JP2001303215A - Low core loss grain oriented silicon steel sheet and its producing method - Google Patents

Low core loss grain oriented silicon steel sheet and its producing method

Info

Publication number
JP2001303215A
JP2001303215A JP2000123754A JP2000123754A JP2001303215A JP 2001303215 A JP2001303215 A JP 2001303215A JP 2000123754 A JP2000123754 A JP 2000123754A JP 2000123754 A JP2000123754 A JP 2000123754A JP 2001303215 A JP2001303215 A JP 2001303215A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
electrical steel
oriented electrical
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000123754A
Other languages
Japanese (ja)
Inventor
Seiji Okabe
誠司 岡部
Hiroshi Yamaguchi
山口  広
Mineo Muraki
峰男 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000123754A priority Critical patent/JP2001303215A/en
Publication of JP2001303215A publication Critical patent/JP2001303215A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a grain oriented silicon steel sheet in which the surface of ferrite in a silicon steel sheet subjected to mirror finishing or not formed with a forsterite film can be formed with a film with tight adhesion and a grain oriented silicon steel sheet extremely low in core loss obtained by further forming a tension application type insulating film thereon and to provide a method for producing the same grain oriented silicon steel sheets extremely low in core loss. SOLUTION: In the grain oriented silicon steel sheet, the surface of ferrite is provided with fine, stripy grooves with a depth of 0.05 to 2 μm directly applied thereon at the intervals of 0.05 to 2 μm. The fine, stripy grooves suitably elongate to the direction orthogonal to the rolling direction or to the direction within ±45 deg. from the above orthogonal direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電磁鋼板およびその
製造方法に係り、特に鉄損が極めて低い方向性電磁鋼板
およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic steel sheet and a method of manufacturing the same, and more particularly to a grain-oriented magnetic steel sheet having extremely low iron loss and a method of manufacturing the same.

【0002】[0002]

【従来の技術】変圧器の鉄心等に用いられる方向性電磁
鋼板には鉄損の低いことが要求され、様々な鉄損低減技
術が利用されている。特に結晶粒の〈001〉軸の圧延方
向への高度な集積、低熱膨張性を利用した張力コーティ
ングの形成、板厚の低減、さらには熱歪みや表面溝の導
入による磁区細分化は最も典型的なものであって鉄損の
低減に大きな成果を挙げている。
2. Description of the Related Art Grain-oriented electrical steel sheets used for iron cores of transformers are required to have low iron loss, and various iron loss reduction techniques are used. In particular, the most typical is the high integration of crystal grains in the rolling direction of the <001> axis, the formation of a tension coating using low thermal expansion, the reduction of sheet thickness, and the refinement of magnetic domains by the introduction of thermal strain and surface grooves. It has achieved great results in reducing iron loss.

【0003】一方、電磁鋼板の地鉄表面を、例えば化学
研磨などによって鏡面仕上げすることにより磁化に伴う
磁壁の移動を妨げている地鉄表面の凹凸を低減させ、こ
れにより鉄損の構成要素のうちヒステリシス損を低減さ
せうることが知られており、その実用化への努力が重ね
られている。しかしながら、この手段は未だ工業的に完
成された段階には至っていない。
On the other hand, the surface of the base steel of the magnetic steel sheet is mirror-finished by, for example, chemical polishing or the like, so that the unevenness of the base steel surface which hinders the movement of the domain wall due to the magnetization is reduced, and thereby, the component of iron loss Of these, it is known that the hysteresis loss can be reduced, and efforts have been made to put it to practical use. However, this means has not yet reached an industrially completed stage.

【0004】その主たる理由は、上記の鏡面仕上げをす
る際には、方向性電磁鋼板の表面に絶縁被膜として形成
されているフォルステライト質被膜を取り去ってしま
い、そのため電磁鋼板上に張力付与型絶縁被膜を密着性
よく形成することができず、ヒステリシス損は低減され
ても渦電流損の増大や歪み感受性の劣化を伴ってしまう
ためである。すなわち、方向性電磁鋼板の表面直下に絶
縁被膜として形成されているフォルステライト質の被膜
は地鉄表面に複雑に食い込んだ形状をしており、その食
い込みによるアンカー効果によって張力付与被膜、たと
えば、特開昭52-25296号公報に示されているようなシリ
カ−リン酸塩系被膜、の剥離を防止する機能をもってい
るが、上記平滑化によってこのアンカー効果を有するフ
ォルステライト質被膜が取り去られるために電磁鋼板上
に張力付与型絶縁被膜を密着性よく形成することができ
なくなってしまうのである。
[0004] The main reason for this is that when the above-mentioned mirror finishing is performed, the forsterite coating formed as an insulating coating on the surface of the grain-oriented electrical steel sheet is removed. This is because the coating cannot be formed with good adhesion, and even if the hysteresis loss is reduced, eddy current loss increases and strain sensitivity deteriorates. In other words, the forsterite coating formed as an insulating coating just below the surface of the grain-oriented electrical steel sheet has a shape in which it bites into the ground iron surface in a complicated manner, and a tension-imparting coating, such as a special coating, is formed by the anchor effect due to the bite. Although it has a function of preventing peeling of a silica-phosphate type coating as shown in Japanese Patent Laid-Open No. 52-25296, the forsterite coating having the anchor effect is removed by the smoothing. This makes it impossible to form a tension imparting insulating film on the magnetic steel sheet with good adhesion.

【0005】この問題を解決するため、たとえば、特許
公報第2671076号には表面を平滑化した電磁鋼板を2〜30
%の硫酸溶液に浸漬して表面に微小でシャープなピット
を緻密に形成して張力付与型絶縁被膜の密着性を改善す
る方法が示されている。しかし、この方法で得られる製
品は張力付与型絶縁被膜の被成後の鋼板が平坦な状態で
はよい密着性を示すものの、鋼板を巻いてコイル状にし
たり、あるいは巻きトランスに加工すると張力付与被膜
が剥離しやすいという問題がある。浸漬する硫酸濃度を
高めたり、浸漬時間を長くすることによってピットの数
を増大させて密着性を改善することも考えられるが、こ
の場合は結局、地鉄表面の凹凸が大きくなってヒステリ
シス損が劣化するので採用できない。
[0005] In order to solve this problem, for example, Japanese Patent Publication No. 2671076 discloses an electromagnetic steel sheet having a smooth surface.
A method for improving the adhesion of a tension-imparting insulating film by forming fine and sharp pits on the surface densely by immersion in a sulfuric acid solution of 5% is disclosed. However, although the product obtained by this method shows good adhesion when the steel sheet after the application of the tension-imparting insulating coating is flat, it can be coiled by winding the steel or processed into a winding transformer to obtain the tension-enhancing coating. However, there is a problem that it is easy to peel off. It is conceivable to improve the adhesion by increasing the number of pits by increasing the concentration of sulfuric acid to be immersed or lengthening the immersion time.However, in this case, the unevenness of the surface of the base iron becomes large and the hysteresis loss is reduced. Can not be adopted because it deteriorates.

【0006】[0006]

【発明が解決しようとする課題】そのほかにも、鏡面仕
上げした、あるいはフォルステライト質被膜を形成しな
い電磁鋼板の地鉄表面に直接あるいは間接に張力付与被
膜を被成する方法が数多くなされている。しかしなが
ら、これまでのところ、これらの提案は未だ工業的に完
成されたものにはなっていない。
There have been many other methods of applying a tension-imparting coating directly or indirectly to the surface of a base steel of an electrical steel sheet which has been mirror-finished or does not form a forsterite coating. However, to date, these proposals have not yet been industrially completed.

【0007】本発明は、このような鏡面仕上げした、あ
るいはフォルステライト質被膜を形成しない電磁鋼板の
地鉄表面に密着性よく被膜を被成しうる方向性電磁鋼
板、さらにその上に張力付与被膜を被成してなる鉄損が
極めて低い方向性電磁鋼板を提案し、また、これら鉄損
が極めて低い方向性電磁鋼板の製造方法を提案すること
を目的とする。
The present invention is directed to a grain-oriented electrical steel sheet capable of forming a coating with good adhesion on the surface of a ground iron of such an electromagnetic steel sheet which is mirror-finished or does not form a forsterite coating, and a tension-imparting coating thereon. It is an object of the present invention to propose a grain-oriented electrical steel sheet having an extremely low iron loss and a method of manufacturing a grain-oriented electrical steel sheet having an extremely low iron loss.

【0008】[0008]

【課題解決のための手段】発明者らは電磁鋼板の地鉄表
面に微細な筋状溝を形成することが、被膜の密着性を確
保し、鉄損の低減を確実にするために極めて有利なこと
を見いだし、かかる微細筋状溝の有しなければならない
条件およびその形成方法について研究を重ねて本発明を
完成させた。
Means for Solving the Problems It is extremely advantageous to form fine streaks on the surface of the steel sheet of the magnetic steel sheet in order to secure the adhesion of the coating and to reduce the iron loss. The present inventor has completed the present invention by repeatedly studying the conditions that the fine streak-like grooves must have and the method of forming the same.

【0009】本発明の方向性電磁鋼板は、方向性電磁鋼
板の地鉄表面に直接施された深さ0.05μm以上2μm以
下の微細筋状溝を0.05μm以上2μm以下の間隔で有す
る。
The grain-oriented electrical steel sheet of the present invention has fine streak grooves having a depth of 0.05 μm or more and 2 μm or less directly provided on the surface of the ground iron of the grain-oriented electrical steel sheet at intervals of 0.05 μm or more and 2 μm or less.

【0010】これにより、方向性電磁鋼板の地鉄表面に
直接、絶縁被膜を密着性よく被成しうるが、本発明は、
さらに上記微細筋状溝は、鋼板の圧延方向に対して直交
する方向ないし該直交方向から±45°以内の方向に延び
るものであることとして、電磁鋼板にとって重要な特性
である高透磁率および低鉄損を確保するのがよい。
As a result, an insulating coating can be formed directly on the surface of the grain-oriented electrical steel sheet with good adhesion.
Further, the fine streak grooves extend in a direction perpendicular to the rolling direction of the steel sheet or in a direction within ± 45 ° from the orthogonal direction, so that high magnetic permeability and low permeability, which are important properties for an electromagnetic steel sheet, are obtained. It is good to secure iron loss.

【0011】また、本発明は、地鉄表面に被成される絶
縁被膜を張力付与被膜とするのがよく、これにより低鉄
損化を一層確実にできる。
In the present invention, it is preferable that the insulating coating formed on the surface of the ground iron be a tension-imparting coating, whereby the iron loss can be further reduced.

【0012】さらに、本発明の方向性電磁鋼板の地鉄表
面は、フォルステライト結晶の占める面積率が20%以
下、かつ表面粗さRaが0.4μm以下に調整されていること
とするのがよい。これにより、本発明の効果を確実に得
ることができる。なお、本発明において方向性電磁鋼板
は、1方向性電磁鋼板または2方向性電磁鋼板である。
Further, it is preferable that the surface area of the base steel of the grain-oriented electrical steel sheet of the present invention is adjusted so that the area ratio occupied by forsterite crystals is 20% or less and the surface roughness Ra is 0.4 μm or less. . Thereby, the effect of the present invention can be reliably obtained. In the present invention, the grain-oriented electrical steel sheet is a one-way electrical steel sheet or a two-way electrical steel sheet.

【0013】また、上記記載の発明に係る鉄損が極めて
低い方向性電磁鋼板の製造方法としては、地鉄表面の露
出した方向性電磁鋼板を製造し、該方向性電磁鋼板の地
鉄表面に深さ0.05μm以上2μm以下の微細筋状溝を0.0
5μm以上2μm以下の間隔で施すこととするのが好適で
ある。このようにして得られた微細筋状溝を有する地鉄
表面に張力付与型絶縁被膜を被成することができる。
Further, as a method for manufacturing a grain-oriented electrical steel sheet having an extremely low iron loss according to the invention described above, a grain-oriented electrical steel sheet having an exposed surface of a ground iron is manufactured, and Fine streak grooves with a depth of 0.05 μm or more and 2 μm or less
It is preferable to perform the coating at intervals of 5 μm or more and 2 μm or less. A tension-imparting insulating coating can be formed on the surface of the ground iron having the fine streak grooves obtained in this manner.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態を具体的
に説明する。本発明の方向性電磁鋼板は、方向性電磁鋼
板の地鉄表面に直接施された深さ0.05μm以上2μm以
下の微細筋状溝を0.05μm以上2μm以下の間隔で有す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described specifically. The grain-oriented electrical steel sheet of the present invention has fine streak grooves having a depth of 0.05 μm or more and 2 μm or less directly provided on the surface of the ground iron of the grain-oriented electrical steel sheet at intervals of 0.05 μm or more and 2 μm or less.

【0015】図1は、1方向性電磁鋼板の素材を最終焼鈍
する際、焼鈍分離剤として塩化鉄を5%含有するマグネシ
アをマグネシアを用いて表面にフォルステライト質被膜
を実質的に有さない電磁鋼板を得、これをさらに化学研
磨して得た平滑で露出した地鉄表面を有する1方向性電
磁鋼板の表面1に電子線リソグラフィーによって微細な
筋状溝3を形成させたときの模式図である。一方図2は、
前記と同様の工程によって得た1方向性電磁鋼板の表面1
に電子線リソグラフィーによって微細なピット2を形成
させたときの模式図である。図中(a)は平面図、(b)は断
面図である。
FIG. 1 shows that when the material of a grain-oriented electrical steel sheet is finally annealed, magnesia containing 5% of iron chloride is used as an annealing separator and magnesia is used, and the surface has substantially no forsterite coating. Schematic diagram of a magnetic steel sheet obtained, and fine stripe grooves 3 formed by electron beam lithography on the surface 1 of a unidirectional magnetic steel sheet having a smooth and exposed ground iron surface obtained by further chemical polishing. It is. Figure 2, on the other hand,
Surface 1 of grain-oriented electrical steel sheet obtained by the same process as above
FIG. 5 is a schematic diagram when fine pits 2 are formed by electron beam lithography. In the figure, (a) is a plan view, and (b) is a cross-sectional view.

【0016】図1に示すように微細な筋状溝3を形成させ
たときには、電磁鋼板1の表面積が増大する。これによ
って、その上に塗布・焼き付けして形成される絶縁被膜
と地鉄との界面の面積が増大し、両者の密着性が増大す
る。このように張力付与型絶縁被膜を地鉄に密着させる
ことにより、鋼板に張力を付与することができ、鉄損を
大幅に低減させることができる。図2に示すようにピッ
ト2を形成させたときにも表面積は増大するが、後に説
明するように、ピット2を形成する場合は、鋼板の電磁
特性を低下させることになるので、本発明では微細な筋
状溝3を採用する。
When the fine grooves 3 are formed as shown in FIG. 1, the surface area of the magnetic steel sheet 1 increases. As a result, the area of the interface between the insulating film formed by applying and baking thereon and the base iron increases, and the adhesion between them increases. By bringing the tension-imparting insulating coating into close contact with the ground iron in this way, it is possible to impart tension to the steel sheet, and it is possible to greatly reduce iron loss. Although the surface area increases when the pits 2 are formed as shown in FIG. 2, as described later, when the pits 2 are formed, the electromagnetic characteristics of the steel sheet are reduced. Employs fine streak grooves 3.

【0017】微細筋状溝の諸元、すなわち深さ、幅、長
さは、その配置間隔とともに、主として鋼板と絶縁被膜
との接着力を基準に決めればよい。一般に、その深さは
0.05μm以上2μm以下が好ましく、それより小さいと
密着性が十分でなくなり、大きいとヒステリシス損が増
大する。一方、間隔は0.05μm以上2μm以下が好まし
い。上記範囲よりも大きくても小さくても密着性が劣
る。なお、上記間隔は、中心線間の間隔で測定するもの
ととする。幅および長さも主として鋼板と絶縁被膜との
接着力を基準に決めればよい。一般に長さは上記中心線
間隔の5倍程度あれば十分である。なお、上記溝の形状
は、特に問うところではなく、たとえばU字型、V字型、
W字状などを自由に選択できる。また、平坦部を設ける
ことなくV字状溝を横方向に連続させた形状とすること
もできる。
The specifications, that is, the depth, width, and length of the fine streak-like grooves may be determined mainly based on the adhesive strength between the steel sheet and the insulating film, together with the arrangement intervals. Generally, its depth is
The thickness is preferably 0.05 μm or more and 2 μm or less. If it is less than 0.05 μm, the adhesion becomes insufficient, and if it is too large, hysteresis loss increases. On the other hand, the interval is preferably 0.05 μm or more and 2 μm or less. Adhesion is inferior if it is larger or smaller than the above range. In addition, the said space shall measure by the space between center lines. The width and length may be determined mainly based on the adhesive strength between the steel sheet and the insulating film. Generally, it is sufficient that the length is about 5 times the center line interval. The shape of the groove is not particularly limited, for example, U-shaped, V-shaped,
You can freely select a W shape or the like. Further, a V-shaped groove may be formed in a continuous shape in the lateral direction without providing a flat portion.

【0018】上記微細筋状溝の方向は重要である。磁化
容易軸が圧延方向に配向している方向性電磁鋼板を圧延
方向に交流で磁化した場合、磁壁4が鋼板の圧延方向と
直交する方向に反復して移動する。そのため、図1のよ
うに微細溝3が圧延方向と直交する方向に形成されてい
る場合は、磁壁4は常に同じ断面形状を保持したまま移
動でき、微細溝3によって磁壁がピン留めされることな
く移動でき、したがって、微細溝3を設けても透磁率の
低下や鉄損の増大が生じにくい。しかし、微細溝3の方
向が圧延方向と直交する方向から外れると次第に鉄損が
増大する。その許容限は、ほぼ圧延方向から±45°にあ
る。したがって、本発明では、微細筋状溝は、鋼板の圧
延方向に対して直交する方向ないし該直交方向から±45
°以内の方向に延びるものであることを好適とする。
The direction of the fine streaks is important. When a grain-oriented electrical steel sheet whose easy axis of magnetization is oriented in the rolling direction is magnetized by alternating current in the rolling direction, the domain wall 4 moves repeatedly in a direction perpendicular to the rolling direction of the steel sheet. Therefore, when the fine grooves 3 are formed in a direction perpendicular to the rolling direction as shown in FIG. 1, the domain wall 4 can be moved while always maintaining the same cross-sectional shape, and the domain walls are pinned by the fine grooves 3. Therefore, even if the fine groove 3 is provided, it is unlikely that the magnetic permeability decreases and the iron loss increases. However, when the direction of the fine grooves 3 deviates from the direction orthogonal to the rolling direction, iron loss gradually increases. Its tolerance is approximately ± 45 ° from the rolling direction. Therefore, in the present invention, the fine streak grooves are formed in a direction orthogonal to the rolling direction of the steel sheet or ± 45 degrees from the orthogonal direction.
Preferably, it extends in a direction of less than °.

【0019】一方、図2のように地鉄表面にピットを分
布させた場合には、磁壁4はピット2を繰り返し横切って
通過しなければならない。そのため磁壁4の移動はピッ
ト2によって妨げられ、いわゆるピン留めが生じやす
く、透磁率の低下や鉄損の増大が起きやすい。したがっ
て、先述のように、本発明では微細筋状溝3によって地
鉄表面と絶縁被膜との界面積を増大させる。なお、ピッ
ト2であっても間隔が極めて小さく配置され、実質的に
溝と同様に作用する場合には、微細筋状溝3と均等物で
あることは論を待たない。
On the other hand, when the pits are distributed on the surface of the ground iron as shown in FIG. 2, the domain wall 4 must pass through the pit 2 repeatedly. Therefore, the movement of the domain wall 4 is hindered by the pits 2, so-called pinning is likely to occur, and a decrease in magnetic permeability and an increase in iron loss are likely to occur. Therefore, as described above, in the present invention, the interfacial area between the ground iron surface and the insulating coating is increased by the fine streak grooves 3. It should be noted that if the pit 2 is arranged with a very small interval and acts substantially like a groove, it is obvious that the pit 2 is equivalent to the fine streak groove 3.

【0020】なお、上記微細筋状溝は、必ずしも直線状
に形成されることを要しない。また、必ずしも連続した
状態でなく、断続的に形成されたものあってもよい。磁
壁移動にとって障害にならない程度であれば、多少の湾
曲、あるいは目違いも許容される。しかしながら、微細
筋状溝が鋼板の圧延方向と直交する方向にある場合は、
例えば鋼板をコイル状に巻き取る場合のような圧延方向
に湾曲させる曲げ加工に際して絶縁被膜の剥離も生じ難
い。この傾向は微小筋状溝と鋼板の圧延方向とがなす角
度が大きいほど著しい。したがって、微小筋状溝の方向
を圧延方向と直交する方向にとることは上記のような鋼
板の曲げ加工時の被膜の密着性改善のためにも好まし
い。
The fine streak-like grooves need not necessarily be formed in a straight line. In addition, it is not necessarily a continuous state, but may be formed intermittently. Some curvature or misalignment is allowed as long as it does not hinder domain wall movement. However, if the fine streaks are in the direction perpendicular to the rolling direction of the steel sheet,
For example, peeling of the insulating coating hardly occurs at the time of bending to bend in the rolling direction, such as when winding a steel sheet into a coil. This tendency is more remarkable as the angle between the micro-streak groove and the rolling direction of the steel sheet is larger. Therefore, it is preferable to set the direction of the micro-streak grooves in a direction perpendicular to the rolling direction in order to improve the adhesion of the coating at the time of bending the steel sheet as described above.

【0021】なお、本発明による微細筋状溝は、いわゆ
る磁区細分化の目的で形成される溝とは異なる。すなわ
ち、磁区細分化のために方向性電磁鋼板表面に形成され
る溝は、通常、深さ5μm以上、間隔2μm以上であり、
明らかに本発明に係る微小筋状溝よりより大きい。ま
た、その目的も異なる。したがって、微細筋状溝と磁区
細分化の目的で形成される溝とを併用することができ、
その場合には、両者の効果を併せて得ることができる。
The micro-streak groove according to the present invention is different from a groove formed for the purpose of so-called magnetic domain subdivision. That is, the grooves formed on the surface of the grain-oriented electrical steel sheet for magnetic domain refinement are usually at least 5 μm in depth and at least 2 μm in interval,
Obviously, it is larger than the micro-streak groove according to the present invention. Also, the purpose is different. Therefore, it is possible to use the fine streak groove and the groove formed for the purpose of magnetic domain subdivision together,
In that case, both effects can be obtained together.

【0022】上記のように地鉄表面に微細筋状溝の形成
された方向性電磁鋼板には、常法にしたがい絶縁被膜の
被成が行われる。絶縁被膜の種類、被成方法は特に問う
ところではないが、従来から、方向性電磁鋼板の絶縁被
膜として用いられているリン酸塩系被膜やクロム酸塩系
被膜が耐食性、平滑性、化学安定性、塗布液の安定性お
よび塗布作業の容易等の面で有利に使用できる。
As described above, an insulating coating is formed on the grain-oriented electrical steel sheet having the fine streaks formed on the surface of the ground iron according to a conventional method. Although there is no particular limitation on the type of insulating coating and the method of forming the insulating coating, phosphate-based coatings and chromate-based coatings conventionally used as insulating coatings on grain-oriented electrical steel sheets have corrosion resistance, smoothness, and chemical stability. It can be advantageously used in terms of properties, stability of the coating solution, and ease of the coating operation.

【0023】特に鋼板に張力を付与し、それにより交番
磁場における磁歪を低減して鉄損を低減する目的では、
いわゆる張力付与型絶縁被膜を被成することが望まし
い。このような、被膜を形成するコーティング液には、
リン酸塩とコロイダルシリカを主剤とするコーティング
液、コロイダルシリカ、リン酸マグネシウムまたはリン
酸アルミニウムに三酸化クロム、クロム酸塩、重クロム
酸塩等を添加したコーティング液などが利用でき、これ
らを塗布・乾燥後、800〜900℃の非酸化性雰囲気で焼き
付けることによって張力付与型の絶縁被膜とすることが
できる。なお、この張力付与型絶縁被膜の膜厚は、張力
による鉄損の低減と占積率の面から1〜5μmが適当であ
る。また、張力付与型絶縁被膜としては、たとえばホウ
酸アルミニウム系の被膜あるいはSiO2-B2O3-ZnOガラス
被膜等の熱膨張係数が地鉄よりも小さい無機質被膜も利
用することができる。
In particular, for the purpose of imparting tension to a steel sheet and thereby reducing magnetostriction in an alternating magnetic field to reduce iron loss,
It is desirable to form a so-called tension-providing insulating film. Such coating liquids for forming a film include:
Coating liquids mainly composed of phosphate and colloidal silica, and coating liquids of colloidal silica, magnesium phosphate or aluminum phosphate with chromium trioxide, chromate, dichromate, etc. can be used and applied.・ After drying, baking in a non-oxidizing atmosphere at 800 to 900 ° C. makes it possible to obtain a tension-imparting insulating film. The thickness of the tension-imparting insulating film is suitably 1 to 5 μm from the viewpoint of reduction of iron loss due to tension and space factor. As the tension-imparting insulating film, an inorganic film having a smaller thermal expansion coefficient than that of ground iron, such as an aluminum borate-based film or a SiO 2 —B 2 O 3 —ZnO glass film, can be used.

【0024】本発明は、上記のとおり方向性電磁鋼板の
地鉄表面に微細筋状溝を直接施すものである。したがっ
て、本発明の適用対象は基本的には、地鉄がほぼ完全に
露出した方向性電磁鋼板であることが望ましい。しか
し、必ずしも、完全に地鉄が露出している状態、すなわ
ちフォルステライト質被膜がまったく鋼板表面に存在し
ていない状態、である必要はなく、フォルステライト被
膜が分断され被膜をなしていない状態も含む。例えば、
反射型電子顕微鏡による観察で確認される地鉄表面にお
けるフォルステライト結晶の面積率が20%以下であれ
ば、本発明を適用して十分な効果を挙げることができ
る。なお、本発明により、鉄損中ヒステリシス損の低減
効果を得るためには、鋼板の酸素目付量が両面で0.2g/m
2以下が好ましく、また、地鉄表面の粗さとしてはRaで
0.4μm以下が好ましい。
According to the present invention, as described above, fine streaks are directly formed on the surface of the ground iron of the grain-oriented electrical steel sheet. Therefore, it is basically desirable that the present invention be applied to a grain-oriented electrical steel sheet in which the base iron is almost completely exposed. However, it is not always necessary that the ground iron be completely exposed, that is, a state in which the forsterite coating does not exist on the steel sheet surface at all, and a state in which the forsterite coating is divided and does not form a coating. Including. For example,
If the area ratio of forsterite crystals on the surface of the base iron confirmed by observation with a reflection electron microscope is 20% or less, a sufficient effect can be obtained by applying the present invention. Incidentally, according to the present invention, in order to obtain the effect of reducing the hysteresis loss during iron loss, the oxygen basis weight of the steel sheet is 0.2g / m
2 or less is preferable, and the surface roughness of
0.4 μm or less is preferable.

【0025】なお、本発明を適用する鋼板の組成、製造
条件等には特に制限はなく、例えば、そのSi含有量は2.
5〜6%、板厚は0.1〜0.8mmの範囲とすることができる。
なお、鉄損低減のためには1方向性電磁鋼板の圧延方向
への配向度を極力高めるのが望ましいが、必ずしもそう
しなくても本発明の効果を得ることができる。また、磁
区細分化処理と組み合わせることともできることはすで
に述べたとおりである。さらに、結晶が(100)[001]
方位に配向した2方向性電磁鋼板を用いることも可能で
ある。
The composition and manufacturing conditions of the steel sheet to which the present invention is applied are not particularly limited. For example, the steel content is 2.
5-6%, plate thickness can be in the range of 0.1-0.8 mm.
In order to reduce iron loss, it is desirable to increase the degree of orientation of the grain-oriented electrical steel sheet in the rolling direction as much as possible. However, the effect of the present invention can be obtained without necessarily doing so. As already described, it can be combined with the magnetic domain refining process. Furthermore, the crystal is (100) [001]
It is also possible to use a bidirectional electrical steel sheet oriented in the same direction.

【0026】上記、本発明に係る低鉄損方向性電磁鋼板
について説明したが、その製造方法は以下のようにする
のがよい。まず、地鉄表面の露出した方向性電磁鋼板を
製造する。方向性電磁鋼板の製造方法は、公知の方法を
全て利用することができ、特に制限されない。インヒビ
ターの種類、圧延、熱処理の工程にも制限はない。ま
た、最終仕上げ焼鈍において、いわゆるフォルステライ
ト質被膜を被させるか否かも自由である。ただし、フォ
ルステライト被膜を被成させない方が地鉄表面を露出し
た方向性電磁鋼板を得やすいので経済的に有利である。
Although the low iron loss grain-oriented electrical steel sheet according to the present invention has been described above, its manufacturing method is preferably as follows. First, a grain-oriented electrical steel sheet having an exposed surface of a base iron is manufactured. The method for producing the grain-oriented electrical steel sheet may be any known method, and is not particularly limited. There are no restrictions on the type of inhibitor, rolling, or heat treatment. Further, in the final finish annealing, whether or not to apply a so-called forsterite coating may be freely determined. However, it is economically advantageous not to form a forsterite film because it is easy to obtain a grain-oriented electrical steel sheet exposing the surface of the ground iron.

【0027】方向性電磁鋼板を地鉄表面の露出した状態
にするのにも、公知の方法を利用すればよい。具体的に
は、フォルステライト被膜を形成させないように最終仕
上焼鈍を行う方法、あるいは、一旦生成したフォルステ
ライト被膜を除去する方法がある。前者の手段として
は、最終仕上焼鈍前にアルミナを主成分とする焼鈍分離
剤を塗布したり、マグネシアを主成分とする焼鈍分離剤
に塩化物やカルシア等を添加して塗布して最終仕上焼鈍
する方法、最終仕上焼鈍前の脱炭焼鈍の条件を調整して
鋼板表面近傍の珪素酸化物の組成・形態をフォルステラ
イト被膜の形成を抑制するように調整しておく方法等が
ある。一方、後者の手段としては、最終仕上焼鈍の後
に、たとえば機械的研磨、酸洗、電解エッチング、化学
研磨等の方法によりフォルステライト被膜を除去する方
法が挙げられる。なお、フォルステライト質被膜を除去
するに際して、あるいは地鉄表面を化学研磨等の手段で
研磨して表面粗さを低減させれば、ヒステリシス損もよ
り一層低減されて、好適である。
A known method may be used to bring the grain-oriented electrical steel sheet into a state where the surface of the ground iron is exposed. Specifically, there is a method of performing a final finish annealing so as not to form a forsterite film, or a method of removing a once formed forsterite film. The former means is to apply an annealing separator mainly composed of alumina before the final annealing, or to add a chloride, calcia, etc. to the annealing separator mainly composed of magnesia and apply the final separation annealing. And a method of adjusting the conditions of decarburizing annealing before the final finish annealing to adjust the composition and morphology of the silicon oxide near the steel sheet surface so as to suppress the formation of a forsterite film. On the other hand, as the latter means, there is a method of removing the forsterite film by a method such as mechanical polishing, pickling, electrolytic etching, and chemical polishing after the final finish annealing. It is preferable that the surface roughness is reduced when the forsterite coating is removed or the surface of the ground iron is polished by a means such as chemical polishing, because the hysteresis loss is further reduced.

【0028】このように地鉄表面が露出した方向性電磁
鋼板には、本発明に従う微細筋状溝の形成が行われる。
そのための手段は、特に問うところではなく、深さ0.05
μm以上2μm以下の微細筋状溝を0.05μm以上2μm以
下の間隔で形成できるものあれば機械的手段、化学的手
段あるいは物理的手段を問わず利用できる。機械的手段
としては、たとえば、電子線リソグラフィーを利用する
ことができ、化学的手段としては、電解エッチング、酸
洗等を利用できる。また、微細放電加工等の物理的手段
も利用可能である。なお、上記の手段は互いに併用する
ことができる。
In the grain-oriented electrical steel sheet with the surface of the ground iron exposed as described above, the fine streak-like grooves are formed according to the present invention.
The means for this is not particularly questionable, and a depth of 0.05
Any material that can form fine streak-like grooves of not less than 2 μm and not more than 0.05 μm and not more than 2 μm can be used regardless of mechanical means, chemical means or physical means. As the mechanical means, for example, electron beam lithography can be used, and as the chemical means, electrolytic etching, pickling, or the like can be used. In addition, physical means such as fine electric discharge machining can also be used. The above means can be used together.

【0029】このようにして得られた地鉄表面に微細筋
状溝を有する方向性電磁鋼板には、常法に従って絶縁被
膜が被成されるが、その手段についても問うところでは
ない。このことについてはすでに述べたとおりである。
The thus obtained grain-oriented electrical steel sheet having finely grooved grooves on the surface of the base iron is coated with an insulating film in accordance with a conventional method, but the means for this is not limited. This has already been described.

【0030】[0030]

【実施例】(実施例1)Siを3.4%含有しAlNをインヒビ
ター成分として有する厚さ0.23mmの1方向性電磁鋼板用
最終冷延板を準備した。この最終冷延板に電解エッチン
グによって圧延方向と直交する方向に磁区気細分化のた
めの溝を形成した後、脱炭焼鈍を兼ねた1次再結晶焼鈍
を行い、次いで塩化鉄を5%含有するマグネシアを主成分
とする焼鈍分離剤を塗布し、1200℃において24hの最終
仕上げ焼鈍を施した。得られた鋼板は、高度に圧延方向
に集積した(110)[001]組織を有していたが、鋼板表
面にはフォルステライト被膜が形成されなかった。
EXAMPLES (Example 1) A final cold-rolled sheet for a grain-oriented electrical steel sheet having a thickness of 0.23 mm and containing 3.4% Si and AlN as an inhibitor component was prepared. After forming grooves for magnetic domain subdivision in a direction perpendicular to the rolling direction by electrolytic etching in the final cold-rolled sheet, primary recrystallization annealing combined with decarburizing annealing is performed, and then 5% iron chloride is contained. An annealing separator containing magnesia as a main component was applied and subjected to a final finish annealing at 1200 ° C. for 24 hours. The obtained steel sheet had a (110) [001] structure highly accumulated in the rolling direction, but no forsterite film was formed on the steel sheet surface.

【0031】得られた鋼板から10mm×50mmの長方形の試
料を切り出し、歪み取り焼鈍を行い、さらに化学研磨し
てRaが0.1μmになるまで平滑化し、評価用の試料とし
た。この試料に電子線リソグラフィーによって表面加工
を行い微細筋状溝、ピット等の形成を行った。加工後の
表面状態、すなわち表面に形成された溝、ピットの形状
及び寸法、は三次元形状を測定できる走査型電子顕微鏡
による観察により計測した。
A rectangular sample of 10 mm × 50 mm was cut out from the obtained steel sheet, subjected to strain relief annealing, and further chemically polished and smoothed until Ra became 0.1 μm to obtain a sample for evaluation. The sample was subjected to surface processing by electron beam lithography to form fine streaks and pits. The surface state after processing, that is, the shapes and dimensions of the grooves and pits formed on the surface were measured by observation with a scanning electron microscope capable of measuring a three-dimensional shape.

【0032】このようにして得られた微細筋状溝等の形
成された鋼板には、さらに質量比で50%のコロイダルシ
リカを含むリン酸マグネシウムのコーティング液を、最
終厚さが1.5μmになるようにロールコーターで塗布して
800℃で焼き付け、張力付与型絶縁被膜を被成し、製品
試料とした。
The thus obtained steel plate having the fine streak grooves formed thereon is further coated with a coating solution of magnesium phosphate containing 50% by mass of colloidal silica to a final thickness of 1.5 μm. And apply it with a roll coater
The product was baked at 800 ° C. to form a tension-imparting insulating film, and used as a product sample.

【0033】得られた製品試料について鉄損を測定する
とともに、被膜の密着性を評価した。鉄損は小型の単板
磁気測定器を用いて1.7T、50Hzに磁化したときの鉄損
(W17/ 50)で評価した。一方、被膜の密着性は上記によ
り製造された状態における平坦な状態、および、製品試
料を50mmの丸棒に巻き付けた後に平らに伸ばした状態、
すなわち曲げ加工後の状態、でセロテープ(登録商標)
を貼りつけ、これをはがすセロテープテストににより剥
離する被膜の面積率を測定することにより評価した。
The iron loss of the obtained product sample was measured, and the adhesion of the coating was evaluated. Iron loss was evaluated by iron loss when magnetized 1.7 T, at 50Hz using a small veneer magnetic measuring device (W 17/50). On the other hand, the adhesion of the coating is a flat state in the state manufactured as described above, and a state in which the product sample is stretched flat after being wound around a 50 mm round bar,
In other words, in the state after the bending, the cellotape (registered trademark)
Was evaluated by measuring the area ratio of the film to be peeled off by a cellophane tape test.

【0034】表1に評価結果を示す。本発明に従い、微
細筋状溝を形成した場合には、鉄損値も低く、かつ、被
膜の密着性も良好であったが、ピット状の凹部のみを形
成した試料の場合は鉄損値は良好であったが、被膜の密
着性が曲げ加工後の状態で剥離面積率が30%以上となっ
た。また、化学研磨して平滑化したままの試料の場合
は、鉄損値も高い上、被膜密着性も平坦な状態において
も不良であった。
Table 1 shows the evaluation results. According to the present invention, when a fine streak-like groove was formed, the iron loss value was low, and the adhesion of the coating was good, but in the case of a sample in which only pit-shaped concave portions were formed, the iron loss value was low. Although good, the peeling area ratio was 30% or more in the state where the adhesion of the film was after bending. In the case of the sample which had been smoothed by chemical polishing, the iron loss value was high and the adhesion to the coating film was poor even in a flat state.

【0035】[0035]

【表1】 [Table 1]

【0036】(実施例2)実施例1と同様にして表面を
平滑化した試料を準備し、電子線リソグラフィーによっ
て深さおよび間隔を変化させた微細筋状溝を試料表面に
形成した。得られた試料にコロイダルシリカを質量比で
60%含むリン酸マグネシウム系の処理溶液をロールコー
ターで塗布して800℃で焼き付け、厚さ1.5μmの張力付
与型絶縁被膜を被成させた。
(Example 2) A sample whose surface was smoothed in the same manner as in Example 1 was prepared, and fine streak-like grooves having different depths and intervals were formed on the sample surface by electron beam lithography. Colloidal silica was added to the obtained sample by mass ratio.
A magnesium phosphate-based treatment solution containing 60% was applied by a roll coater and baked at 800 ° C. to form a 1.5 μm-thick tension imparting insulating film.

【0037】得られた試料の鉄損および被膜密着性を、
実施例1と同様に評価した。表2に評価結果を示す。微
細筋状溝の深さおよび間隔が、本発明の範囲にある場合
は、鉄損値は低く、被膜の密着性も良好であるが、溝深
さが浅すぎる場合、溝深さは適当であっても間隔が狭す
ぎる場合あるいは広すぎる場合には、被膜密着性が不十
分である。一方、溝深さが深すぎる場合には、被膜密着
性は十分であるが、鉄損が劣化した。
The iron loss and coating adhesion of the obtained sample were determined as follows:
Evaluation was performed in the same manner as in Example 1. Table 2 shows the evaluation results. When the depth and interval of the fine streak grooves are within the range of the present invention, the iron loss value is low and the adhesion of the coating is good, but if the groove depth is too shallow, the groove depth is appropriate. If the spacing is too narrow or too wide, the adhesion of the coating is insufficient. On the other hand, if the groove depth is too deep, the adhesion of the coating is sufficient, but the iron loss deteriorates.

【0038】[0038]

【表2】 [Table 2]

【0039】(実施例3)実施例1と同様にして表面を
平滑化した試料を準備し、これを質量比で3%の塩酸を含
有する95℃の処理液に60s浸漬した。この浸漬処理によ
り試料表面には深さ0.5μm、間隔0.6μmの筋状の微細溝
が形成された。
Example 3 A sample whose surface was smoothed in the same manner as in Example 1 was prepared and immersed in a treatment solution containing 3% by mass of hydrochloric acid at 95 ° C. for 60 seconds. By this immersion treatment, streak-shaped fine grooves having a depth of 0.5 μm and an interval of 0.6 μm were formed on the sample surface.

【0040】次いで得られた鋼板試料質量比で60%のコ
ロイダルシリカを含むリン酸マグネシウム系の処理溶液
をロールコーターで塗布して800℃で焼き付け、厚さ1.5
μmの張力付与型絶縁被膜を被成させた。
Then, a magnesium phosphate-based treatment solution containing colloidal silica at a mass ratio of 60% by weight of the obtained steel sheet sample was applied by a roll coater and baked at 800 ° C. to a thickness of 1.5%.
A μm tension-type insulating film was formed.

【0041】得られた得られた試料の鉄損および被膜密
着性を、実施例1と同様に評価した。その結果、試料の
鉄損W17/50は0.64W/kgであり、被膜の密着性は平坦時、
曲げ加工後ともにセロテープによる剥離は認められず、
ともに良好であった。
The obtained sample was evaluated for iron loss and film adhesion in the same manner as in Example 1. As a result, the iron loss W 17/50 of the sample was 0.64 W / kg, and the adhesion of the coating was flat,
No peeling with cellophane tape was observed after bending.
Both were good.

【0042】(実施例4)実施例1と同様に表面を平滑
化した試料を準備し、電子線リソグラフィーによって深
さ0.6μm、間隔0.8μmの微細筋状溝を鋼板の圧延方向と
0〜90°の角度になるように形成した。ついで質量比で6
0%のコロイダルシリカを含むリン酸マグネシウム系の処
理溶液をロールコーターで塗布して800℃で焼き付け、
厚さ1.5μmの張力付与型絶縁被膜を被成させた。
Example 4 A sample whose surface was smoothed in the same manner as in Example 1 was prepared, and fine streaks having a depth of 0.6 μm and an interval of 0.8 μm were formed by electron beam lithography in the rolling direction of the steel sheet.
It was formed to have an angle of 0 to 90 °. Then the mass ratio is 6
A magnesium phosphate-based treatment solution containing 0% colloidal silica is applied with a roll coater and baked at 800 ° C.
A 1.5-μm-thick tension-imparting insulating film was formed.

【0043】得られた試料について実施例1と同様にし
て鉄損と被膜密着性を評価した。なお、本実施例の場合
は密着性の評価を丸棒直径30mmの場合についても行っ
た。表3に評価結果を示す。微細筋状溝の圧延方向とな
す角度が45°以上の場合、鉄損値が低く、かつ被膜の密
着性が良好であることが確認できる。
The obtained samples were evaluated for iron loss and film adhesion in the same manner as in Example 1. In addition, in the case of this example, the evaluation of the adhesion was also performed for a case where the diameter of the round bar was 30 mm. Table 3 shows the evaluation results. When the angle formed by the fine streak grooves with the rolling direction is 45 ° or more, it can be confirmed that the iron loss value is low and the adhesion of the coating film is good.

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【発明の効果】本発明により表面を平滑化した方向性電
磁鋼板に鉄損の劣化を招くことなく絶縁被膜、特に張力
付与型絶縁被膜を密着性よく被成できる。これにより曲
げ加工を伴う方向性電磁鋼板の被膜密着性が改善される
とともに、鉄損値の低減を図ることができ、巻き鉄心変
圧器におけるエネルギー損失の低減が可能になる。
According to the present invention, an insulating coating, particularly a tension-imparting insulating coating, can be formed on a grain-oriented electrical steel sheet having a smooth surface without deterioration of iron loss, with good adhesion. Thereby, the coating adhesion of the grain-oriented electrical steel sheet accompanied by bending is improved, the iron loss value can be reduced, and the energy loss in the wound iron core transformer can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 平滑で露出した地鉄表面を有する1方向性電
磁鋼板の表面に微細な筋状溝を形成させたときの模式図
である。(a)は平面図、(b)は断面図である。
FIG. 1 is a schematic diagram when fine stripe grooves are formed on the surface of a grain-oriented electrical steel sheet having a smooth and exposed ground iron surface. (a) is a plan view, and (b) is a cross-sectional view.

【図2】 平滑で露出した地鉄表面を有する1方向性電
磁鋼板の表面にピットを形成させたときの模式図であ
る。(a)は平面図、(b)は断面図である。
FIG. 2 is a schematic diagram when pits are formed on the surface of a grain-oriented electrical steel sheet having a smooth and exposed ground iron surface. (a) is a plan view, and (b) is a cross-sectional view.

【符号の説明】[Explanation of symbols]

1:電磁鋼板 2:ピット 3:微細筋状溝 4:磁壁 1: magnetic steel sheet 2: pit 3: fine streak groove 4: domain wall

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村木 峰男 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K026 AA03 AA22 BA03 BA07 BA08 BA12 BB05 CA16 CA20 CA23 CA41 DA02 DA11 EA01 EA03 EA06 EB11 4K033 AA02 BA01 PA09 PA12 4K057 WA04 WA07 WA20 WB02 WC03 WE08 WG01 WG02 WG03 WK06 WK10 WN10 5E041 AA02 BC01 CA02 HB14 NN06 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mineo Muraki 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. CA23 CA41 DA02 DA11 EA01 EA03 EA06 EB11 4K033 AA02 BA01 PA09 PA12 4K057 WA04 WA07 WA20 WB02 WC03 WE08 WG01 WG02 WG03 WK06 WK10 WN10 5E041 AA02 BC01 CA02 HB14 NN06

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 方向性電磁鋼板の地鉄表面に直接施され
た深さ0.05μm以上2μm以下の微細筋状溝を0.05μm
以上2μm以下の間隔で有することを特徴とする鉄損が
極めて低い方向性電磁鋼板。
1. A fine streak groove having a depth of 0.05 μm or more and 2 μm or less directly applied to the surface of a base steel of a grain-oriented electrical steel sheet having a thickness of 0.05 μm
A grain-oriented electrical steel sheet having extremely low iron loss, characterized by having an interval of not less than 2 μm.
【請求項2】 微細筋状溝は、鋼板の圧延方向に対して
直交する方向ないし該直交方向から±45°以内の方向に
延びるものであることを特徴とする請求項1記載の鉄損
が極めて低い方向性電磁鋼板。
2. The iron loss according to claim 1, wherein the fine streaks extend in a direction perpendicular to the rolling direction of the steel sheet or in a direction within ± 45 ° from the perpendicular direction. Extremely low grain electrical steel.
【請求項3】 地鉄表面に張力付与型絶縁被膜が施され
ていることを特徴とする請求項1又は2記載の鉄損が極
めて低い方向性電磁鋼板。
3. The grain-oriented electrical steel sheet according to claim 1, wherein a tension-imparting insulating coating is applied to the surface of the ground iron.
【請求項4】 方向性電磁鋼板の地鉄表面は、フォルス
テライト結晶の占める面積率が20%以下、かつ表面粗さR
aが0.4μm以下に調整されていることを特徴とする請求
項1〜3の何れかに記載の低鉄損方向性電磁鋼板。
4. The base steel surface of the grain-oriented electrical steel sheet has an area ratio of forsterite crystal of 20% or less and a surface roughness R
The low-loss-oriented electrical steel sheet according to any one of claims 1 to 3, wherein a is adjusted to 0.4 µm or less.
【請求項5】 方向性電磁鋼板は、1方向性電磁鋼板ま
たは2方向性電磁鋼板であることを特徴とする請求項1〜
4の何れかに記載の鉄損が極めて低い方向性電磁鋼板。
5. The grain-oriented electrical steel sheet is a one-way electrical steel sheet or a two-way electrical steel sheet.
4. A grain-oriented electrical steel sheet according to any one of 4 above, wherein the iron loss is extremely low.
【請求項6】 地鉄表面の露出した方向性電磁鋼板を製
造し、該方向性電磁鋼板の地鉄表面に深さ0.05μm以上
2μm以下の微細筋状溝を0.05μm以上2μm以下の間隔
で施すことを特徴とする鉄損が極めて低い方向性電磁鋼
板の製造方法。
6. A grain-oriented electrical steel sheet having an exposed surface of a base iron is manufactured, and a depth of 0.05 μm or more is formed on the surface of the grain-oriented electrical steel sheet.
A method for producing a grain-oriented electrical steel sheet having extremely low iron loss, characterized in that fine streak grooves of 2 μm or less are formed at intervals of 0.05 μm or more and 2 μm or less.
【請求項7】 地鉄表面の露出した方向性電磁鋼板を製
造し、該方向性電磁鋼板の地鉄表面に深さ0.05μm以上
2μm以下の微細筋状溝を0.05μm以上2μm以下の間隔
で施し、さらに張力付与被膜を被成することを特徴とす
る鉄損が極めて低い方向性電磁鋼板の製造方法。
7. A grain-oriented electrical steel sheet having an exposed surface of a base iron is manufactured, and a depth of 0.05 μm or more is formed on the surface of the grain-oriented electrical steel sheet.
A method for producing a grain-oriented electrical steel sheet having an extremely low iron loss, characterized by forming fine streak grooves of 2 μm or less at intervals of 0.05 μm or more and 2 μm or less, and further forming a tension imparting film.
JP2000123754A 2000-04-25 2000-04-25 Low core loss grain oriented silicon steel sheet and its producing method Pending JP2001303215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000123754A JP2001303215A (en) 2000-04-25 2000-04-25 Low core loss grain oriented silicon steel sheet and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000123754A JP2001303215A (en) 2000-04-25 2000-04-25 Low core loss grain oriented silicon steel sheet and its producing method

Publications (1)

Publication Number Publication Date
JP2001303215A true JP2001303215A (en) 2001-10-31

Family

ID=18633993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000123754A Pending JP2001303215A (en) 2000-04-25 2000-04-25 Low core loss grain oriented silicon steel sheet and its producing method

Country Status (1)

Country Link
JP (1) JP2001303215A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183118A (en) * 2004-12-28 2006-07-13 Jfe Steel Kk Method for producing low core loss grain oriented silicon steel sheet
WO2012042865A1 (en) * 2010-09-30 2012-04-05 Jfeスチール株式会社 Oriented electromagnetic steel plate
WO2012042854A1 (en) * 2010-09-28 2012-04-05 Jfeスチール株式会社 Oriented electromagnetic steel plate
CN104309289A (en) * 2014-11-05 2015-01-28 广东乐佳印刷有限公司 Fence-shaped oriented printing device and method of magnetic inks
KR20170044723A (en) * 2014-09-26 2017-04-25 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet, grain-oriented electrical steel sheet production method, grain-oriented electrical steel sheet evaluation method and iron core
WO2019182149A1 (en) 2018-03-22 2019-09-26 日本製鉄株式会社 Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet
WO2020149356A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet, insulating coating formation method for grain-oriented electromagnetic steel sheet, and production method for grain-oriented electromagnetic steel sheet
WO2020162611A1 (en) 2019-02-08 2020-08-13 日本製鉄株式会社 Grain-oriented electrical steel sheet, method for forming insulative coating film for grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet
WO2020162608A1 (en) 2019-02-08 2020-08-13 日本製鉄株式会社 Grain-oriented electrical steel sheet, method for forming insulative coating film for grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183118A (en) * 2004-12-28 2006-07-13 Jfe Steel Kk Method for producing low core loss grain oriented silicon steel sheet
JP4725711B2 (en) * 2004-12-28 2011-07-13 Jfeスチール株式会社 Manufacturing method of low iron loss grain oriented electrical steel sheet
CN103140603A (en) * 2010-09-28 2013-06-05 杰富意钢铁株式会社 Oriented electromagnetic steel plate
WO2012042854A1 (en) * 2010-09-28 2012-04-05 Jfeスチール株式会社 Oriented electromagnetic steel plate
JP2012072431A (en) * 2010-09-28 2012-04-12 Jfe Steel Corp Oriented electromagnetic steel plate
EP2623633A4 (en) * 2010-09-28 2017-11-01 JFE Steel Corporation Oriented electromagnetic steel plate
RU2531213C1 (en) * 2010-09-28 2014-10-20 ДжФЕ СТИЛ КОРПОРЕЙШН Electrotechnical grain-oriented steel sheet
KR101500887B1 (en) * 2010-09-28 2015-03-09 제이에프이 스틸 가부시키가이샤 Grain oriented electrical steel sheet
JP2012077347A (en) * 2010-09-30 2012-04-19 Jfe Steel Corp Oriented electromagnetic steel plate
CN103140604A (en) * 2010-09-30 2013-06-05 杰富意钢铁株式会社 Grain oriented electrical steel sheet
EP2623634A1 (en) * 2010-09-30 2013-08-07 JFE Steel Corporation Oriented electromagnetic steel plate
RU2526642C1 (en) * 2010-09-30 2014-08-27 ДжФЕ СТИЛ КОРПОРЕЙШН Texturised electric steel sheet
WO2012042865A1 (en) * 2010-09-30 2012-04-05 Jfeスチール株式会社 Oriented electromagnetic steel plate
EP2623634A4 (en) * 2010-09-30 2015-04-15 Jfe Steel Corp Oriented electromagnetic steel plate
US10020103B2 (en) 2010-09-30 2018-07-10 Jfe Steel Corporation Grain oriented electrical steel sheet
KR101941068B1 (en) 2014-09-26 2019-01-22 제이에프이 스틸 가부시키가이샤 Grain oriented electrical steel sheet, method for manufacturing grain oriented electrical steel sheets, method for evaluating grain oriented electrical steel sheets, and iron core
KR20170044723A (en) * 2014-09-26 2017-04-25 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet, grain-oriented electrical steel sheet production method, grain-oriented electrical steel sheet evaluation method and iron core
KR20180119703A (en) * 2014-09-26 2018-11-02 제이에프이 스틸 가부시키가이샤 Grain oriented electrical steel sheet, method for manufacturing grain oriented electrical steel sheets, method for evaluating grain oriented electrical steel sheets, and iron core
KR101998723B1 (en) * 2014-09-26 2019-07-10 제이에프이 스틸 가부시키가이샤 Grain oriented electrical steel sheet, method for manufacturing grain oriented electrical steel sheets, and iron core
US10889875B2 (en) 2014-09-26 2021-01-12 Jfe Steel Corporation Grain oriented electrical steel sheet, method for manufacturing grain oriented electrical steel sheets, method for evaluating grain oriented electrical steel sheets, and iron core
US10697038B2 (en) 2014-09-26 2020-06-30 Jfe Steel Corporation Grain oriented electrical steel sheet, method for manufacturing grain oriented electrical steel sheets, method for evaluating grain oriented electrical steel sheets, and iron core
CN104309289A (en) * 2014-11-05 2015-01-28 广东乐佳印刷有限公司 Fence-shaped oriented printing device and method of magnetic inks
CN111902555A (en) * 2018-03-22 2020-11-06 日本制铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
JP7052864B2 (en) 2018-03-22 2022-04-12 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
KR102464102B1 (en) * 2018-03-22 2022-11-09 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and method for manufacturing grain-oriented electrical steel sheet
KR20200120736A (en) 2018-03-22 2020-10-21 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet
US11441215B2 (en) 2018-03-22 2022-09-13 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
WO2019182149A1 (en) 2018-03-22 2019-09-26 日本製鉄株式会社 Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet
JPWO2019182149A1 (en) * 2018-03-22 2021-03-11 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
WO2020149356A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet, insulating coating formation method for grain-oriented electromagnetic steel sheet, and production method for grain-oriented electromagnetic steel sheet
KR20210111288A (en) 2019-01-16 2021-09-10 닛폰세이테츠 가부시키가이샤 A grain-oriented electrical steel sheet, a method for forming an insulating film of a grain-oriented electrical steel sheet, and a method for manufacturing a grain-oriented electrical steel sheet
KR20210118916A (en) 2019-02-08 2021-10-01 닛폰세이테츠 가부시키가이샤 A grain-oriented electrical steel sheet, a method for forming an insulating film of a grain-oriented electrical steel sheet, and a method for manufacturing a grain-oriented electrical steel sheet
KR20210110359A (en) 2019-02-08 2021-09-07 닛폰세이테츠 가부시키가이샤 A grain-oriented electrical steel sheet, a method for forming an insulating film of a grain-oriented electrical steel sheet, and a method for manufacturing a grain-oriented electrical steel sheet
WO2020162611A1 (en) 2019-02-08 2020-08-13 日本製鉄株式会社 Grain-oriented electrical steel sheet, method for forming insulative coating film for grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet
WO2020162608A1 (en) 2019-02-08 2020-08-13 日本製鉄株式会社 Grain-oriented electrical steel sheet, method for forming insulative coating film for grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet
US11866812B2 (en) 2019-02-08 2024-01-09 Nippon Steel Corporation Grain oriented electrical steel sheet, forming method for insulation coating of grain oriented electrical steel sheet, and producing method for grain oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
JP7040888B2 (en) Method of forming a tension insulating film for grain-oriented electrical steel sheets and grain-oriented electrical steel sheets
RU2580775C2 (en) Electromagnetic steel sheet with oriented structure with coating and preparation method thereof
RU2431697C1 (en) Processing solution for application of insulation coating on sheet of textured electro-technical steel and procedure for manufacture of sheet of textured electro-technical steel with insulation coating
JP7265122B2 (en) Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
KR20210118916A (en) A grain-oriented electrical steel sheet, a method for forming an insulating film of a grain-oriented electrical steel sheet, and a method for manufacturing a grain-oriented electrical steel sheet
JP2001303215A (en) Low core loss grain oriented silicon steel sheet and its producing method
KR20200017457A (en) Directional electronic steel sheet
JPH08222423A (en) Grain oriented silicon steel plate of low core loss and its manufacture
JP4018878B2 (en) Method for forming insulating coating on grain-oriented electrical steel sheet
JPH08191010A (en) Orientation silicon steel plate of excellent magnetic characteristic and its manufacturing method
KR102359168B1 (en) grain-oriented electrical steel sheet
JP4734455B2 (en) Oriented electrical steel sheet with excellent magnetic properties
CN113286904A (en) Grain-oriented electromagnetic steel sheet, method for forming insulating coating film on grain-oriented electromagnetic steel sheet, and method for producing grain-oriented electromagnetic steel sheet
JP2020111815A (en) Grain oriented electromagnetic steel sheet and method for manufacturing the same
JPS6376819A (en) Grain-oriented electrical steel sheet having small iron loss and its manufacture
JP3921199B2 (en) Method for producing unidirectional silicon steel sheet excellent in film adhesion of tension imparting insulating film
Kobayashi et al. Heatproof domain refining method using combination of local strain and heat treatment for grain oriented 3% Si-Fe
JP3280279B2 (en) Ultra-low iron loss grain-oriented electrical steel sheet
JP4044781B2 (en) Unidirectional silicon steel sheet with excellent tension-providing insulating film adhesion and method for producing the same
EP3913074A1 (en) Grain-oriented electromagnetic steel sheet, and steel sheet which can be used as raw material sheet for grain-oriented electromagnetic steel
JPH08333640A (en) Grain oriented silicon steel sheet extremely excellent in heat resistance and adhesion and formation of insulating film on it
JP4300604B2 (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacturing method thereof
BR112021013768A2 (en) ELECTRIC STEEL SHEET WITH ORIENTED GRAIN, AND, METHOD TO MANUFACTURE AN ELECTRIC STEEL SHEET WITH ORIENTED GRAIN
JP3274409B2 (en) Grain-oriented electrical steel sheet with excellent coating adhesion and extremely low iron loss, and method for producing the same
JPH0586043B2 (en)