペルオキソ硫酸、ペルオキソリン酸などの場合には、状態により酸化力が異なるが、例えば硫酸の場合では、溶液における硫酸濃度を10%以上とし、50℃以上に加熱することで、鉄に対する酸化力を有するようになるが、本実施形態においては、70℃以上に加熱して用いる。   In the case of sulfuric acid, peroxosulfuric acid, peroxophosphoric acid, etc., the oxidizing power varies depending on the state. For example, in the case of sulfuric acid, the sulfuric acid concentration in the solution is set to 10% or higher and heated to 50 ° C. or higher to oxidize iron. In this embodiment, it is heated to 70 ° C. or higher.

また、他の酸化性酸についても、溶液における濃度を10%以上とし、70℃以上(好ましくは75℃以上)に加熱することで、本実施形態において用いることが可能となる。   Also, other oxidizing acids can be used in this embodiment by setting the concentration in the solution to 10% or higher and heating to 70 ° C. or higher (preferably 75 ° C. or higher).

酸化性酸を含有する溶液の液温を70℃以上とするのは、液温が70℃未満の低温である場合には液の酸化力が低く、十分な酸化力が得られないために密着性が低下する場合があり、高磁束密度改善効果が得られないからである。また、酸化性酸の濃度を10%以上とするのは、濃度が10%未満の希釈溶液では酸化反応が生じにくく、処理時間が長時間になり工業的に不利になるためである。酸化性酸を含有する溶液の液温は、好ましくは75℃以上であり、酸化性酸の濃度は、より好ましくは20%以上である。このような条件とすることで、工業的にもコストをより低く抑制することが可能となる。   The liquid temperature of the solution containing an oxidizing acid is set to 70 ° C. or higher because when the liquid temperature is a low temperature of less than 70 ° C., the liquid has low oxidizing power, and sufficient oxidizing power cannot be obtained. This is because the high magnetic flux density improvement effect cannot be obtained. The reason why the concentration of the oxidizing acid is 10% or more is that the dilute solution having a concentration of less than 10% is unlikely to cause an oxidation reaction, resulting in a long processing time and industrial disadvantage. The liquid temperature of the solution containing an oxidizing acid is preferably 75 ° C. or higher, and the concentration of the oxidizing acid is more preferably 20% or higher. By setting it as such conditions, it becomes possible to suppress cost lower industrially.

本実施形態では、上記のような酸化性酸を単独で使用してもよいし、2種以上を混合して使用してもよい。   In this embodiment, the oxidizing acids as described above may be used alone, or two or more kinds may be mixed and used.

ここで、上記のような酸化性酸を含有する溶液の処理時間は、30秒以下とすることが好ましい。処理時間が30秒超である場合には、工業的にコストが高くなり、好ましくない。なお、酸化性酸を含有する溶液の処理時間の下限値は、特に規定するものではないが、鋼板表面の均一性という観点から、10秒以上とすることが好ましい。酸化性酸を含有する溶液の処理時間は、より好ましくは、15秒〜30秒である。   Here, the treatment time of the solution containing the oxidizing acid as described above is preferably 30 seconds or less. When the treatment time is longer than 30 seconds, the cost increases industrially, which is not preferable. The lower limit value of the treatment time of the solution containing the oxidizing acid is not particularly specified, but is preferably 10 seconds or more from the viewpoint of the uniformity of the steel sheet surface. The treatment time of the solution containing the oxidizing acid is more preferably 15 seconds to 30 seconds.

また、本実施形態に係る酸化性酸を含有する溶液において、上記のような酸化性酸を、塩酸、過酸化水素水、フッ酸、リン酸等と併用することにより、更に、高磁場鉄損改善効果を得ることができる。塩酸又はフッ酸を併用する場合には、これらの酸には鋼板を活性表面にする働きがあることから、酸化性酸で処理する前に使用するのが好適であり、リン酸又は過酸化水素水を併用する場合には、酸化性酸と同時に用いるのが好適である。また、酸化性酸としてペルオキソ酸を用いる場合には、溶液の安定性向上のために、過酸化水素水を添加することが好ましい。   Further, in the solution containing the oxidizing acid according to the present embodiment, the oxidizing acid as described above is used in combination with hydrochloric acid, hydrogen peroxide solution, hydrofluoric acid, phosphoric acid, etc. An improvement effect can be obtained. When hydrochloric acid or hydrofluoric acid is used in combination, these acids have a function of making the steel sheet an active surface, so it is preferable to use it before treatment with an oxidizing acid. When water is used in combination, it is preferable to use it simultaneously with the oxidizing acid. Moreover, when using a peroxo acid as an oxidizing acid, it is preferable to add hydrogen peroxide water in order to improve the stability of the solution.

なお、塩酸又はフッ酸を酸化性酸と併用する場合には、処理時間は、1〜60秒間とすることが好ましい。処理時間が1秒未満である場合には、上記のような活性表面化の効果を得ることが困難となり、好ましくない。また、処理時間が60秒超である場合には、酸による鉄の溶解量が多くなるため、好ましくない。   When hydrochloric acid or hydrofluoric acid is used in combination with an oxidizing acid, the treatment time is preferably 1 to 60 seconds. If the treatment time is less than 1 second, it is difficult to obtain the effect of the active surface as described above, which is not preferable. Further, when the treatment time is longer than 60 seconds, the amount of iron dissolved by the acid increases, which is not preferable.

<pH3以下の酸性溶液による処理>
本実施形態に係る張力付与型絶縁被膜形成方法では、上記のような酸化性酸を含有する溶液による処理の後に、処理後の方向性電磁鋼板に対してpH3以下の酸性溶液を接触させる処理を実施する。
<Treatment with an acidic solution having a pH of 3 or less>
In the tension-imparting type insulating film forming method according to the present embodiment, after the treatment with the solution containing an oxidizing acid as described above, a treatment in which an acidic solution having a pH of 3 or less is brought into contact with the treated grain-oriented electrical steel sheet. carry out.

ここで、本実施形態で使用するpH3以下の酸性溶液は、各種の酸、塩類、有機酸類、有機酸塩を含有する強酸性の水溶液であり、pH3以下のものに限定される。pHが3超である場合には、上記のような矩形状組織を有する微細構造を形成することができず、好ましくない。一方、酸性溶液のpHの下限値は特に規定するものではないが、0.5以上であれば、取り扱いの観点から好ましい。なお、pH3以下の酸性溶液のpHは、より好ましくは2以下である。酸性溶液のpHを2以下とすることで、処理時間を短縮することが可能となり、コスト削減につながる。   Here, the acidic solution having a pH of 3 or less used in the present embodiment is a strongly acidic aqueous solution containing various acids, salts, organic acids, and organic acid salts, and is limited to those having a pH of 3 or less. When the pH is more than 3, it is not preferable because the fine structure having the rectangular structure as described above cannot be formed. On the other hand, the lower limit of the pH of the acidic solution is not particularly specified, but 0.5 or more is preferable from the viewpoint of handling. The pH of the acidic solution having a pH of 3 or less is more preferably 2 or less. By setting the pH of the acidic solution to 2 or less, the treatment time can be shortened, leading to cost reduction.

また、pH3以下の酸性溶液を用いた処理時間については、特に限定するものではないが、1秒〜30秒とすることが好ましい。処理時間が1秒未満である場合には、上記のような矩形状組織を有する微細構造を形成することができず、好ましくない。また、処理時間が30秒超である場合には、工業的にコストが高くなり、好ましくない。pH3以下の酸性溶液を用いた処理時間は、より好ましくは、3秒〜10秒である。   The treatment time using an acidic solution having a pH of 3 or lower is not particularly limited, but is preferably 1 to 30 seconds. When the treatment time is less than 1 second, the fine structure having the rectangular structure as described above cannot be formed, which is not preferable. Moreover, when processing time is more than 30 second, cost becomes industrially expensive and is unpreferable. The treatment time using an acidic solution having a pH of 3 or less is more preferably 3 seconds to 10 seconds.

本実施形態で使用するpH3以下の酸性溶液は、具体的には、硫酸、塩酸、リン酸、ホウ酸等の無機酸、硫酸塩、塩酸塩、リン酸塩、ホウ酸塩等の無機塩類、酢酸、カルボン酸含有物等の有機酸、酢酸塩、カルボン酸塩等の有機酸塩を含有する、pH3以下の溶液である。   Specifically, the acidic solution having a pH of 3 or less used in the present embodiment is inorganic acids such as sulfuric acid, hydrochloric acid, phosphoric acid and boric acid, inorganic salts such as sulfate, hydrochloride, phosphate and borate, It is a solution having a pH of 3 or less, containing an organic acid such as acetic acid or a carboxylic acid-containing substance, or an organic acid salt such as acetate or carboxylate.

また、上記のような酸性溶液に対して、コロイダルシリカ、炭酸カルシウム、酸化チタン、タルク等の無機塩類を更に添加しても良い。   In addition, inorganic salts such as colloidal silica, calcium carbonate, titanium oxide, and talc may be further added to the acidic solution as described above.

以上のような処理を実施することで、母材鋼板として用いた、無機質系被膜を有しない方向性電磁鋼板の表面に、先だって説明したような矩形状組織を有する微細構造が形成される。   By carrying out the treatment as described above, the microstructure having the rectangular structure as described above is formed on the surface of the grain-oriented electrical steel sheet used as the base steel sheet and having no inorganic coating.

図1に、上記のような一連の処理(30%硫酸、液温75℃処理後、pH1.6の処理液に浸漬)に従って製造した方向性電磁鋼板の表面のSEMによる観察結果を示し、図2に、上記のような条件を満足していない一連の処理(25%硫酸、液温70℃、pH3以下の酸性溶液による処理を実施せず。)に従って製造した方向性電磁鋼板の表面のSEMによる観察結果を示した。   In FIG. 1, the observation result by the SEM of the surface of the grain-oriented electrical steel sheet manufactured according to the above-mentioned series of treatments (30% sulfuric acid, treatment at a liquid temperature of 75 ° C., and immersed in a treatment solution at pH 1.6) is shown. 2 is a SEM of the surface of a grain-oriented electrical steel sheet manufactured according to a series of treatments not satisfying the above conditions (treatment with 25% sulfuric acid, liquid temperature 70 ° C., acidic solution having a pH of 3 or less). The observation result by was shown.

図1から明らかなように、上記のような一連の処理を実施することで、方向性電磁鋼板の表面には、先だって説明したような微細構造が形成されていることがわかる。一方で、pH3以下の酸性溶液による処理を実施しなかった場合には、図2から明らかなように、先だって説明したような微細構造が形成されておらず、図1と図2とは異なる表面構造となっていることがわかる。   As is clear from FIG. 1, it is understood that the fine structure as described above is formed on the surface of the grain-oriented electrical steel sheet by carrying out the series of processes as described above. On the other hand, when the treatment with an acidic solution having a pH of 3 or less was not performed, as is apparent from FIG. 2, the fine structure as described above was not formed, and the surfaces different from those in FIGS. It can be seen that it has a structure.

本発明の詳細メカニズムは、未だ不明であるが、本発明者は、以下のように推定している。すなわち、上記のような矩形状組織を有する微細構造を形成することで高磁場鉄損改善効果が発現するのは、従来の方式では鋼板表面全面に凹凸が形成されるのに対し、微小なレベルで表面の均一性が達成されているからであり、形成された張力付与型絶縁被膜から鋼板に与えられる応力についても、ミクロなレベルで均一に与えられるためであると推定している。   The detailed mechanism of the present invention is still unclear, but the present inventor presumes as follows. In other words, the effect of improving the high magnetic field iron loss by forming a fine structure having a rectangular structure as described above is expressed at a minute level, whereas the conventional method forms irregularities on the entire surface of the steel sheet. This is because the uniformity of the surface is achieved, and it is presumed that the stress applied to the steel sheet from the formed tension-imparting insulating coating is also applied uniformly at the micro level.

<張力付与型絶縁被膜の形成処理>
以上説明したようなpH3以下の酸性溶液による処理の後段に、張力付与型絶縁被膜の形成処理が実施される。かかる張力付与型絶縁被膜の形成処理は、リン酸塩又はコロイダルシリカの少なくとも一方を含有する塗料を、上記のような処理後の方向性電磁鋼板の表面に塗布した後、所定の温度で乾燥させる処理となる。
<Tensioning type insulating coating formation process>
After the treatment with the acidic solution having a pH of 3 or less as described above, the tension-imparting insulating coating is formed. Such a tension-imparting insulating coating is formed by applying a paint containing at least one of phosphate and colloidal silica to the surface of the grain-oriented electrical steel sheet after the above treatment and then drying at a predetermined temperature. It becomes processing.

張力付与型絶縁被膜の形成処理については、特に限定されるものではなく、公知の塗料を用いて公知の方法により、張力付与型絶縁被膜を形成すればよい。   The process for forming the tension applying insulating coating is not particularly limited, and the tension applying insulating coating may be formed by a known method using a known paint.

なお、先だって説明したように、pH3以下の酸性溶液は、リン酸塩を用いて構成することが可能であるし、pH3以下の酸性溶液に対して、コロイダルシリカ等を添加することも可能である。従って、pH3以下の酸性溶液の成分として、所望の張力付与型絶縁被膜を構成するための成分を含有させて、pH3以下の酸性溶液を用いた処理と、張力付与型絶縁被膜の形成処理と、を同時に実施することも可能である。この場合においても、酸性溶液の液性をpH3以下とすることが必要である。   As described above, the acidic solution having a pH of 3 or less can be constituted using a phosphate, and colloidal silica or the like can be added to the acidic solution having a pH of 3 or less. . Therefore, as a component of an acidic solution having a pH of 3 or less, a component for constituting a desired tension-imparting insulating film is contained, a treatment using an acidic solution having a pH of 3 or less, a formation treatment of a tension-imparting insulating coating, It is also possible to carry out simultaneously. Even in this case, it is necessary that the acidic solution has a pH of 3 or less.

続いて、実施例及び比較例を示しながら、本発明に係る方向性電磁鋼板及び方向性電磁鋼板の張力付与型絶縁被膜形成方法について、具体的に説明する。なお、以下に示す実施例は、本発明に係る方向性電磁鋼板及び方向性電磁鋼板の張力付与型絶縁被膜形成方法のあくまでも一例であって、本発明に係る方向性電磁鋼板及び方向性電磁鋼板の張力付与型絶縁被膜形成方法が下記の例に限定されるものではない。   Next, the directional magnetic steel sheet and the method for forming a tension-imparting insulating coating for the directional electromagnetic steel sheet according to the present invention will be specifically described with reference to Examples and Comparative Examples. In addition, the Example shown below is only an example of the tension imparting type insulation film forming method of the grain-oriented electrical steel sheet and the grain-oriented electrical steel sheet according to the present invention, and the grain-oriented electrical steel sheet and the grain-oriented electrical steel sheet according to the present invention. The method for forming a tension-providing insulating film is not limited to the following examples.

(試験例1)
質量%で、C:0.08%、Si:3.23%、Al:0.028%、N:0.008%を含み、残部がFe及び不純物であるケイ素鋼スラブを鋳造し、スラブ加熱後熱延して、2.2mmの熱延板とした。続いて、1100℃で焼鈍後、0.22mmまで冷延し、830℃で脱炭焼鈍を行った。そして、Alを主成分とする焼鈍分離剤を塗布乾燥し、1200℃で20時間の仕上げ焼鈍を行った。その後、水洗して余剰のAlを取り除いたところ、鋼板表面には、無機質系被膜は形成されていなかった。
(Test Example 1)
Cast a silicon steel slab containing, by mass%, C: 0.08%, Si: 3.23%, Al: 0.028%, N: 0.008%, the balance being Fe and impurities, and heating the slab After hot rolling, a 2.2 mm hot-rolled sheet was obtained. Subsequently, after annealing at 1100 ° C., it was cold-rolled to 0.22 mm and decarburized annealing was performed at 830 ° C. The coated and dried the annealing separator composed mainly of Al 2 O 3, was finished annealing for 20 hours at 1200 ° C.. Subsequently, when removed excess Al 2 O 3 and washed with water on the steel sheet surface, the inorganic-based coatings had not been formed.

得られた鋼板に対し、以下の表1に示す処理液(酸化性酸含有溶液及び酸性溶液の組み合わせ)を用いて浸漬処理を行い、No.2とNo.3の処理液については、浸漬後処理液が付着した状態でそのまま焼付処理を行うことで、鋼板表面に目付量4.5g/mの張力付与型絶縁被膜を形成した。また、その他の処理液については、浸漬後処理液が付着した状態でそのまま焼付処理を行い、更に続いて、リン酸アルミニウムとシリカとを主成分とする水溶液を塗布して850℃の炉中で1分間焼付けることで、鋼板表面に目付量4.5g/mの張力付与型絶縁被膜を形成した。 The obtained steel sheet was subjected to an immersion treatment using a treatment liquid (combination of an oxidizing acid-containing solution and an acidic solution) shown in Table 1 below. 2 and No. About the process liquid of 3, the tension | tensile_strength type | mold insulation coating of the amount per unit area of 4.5 g / m < 2 > was formed in the steel plate surface by performing a baking process as it is in the state which the process liquid after immersion adhered. For other treatment liquids, the baking treatment is performed as it is after the immersion, and then an aqueous solution containing aluminum phosphate and silica as the main components is applied and then heated in an oven at 850 ° C. By baking for 1 minute, a tension-imparting insulating coating with a basis weight of 4.5 g / m 2 was formed on the steel sheet surface.

このようにして製造された張力付与型絶縁被膜が施された方向性電磁鋼板について、絶縁被膜密着性と、レーザビームを照射し磁区細分化処理した後の高磁場鉄損(1.7Tと1.9Tにおける50Hzのもとでの鉄損)とを評価し、得られた結果を、以下の表2に示した。   With respect to the grain oriented electrical steel sheet coated with the tension-imparting type insulating film manufactured in this way, the insulating film adhesion and the high magnetic field iron loss (1.7T and 1) after the magnetic domain subdivision treatment by irradiating the laser beam. The iron loss under 50 Hz at 9T was evaluated, and the obtained results are shown in Table 2 below.

<微細構造の測定>
No.2とNo.3の例については、磁区細分化処理が施された後の方向性電磁鋼板の張力付与型絶縁被膜を剥離することで、母材となっている方向性電磁鋼板の表面を露出させ、上記の方法により微細構造の表面粗さについて、計測・評価を行った。また、その他の例については、浸漬後処理液の焼付処理が終了した後、張力付与型絶縁被膜を形成する前のタイミングで、上記の方法により微細構造の表面粗さについて、計測・評価を行った。また、かかる測定処理とあわせて、SEMによる微細構造の観察を実施して、上記の方法により矩形状組織の面積率を測定した。なお、SEMの倍率は、3000倍とし、10視野での測定値の平均値を、以下の表2に記載した。なお、以下の表2に示した表面粗さにおいて、「L方向」は、圧延方向に対応し、「C方向」は、直角方向に対応している。
<Measurement of microstructure>
No. 2 and No. For example 3, the surface of the grain-oriented electrical steel sheet that is the base material is exposed by peeling off the tension-imparting insulating coating of the grain-oriented electrical steel sheet that has been subjected to the magnetic domain subdivision treatment, The surface roughness of the microstructure was measured and evaluated by the method. For other examples, the surface roughness of the microstructure is measured and evaluated by the above-described method at the timing after the baking treatment of the post-dipping treatment solution is completed and before the tension-imparting type insulating coating is formed. It was. In addition to the measurement process, the microstructure was observed by SEM, and the area ratio of the rectangular structure was measured by the above method. In addition, the magnification of SEM was 3000 times and the average value of the measured value in 10 visual fields was described in Table 2 below. In the surface roughness shown in Table 2 below, “L direction” corresponds to the rolling direction, and “C direction” corresponds to the perpendicular direction.

<密着性の評価>
密着性は、幅30mm、長さ300mmのサンプルを800℃で2時間、窒素気流中で歪取り焼鈍後に、10mmφの円柱を用いた曲げ密着試験にて評価した。その評価基準は、以下の通りであり、評価○以上を合格とした。
◎:剥離無し
○:殆ど剥離していない
△:数mmの剥離が見られる
×:1/3〜1/2の剥離が見られる
××:全面剥離
<Evaluation of adhesion>
Adhesion was evaluated in a bending adhesion test using a 10 mmφ cylinder after strain relief annealing in a nitrogen stream for a sample having a width of 30 mm and a length of 300 mm at 800 ° C. for 2 hours. The evaluation criteria are as follows, and the evaluation ○ or higher was regarded as acceptable.
◎: No peeling ○: Almost no peeling △: Peeling of several mm is observed ×: Peeling of 1/3 to 1/2 is observed XX: Whole surface peeling

<高磁場鉄損の評価>
高磁場鉄損は、JIS C2556に規定されている単板磁気特性試験(SST試験)により測定した。
<Evaluation of high magnetic field iron loss>
The high magnetic field iron loss was measured by a single plate magnetic property test (SST test) defined in JIS C2556.

SEMによる観察の結果、本発明例に該当する方向性電磁鋼板では、図1に示したような矩形状組織を有する微細構造が、母材である方向性電磁鋼板の表面に形成されていることが確認された。また、以下に示す表2から明らかなように、本発明例に該当する方向性電磁鋼板は、密着性が極めて優れており、高磁場鉄損が改善されていることがわかる。   As a result of observation by SEM, in the grain-oriented electrical steel sheet corresponding to the example of the present invention, a microstructure having a rectangular structure as shown in FIG. 1 is formed on the surface of the grain-oriented electrical steel sheet as a base material. Was confirmed. In addition, as is apparent from Table 2 below, it can be seen that the grain-oriented electrical steel sheet corresponding to the example of the present invention has extremely excellent adhesion and improved high magnetic field iron loss.

(試験例2)
質量%で、C:0.08%、Si:3.30%、Al:0.025%、N:0.008%、Bi:0.01%、Mn:0.08%、Se:0.025%を含み、残部がFe及び不純物であるケイ素鋼スラブを鋳造し、スラブ加熱後、熱間圧延を行い、1100℃で5分間熱延板を焼鈍した後、冷間圧延により0.22mm厚にした。その後、脱炭焼鈍し、BiClを5%含有するMgOを主成分とする焼鈍分離剤を塗布乾燥し、1200℃で20時間の仕上げ焼鈍を行った。水洗して余剰のMgOを取り除いたところ、鋼板表面には無機質系被膜は形成されていなかった。
(Test Example 2)
In mass%, C: 0.08%, Si: 3.30%, Al: 0.025%, N: 0.008%, Bi: 0.01%, Mn: 0.08%, Se: 0.00. After casting a silicon steel slab containing 025% and the balance being Fe and impurities, heating the slab, hot rolling, annealing the hot-rolled sheet at 1100 ° C. for 5 minutes, and then cold rolling to a thickness of 0.22 mm I made it. Thereafter, decarburization annealing was performed, and an annealing separator mainly composed of MgO containing 5% BiCl 3 was applied and dried, and finish annealing was performed at 1200 ° C. for 20 hours. When the excess MgO was removed by washing with water, no inorganic coating was formed on the steel plate surface.

得られた鋼板に対し、上記表1に示す処理液を用いて浸漬処理を行い、No.2とNo.3の処理液については浸漬後処理液が付着した状態でそのまま焼付処理を行うことで、鋼板表面に目付量4.5g/mの張力付与型絶縁被膜を形成した。また、その他の処理液については、浸漬後処理液が付着した状態でそのまま焼付処理を行い、続いて、リン酸アルミニウムとシリカとを主成分とする水溶液を塗布し、850℃の炉中で1分間焼付けることで、鋼板表面に目付量4.5g/mの張力付与型絶縁被膜を形成した。 The obtained steel sheet was subjected to an immersion treatment using the treatment liquid shown in Table 1 above. 2 and No. About the processing liquid of 3, the baking process was performed in the state to which the post-immersion processing liquid adhered, and the tension | tensile_strength type | mold insulation coating film with a basis weight of 4.5 g / m < 2 > was formed on the steel plate surface. For other treatment liquids, the baking treatment is performed as it is with the post-dipping treatment liquid, followed by application of an aqueous solution mainly composed of aluminum phosphate and silica, and 1 in a furnace at 850 ° C. By baking for a minute, a tension-imparting insulating coating having a basis weight of 4.5 g / m 2 was formed on the steel sheet surface.

このようにして製造された張力付与型絶縁被膜が施された方向性電磁鋼板について、絶縁被膜密着性と、レーザビームを照射し磁区細分化処理した後の高磁場鉄損(1.7Tと1.9Tにおける50Hzのもとでの鉄損)とを評価し、得られた結果を、以下の表2に示した。   With respect to the grain oriented electrical steel sheet coated with the tension-imparting type insulating film manufactured in this way, the insulating film adhesion and the high magnetic field iron loss (1.7T and 1) after the magnetic domain subdivision treatment by irradiating the laser beam. The iron loss under 50 Hz at 9T was evaluated, and the obtained results are shown in Table 2 below.

なお、微細構造の表面粗さの測定方法、密着性の評価方法及び高磁場鉄損の測定方法は、上記試験例1と同様である。   The method for measuring the surface roughness of the fine structure, the method for evaluating the adhesion, and the method for measuring the high magnetic field iron loss are the same as in Test Example 1.

SEMによる観察の結果、本発明例に該当する方向性電磁鋼板では、図1に示したような矩形状組織を有する微細構造が、母材である方向性電磁鋼板の表面に形成されていることが確認された。また、以下に示す表2から明らかなように、本発明例に該当する方向性電磁鋼板は、密着性が極めて優れており、高磁場鉄損が改善されていることがわかる。   As a result of observation by SEM, in the grain-oriented electrical steel sheet corresponding to the example of the present invention, a microstructure having a rectangular structure as shown in FIG. 1 is formed on the surface of the grain-oriented electrical steel sheet as a base material. Was confirmed. In addition, as is apparent from Table 2 below, it can be seen that the grain-oriented electrical steel sheet corresponding to the example of the present invention has extremely excellent adhesion and improved high magnetic field iron loss.

(試験例3)
質量%で、C:0.08%、Si:3.21%、Al:0.027%、N:0.008%を含み、残部がFe及び不純物であるケイ素鋼スラブを鋳造し、スラブ加熱後、熱間圧延を行い、1100℃で5分間熱延板を焼鈍した後、冷間圧延により0.22mm厚にした。得られた鋼板を、加熱速度400℃/秒で850℃まで昇温した後、脱炭焼鈍し、TiOを5%含有するMgOを主成分とする焼鈍分離剤を塗布乾燥し、1200℃で20時間の仕上げ焼鈍を行った。その後水洗して余剰のMgOを取り除いたところ、鋼板表面にはフォルステライトを主体とする無機質系被膜が形成されていた。そこで、得られた鋼板に対して硫フッ酸処理を行い、完全に無機質系被膜を除去した後、表1に示す処理液を用いて浸漬処理を行った。
(Test Example 3)
Casting a silicon steel slab containing, by mass%, C: 0.08%, Si: 3.21%, Al: 0.027%, N: 0.008%, the balance being Fe and impurities, and heating the slab Thereafter, hot rolling was performed and the hot-rolled sheet was annealed at 1100 ° C. for 5 minutes, and then the thickness was 0.22 mm by cold rolling. The obtained steel sheet was heated up to 850 ° C. at a heating rate of 400 ° C./second, then decarburized and annealed, and coated with an annealing separator mainly composed of MgO containing 5% TiO 2 and dried at 1200 ° C. 20 hours of finish annealing was performed. Thereafter, when excess MgO was removed by washing with water, an inorganic coating mainly composed of forsterite was formed on the steel plate surface. Therefore, the obtained steel sheet was treated with hydrofluoric acid to completely remove the inorganic coating, and then immersed in the treatment liquid shown in Table 1.

No.2とNo.3の処理液については、浸漬後処理液が付着した状態でそのまま焼付処理を行うことで、鋼板表面に目付量4.5g/mの張力付与型絶縁被膜を形成した。また、その他の処理液については、浸漬後処理液が付着した状態でそのまま焼付処理を行い、続いて、リン酸アルミニウムとシリカとを主成分とする水溶液を塗布し、850℃の炉中で1分間焼付け、鋼板表面に目付量4.5g/mの張力付与型絶縁被膜を形成した。 No. 2 and No. About the process liquid of 3, the tension | tensile_strength type | mold insulation coating of the amount per unit area of 4.5 g / m < 2 > was formed in the steel plate surface by performing a baking process as it is in the state which the process liquid after immersion adhered. For other treatment liquids, the baking treatment is performed as it is with the post-dipping treatment liquid, followed by application of an aqueous solution mainly composed of aluminum phosphate and silica, and 1 in a furnace at 850 ° C. After baking for a minute, a tension-imparting insulating coating having a basis weight of 4.5 g / m 2 was formed on the steel sheet surface.

このようにして製造された張力付与型絶縁被膜が施された方向性電磁鋼板について、絶縁被膜密着性、レーザビームを照射し磁区細分化処理した後の高磁場鉄損(1.7Tと1.9Tにおける50Hzのもとでの鉄損)とを評価し、得られた結果を、以下の表2に示した。   With respect to the grain oriented electrical steel sheet coated with the tension-imparting type insulating coating produced in this manner, the high magnetic field iron loss (1.7 T and 1.T) after the insulating coating adhesion, magnetic domain fragmentation treatment by irradiation with a laser beam. The iron loss at 9T under 50 Hz was evaluated, and the obtained results are shown in Table 2 below.

なお、微細構造の表面粗さの測定方法、密着性の評価方法及び高磁場鉄損の測定方法は、上記試験例1と同様である。   The method for measuring the surface roughness of the fine structure, the method for evaluating the adhesion, and the method for measuring the high magnetic field iron loss are the same as in Test Example 1.

SEMによる観察の結果、本発明例に該当する方向性電磁鋼板では、図1に示したような矩形状組織を有する微細構造が、母材である方向性電磁鋼板の表面に形成されていることが確認された。また、以下に示す表2から明らかなように、本発明例に該当する方向性電磁鋼板は、密着性が極めて優れており、高磁場鉄損が改善されていることがわかる。   As a result of observation by SEM, in the grain-oriented electrical steel sheet corresponding to the example of the present invention, a microstructure having a rectangular structure as shown in FIG. 1 is formed on the surface of the grain-oriented electrical steel sheet as a base material. Was confirmed. In addition, as is apparent from Table 2 below, it can be seen that the grain-oriented electrical steel sheet corresponding to the example of the present invention has extremely excellent adhesion and improved high magnetic field iron loss.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。

The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

Claims (11)

方向性電磁鋼板の表面に設けられた張力付与型絶縁被膜を備え、
前記方向性電磁鋼板の表面の一部又は全部は、無機質系被膜を有しておらず、
前記張力付与型絶縁被膜が設けられた側の前記方向性電磁鋼板の表面は、矩形状の微細構造を有しており、前記方向性電磁鋼板の表面における前記微細構造の占める面積の割合である面積率が、50%以上であり、
圧延方向の表面粗さが、算術平均粗さRaで0.10〜0.35μmであり、圧延方向に対して直交する方向である直角方向の表面粗さが、算術平均粗さRaで0.15〜0.45μmである、方向性電磁鋼板。
With a tension-imparting insulating coating provided on the surface of a grain-oriented electrical steel sheet,
Part or all of the surface of the grain-oriented electrical steel sheet does not have an inorganic coating,
The surface of the grain-oriented electrical steel sheet on the side provided with the tension-imparting insulating coating has a rectangular microstructure, and is the ratio of the area occupied by the microstructure on the surface of the grain-oriented electrical steel sheet. The area ratio is 50% or more,
The surface roughness in the rolling direction is 0.10 to 0.35 μm in terms of arithmetic average roughness Ra, and the surface roughness in the direction perpendicular to the rolling direction is 0. 0 in terms of arithmetic average roughness Ra. A grain-oriented electrical steel sheet having a thickness of 15 to 0.45 μm.
前記張力付与型絶縁被膜は、リン酸塩又はコロイダルシリカの少なくとも一方を主成分とする被膜である、請求項1に記載の方向性電磁鋼板。   The grain-oriented electrical steel sheet according to claim 1, wherein the tension-imparting insulating coating is a coating mainly composed of at least one of phosphate and colloidal silica. 前記方向性電磁鋼板は、質量%で2〜7%のSiを少なくとも含有する方向性電磁鋼板である、請求項1又は2に記載の方向性電磁鋼板。   The grain-oriented electrical steel sheet according to claim 1 or 2, wherein the grain-oriented electrical steel sheet is a grain-oriented electrical steel sheet containing at least 2 to 7% Si by mass%. 表面の一部又は全部に無機質系被膜を有しない方向性電磁鋼板に対し、酸化性酸を含有する溶液として、10%以上の硫酸、硝酸、塩素酸、酸化クロム水溶液、クロム硫酸、過マンガン酸、ペルオキソ硫酸、ペルオキソリン酸の1種を含有する溶液或いは2種以上を含有する混合溶液を作用させた後、pH3以下の酸性溶液を接触させる、方向性電磁鋼板の張力付与型絶縁被膜形成方法。   10% or more sulfuric acid, nitric acid, chloric acid, chromium oxide aqueous solution, chromium sulfuric acid, permanganic acid as a solution containing an oxidizing acid for grain-oriented electrical steel sheet having no inorganic coating on part or all of the surface A method for forming a tension-imparting insulating coating for a grain-oriented electrical steel sheet, wherein a solution containing one kind of peroxosulfuric acid or peroxophosphoric acid or a mixed solution containing two or more kinds is allowed to act, and then an acidic solution having a pH of 3 or less is contacted . 前記酸化性酸を含有する溶液を、70℃以上の液温に加熱し、30秒以下の処理時間にて用いる、請求項4に記載の方向性電磁鋼板の張力付与型絶縁被膜形成方法。   The method for forming a tension-imparting insulating coating film for grain-oriented electrical steel sheet according to claim 4, wherein the solution containing the oxidizing acid is heated to a liquid temperature of 70 ° C or higher and used for a treatment time of 30 seconds or less. 前記酸化性酸を含有する溶液として、20%以上の硫酸、酸化クロム水溶液、クロム硫酸、過マンガン酸、ペルオキソ硫酸、ペルオキソリン酸の1種を含有する溶液或いは2種以上を含有する混合溶液を用いる、請求項4又は5に記載の方向性電磁鋼板の張力付与型絶縁被膜形成方法。   As the solution containing the oxidizing acid, a solution containing 20% or more of sulfuric acid, chromium oxide aqueous solution, chromium sulfuric acid, permanganic acid, peroxosulfuric acid, peroxophosphoric acid or a mixed solution containing two or more kinds The method for forming a tension-imparting type insulating coating for a grain-oriented electrical steel sheet according to claim 4 or 5 to be used. 前記pH3以下の酸性溶液として、リン酸塩、ホウ酸塩、有機酸、有機酸塩の1種又は2種以上を含有する溶液を用いる、請求項4〜6の何れか1項に記載の方向性電磁鋼板の張力付与型絶縁被膜形成方法。   The direction according to any one of claims 4 to 6, wherein a solution containing one or more of phosphate, borate, organic acid, and organic acid salt is used as the acidic solution having a pH of 3 or less. For forming a tension-imparting insulating coating on a heat-resistant electrical steel sheet. 前記酸化性酸を含有する溶液を作用させるに先立ち、前記無機質系被膜を有しない方向性電磁鋼板に対して、フッ酸、又は、塩酸の少なくとも何れかを主成分とする混合溶液を用いて、1〜60秒間酸洗処理を行う、請求項4〜7の何れか1項に記載の方向性電磁鋼板の張力付与型絶縁被膜形成方法。   Prior to the action of the solution containing the oxidizing acid, for the grain-oriented electrical steel sheet not having the inorganic coating film, using a mixed solution mainly containing at least one of hydrofluoric acid or hydrochloric acid, The tension imparting type insulating film forming method for grain-oriented electrical steel sheets according to any one of claims 4 to 7, wherein the pickling treatment is performed for 1 to 60 seconds. 前記酸化性酸を含有する溶液は、更に、リン酸、又は、過酸化水素水の少なくとも何れかを含有する、請求項4〜7の何れか1項に記載の方向性電磁鋼板の張力付与型絶縁被膜形成方法。   The tension imparting type of grain-oriented electrical steel sheet according to any one of claims 4 to 7, wherein the solution containing the oxidizing acid further contains at least one of phosphoric acid and hydrogen peroxide water. Insulating film forming method. 前記無機質系被膜を有しない方向性電磁鋼板として、
質量%で2〜7%のSiを少なくとも含有するケイ素鋼スラブを熱延し、必要に応じて焼鈍を施し、1回の冷延又は中間焼鈍を挟む2回以上の冷延を行い、脱炭焼鈍後、焼鈍分離剤としてAlを主成分としたものを塗布・乾燥し、仕上げ焼鈍を行い鏡面化した方向性電磁鋼板を用いる、請求項4〜9の何れか1項に記載の方向性電磁鋼板の張力付与型絶縁被膜形成方法。
As a grain-oriented electrical steel sheet not having the inorganic coating,
Hot-roll a silicon steel slab containing at least 2 to 7% Si by mass, anneal as necessary, and perform cold rolling at least twice with one cold rolling or intermediate annealing, and decarburization after annealing, a material obtained by mainly composed of Al 2 O 3 as the annealing separator coating and drying, using a mirror-and grain-oriented electrical steel sheet subjected to finish annealing, according to any one of claims 4-9 A method for forming a tension-imparting insulating coating on a grain-oriented electrical steel sheet.
前記無機質系被膜を有しない方向性電磁鋼板として、
質量%で2〜7%のSiを少なくとも含有するケイ素鋼スラブを熱延し、必要に応じて焼鈍を施し、1回の冷延又は中間焼鈍を挟む2回以上の冷延を行い、脱炭焼鈍後、焼鈍分離剤として、MgOとAlの混合物に対してビスマス塩化物を添加したもの、又は、MgOとAlの混合物に対してビスマス化合物及び金属の塩素化合物を添加したものを塗布・乾燥し、仕上げ焼鈍を行い鏡面化した方向性電磁鋼板を用いる、請求項4〜9の何れか1項に記載の方向性電磁鋼板の張力付与型絶縁被膜形成方法。
As a grain-oriented electrical steel sheet not having the inorganic coating,
Hot-roll a silicon steel slab containing at least 2 to 7% Si by mass, anneal as necessary, and perform cold rolling at least twice with one cold rolling or intermediate annealing, and decarburization after annealing, the annealing separator, a material obtained by adding bismuth chloride relative to the mixture of MgO and Al 2 O 3, or by the addition of bismuth compounds and metal chlorides on the mixture of MgO and Al 2 O 3 The method for forming a tension-imparting insulating coating for a grain-oriented electrical steel sheet according to any one of claims 4 to 9, wherein a grain-oriented electrical steel sheet is applied, dried, finish-annealed and mirror-finished.
JP2016200819A 2016-10-12 2016-10-12 Method of forming a tension insulating film for grain-oriented electrical steel sheets and grain-oriented electrical steel sheets Active JP7040888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016200819A JP7040888B2 (en) 2016-10-12 2016-10-12 Method of forming a tension insulating film for grain-oriented electrical steel sheets and grain-oriented electrical steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016200819A JP7040888B2 (en) 2016-10-12 2016-10-12 Method of forming a tension insulating film for grain-oriented electrical steel sheets and grain-oriented electrical steel sheets

Publications (2)

Publication Number Publication Date
JP2018062682A true JP2018062682A (en) 2018-04-19
JP7040888B2 JP7040888B2 (en) 2022-03-23

Family

ID=61966514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016200819A Active JP7040888B2 (en) 2016-10-12 2016-10-12 Method of forming a tension insulating film for grain-oriented electrical steel sheets and grain-oriented electrical steel sheets

Country Status (1)

Country Link
JP (1) JP7040888B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109777160A (en) * 2019-01-08 2019-05-21 南京宝淳新材料科技有限公司 A kind of grain-oriented magnetic steel sheet coating and preparation method thereof
WO2020149340A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
WO2020149329A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
WO2020149324A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet, and steel sheet which can be used as raw material sheet for grain-oriented electromagnetic steel
WO2020149345A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
JP2020111814A (en) * 2019-01-16 2020-07-27 日本製鉄株式会社 Grain oriented electromagnetic steel sheet and method for manufacturing the same
WO2020162608A1 (en) * 2019-02-08 2020-08-13 日本製鉄株式会社 Grain-oriented electrical steel sheet, method for forming insulative coating film for grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet
CN113302324A (en) * 2019-01-16 2021-08-24 日本制铁株式会社 Unidirectional electromagnetic steel sheet and method for producing same
RU2776246C1 (en) * 2019-01-16 2022-07-15 Ниппон Стил Корпорейшн Anisotropic electrical steel sheet and its production method
EP3913087A4 (en) * 2019-01-16 2022-10-12 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet
WO2022215710A1 (en) 2021-04-06 2022-10-13 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for forming insulating film
WO2023188594A1 (en) * 2022-03-30 2023-10-05 Jfeスチール株式会社 Pre-treatment liquid and method for manufacturing electromagnetic steel sheet provided with insulating film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249880A (en) * 2001-02-22 2002-09-06 Nippon Steel Corp Method for forming insulating coating film of grain oriented electrical steel sheet
JP2010013692A (en) * 2008-07-03 2010-01-21 Nippon Steel Corp Insulating film treatment agent, grain-oriented electrical steel sheet coated with the film treatment agent and insulating film treatment method therefor
JP2011515573A (en) * 2008-02-12 2011-05-19 ティッセンクルップ エレクトリカル スティール ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing directional magnetic strip

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249880A (en) * 2001-02-22 2002-09-06 Nippon Steel Corp Method for forming insulating coating film of grain oriented electrical steel sheet
JP2011515573A (en) * 2008-02-12 2011-05-19 ティッセンクルップ エレクトリカル スティール ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing directional magnetic strip
JP2010013692A (en) * 2008-07-03 2010-01-21 Nippon Steel Corp Insulating film treatment agent, grain-oriented electrical steel sheet coated with the film treatment agent and insulating film treatment method therefor

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109777160A (en) * 2019-01-08 2019-05-21 南京宝淳新材料科技有限公司 A kind of grain-oriented magnetic steel sheet coating and preparation method thereof
CN109777160B (en) * 2019-01-08 2020-02-14 南京宝淳新材料科技有限公司 Coating for oriented electromagnetic steel plate and preparation method thereof
JPWO2020149329A1 (en) * 2019-01-16 2021-12-09 日本製鉄株式会社 Directional electrical steel sheet and its manufacturing method
KR102613708B1 (en) 2019-01-16 2023-12-20 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
WO2020149324A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet, and steel sheet which can be used as raw material sheet for grain-oriented electromagnetic steel
RU2776385C1 (en) * 2019-01-16 2022-07-19 Ниппон Стил Корпорейшн Anisotropic electrical steel sheet and its production method
JP2020111814A (en) * 2019-01-16 2020-07-27 日本製鉄株式会社 Grain oriented electromagnetic steel sheet and method for manufacturing the same
KR102557225B1 (en) * 2019-01-16 2023-07-19 닛폰세이테츠 가부시키가이샤 Unidirectional electrical steel sheet and manufacturing method thereof
CN113302324A (en) * 2019-01-16 2021-08-24 日本制铁株式会社 Unidirectional electromagnetic steel sheet and method for producing same
CN113302337A (en) * 2019-01-16 2021-08-24 日本制铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
CN113302335A (en) * 2019-01-16 2021-08-24 日本制铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
KR20210110682A (en) * 2019-01-16 2021-09-08 닛폰세이테츠 가부시키가이샤 A unidirectional electrical steel sheet and its manufacturing method
KR20210110864A (en) 2019-01-16 2021-09-09 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
KR20210111286A (en) 2019-01-16 2021-09-10 닛폰세이테츠 가부시키가이샤 A grain-oriented electrical steel sheet, and a steel sheet serving as the original plate of the grain-oriented electrical steel sheet
KR20210111820A (en) * 2019-01-16 2021-09-13 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
CN113302335B (en) * 2019-01-16 2023-06-20 日本制铁株式会社 Grain-oriented electrical steel sheet and method for producing same
JPWO2020149345A1 (en) * 2019-01-16 2021-11-25 日本製鉄株式会社 Directional electrical steel sheet and its manufacturing method
JPWO2020149324A1 (en) * 2019-01-16 2021-12-02 日本製鉄株式会社 Grain-oriented electrical steel sheet and steel sheet that is the original plate of grain-oriented electrical steel sheet
WO2020149340A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
RU2776246C1 (en) * 2019-01-16 2022-07-15 Ниппон Стил Корпорейшн Anisotropic electrical steel sheet and its production method
WO2020149345A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
WO2020149329A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
EP3913087A4 (en) * 2019-01-16 2022-10-12 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet
EP3913098A4 (en) * 2019-01-16 2022-09-28 Nippon Steel Corporation Grain-oriented electrical steel plate and method for producing same
CN113302337B (en) * 2019-01-16 2023-06-16 日本制铁株式会社 Grain-oriented electrical steel sheet and method for producing same
EP3913107A4 (en) * 2019-01-16 2022-10-19 Nippon Steel Corporation Grain-oriented electromagnetic steel sheet and method for manufacturing same
EP3913109A4 (en) * 2019-01-16 2022-10-19 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same
EP3913092A4 (en) * 2019-01-16 2022-12-14 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same
US11557413B2 (en) 2019-01-16 2023-01-17 Nippon Steel Corporation Grain-oriented electrical steel sheet and method of producing the same
CN113302324B (en) * 2019-01-16 2023-06-02 日本制铁株式会社 Unidirectional electromagnetic steel sheet and method for producing same
JP7265122B2 (en) 2019-01-16 2023-04-26 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP7256406B2 (en) 2019-02-08 2023-04-12 日本製鉄株式会社 Grain-oriented electrical steel sheet, method for forming insulating coating on grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet
JPWO2020162608A1 (en) * 2019-02-08 2021-11-25 日本製鉄株式会社 A method for forming an insulating film of a grain-oriented electrical steel sheet, a method for forming an insulating film of a grain-oriented electrical steel sheet, and a method for manufacturing a grain-oriented electrical steel sheet.
WO2020162608A1 (en) * 2019-02-08 2020-08-13 日本製鉄株式会社 Grain-oriented electrical steel sheet, method for forming insulative coating film for grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet
RU2778536C1 (en) * 2019-02-08 2022-08-22 Ниппон Стил Корпорейшн Anisotropic electrical steel sheet, method of forming insulation coating of anisotropic electric steel sheet and method for producing anisotropic electric steel sheet
US11866812B2 (en) 2019-02-08 2024-01-09 Nippon Steel Corporation Grain oriented electrical steel sheet, forming method for insulation coating of grain oriented electrical steel sheet, and producing method for grain oriented electrical steel sheet
WO2022215710A1 (en) 2021-04-06 2022-10-13 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for forming insulating film
KR20230151012A (en) 2021-04-06 2023-10-31 닛폰세이테츠 가부시키가이샤 Method of forming grain-oriented electrical steel sheet and insulating film
WO2023188594A1 (en) * 2022-03-30 2023-10-05 Jfeスチール株式会社 Pre-treatment liquid and method for manufacturing electromagnetic steel sheet provided with insulating film

Also Published As

Publication number Publication date
JP7040888B2 (en) 2022-03-23

Similar Documents

Publication Publication Date Title
JP2018062682A (en) Grain oriented silicon steel sheet and method for forming tension insulating coating thereof
JP7265122B2 (en) Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP7196939B2 (en) Grain-oriented electrical steel sheet, method for forming insulating coating on grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet
KR102579758B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2671076B2 (en) Manufacturing method of ultra-low iron loss unidirectional electrical steel sheet
WO2011162086A1 (en) Method for producing unidirectional electromagnetic steel sheet
JP4018878B2 (en) Method for forming insulating coating on grain-oriented electrical steel sheet
KR102577485B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2020111815A (en) Grain oriented electromagnetic steel sheet and method for manufacturing the same
JP2001303215A (en) Low core loss grain oriented silicon steel sheet and its producing method
JP7315857B2 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2020149326A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP2592740B2 (en) Ultra-low iron loss unidirectional electrical steel sheet and method of manufacturing the same
JP2017133072A (en) Grain-oriented electromagnetic steel sheet excellent in coating adhesion and rust resistance, original sheet for grain-oriented electromagnetic steel sheet and method for manufacturing them
JP2005139481A (en) Method for manufacturing grain-oriented silicon steel sheet having excellent adhesiveness of tension impartable insulation film
KR102582914B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7256406B2 (en) Grain-oriented electrical steel sheet, method for forming insulating coating on grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet
JP7311075B1 (en) Method for manufacturing electrical steel sheet with pretreatment liquid and insulation coating
JP7230929B2 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2020149336A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP7230930B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2752682B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
JPH02267276A (en) Treatment of insulating film of grain oriented electrical steel sheet having excellent magnetic characteristic and film characteristic
JPH01259199A (en) Manufacture of grain-oriented silicon steel sheet with low iron loss
JPH0387314A (en) Production of grain-oriented silicon steel sheet reduced in iron loss

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201023

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201023

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201104

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201110

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201204

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201208

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210615

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220208

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220308

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220310

R150 Certificate of patent or registration of utility model

Ref document number: 7040888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150