JPH0586043B2 - - Google Patents

Info

Publication number
JPH0586043B2
JPH0586043B2 JP61233939A JP23393986A JPH0586043B2 JP H0586043 B2 JPH0586043 B2 JP H0586043B2 JP 61233939 A JP61233939 A JP 61233939A JP 23393986 A JP23393986 A JP 23393986A JP H0586043 B2 JPH0586043 B2 JP H0586043B2
Authority
JP
Japan
Prior art keywords
amorphous alloy
oxide
alloy material
coating
alloy ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61233939A
Other languages
Japanese (ja)
Other versions
JPS6387716A (en
Inventor
Yasuo Okazaki
Hideo Sugano
Kazukyo Terayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61233939A priority Critical patent/JPS6387716A/en
Publication of JPS6387716A publication Critical patent/JPS6387716A/en
Publication of JPH0586043B2 publication Critical patent/JPH0586043B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15383Applying coatings thereon

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、変圧器、回転機等の電気機器の鉄心
として使用される非晶質合金材料の表面処理方法
に関する。 〔従来の技術〕 変圧器、回転機等の電気機器に使用される鉄心
材料としては、励磁特性が良好であり、鉄損の低
いことが要求される。この鉄損を低下させるため
には、材料の欠陥を少なくし、内部応力を下げる
ことにより、ヒステリシス損を低減させ、また電
気抵抗を高め、板厚を薄くすることにより、渦電
流損を低減させることが必要である。このような
条件を満たす材料として、珪素鋼板がこれまで用
いられている。 珪素鋼板は、鋳造、熱延、冷延、焼鈍等の工程
を経る従来の方法により製造されるものである。
これに対して、合金を高温の溶融状態から超急冷
することにより、液体と同様な構造をもつ非晶質
合金の薄帯を製造する方法が最近開発された。 この非晶質合金の製造方法によるとき、薄帯を
圧延等の工程を経ず直接的に製造することができ
る。また、得られた非晶質合金薄帯は、電気抵抗
が高く、鉄損が著しく低減されており、非晶質構
造をもつことから異方性もない。更に、励磁特性
も優れているので、この非晶質合金薄帯は鉄心材
料として大いに期待される材料である。 この非晶質合金薄帯を加工して電気機器の鉄心
等として使用する場合、層間抵抗、耐食性等が問
題となる。 そこで、本発明者等は、この問題を解決するも
のとして、陽極処理によつて非晶質合金薄帯の表
面に酸化物系絶縁被膜を形成することを開発し、
これを特願昭60−67215号として出願した。この
酸化物系絶縁被膜は、陽極処理によつて施された
ものであるから、被処理対象である非晶質合金薄
帯の表面形状に倣つて均一に設けられる。したが
つて、酸化物系絶縁被膜によりコーテイングされ
た非晶質合金薄帯に不均一な応力が加わることな
く層間抵抗の増加及び耐食性の向上を図ることが
可能となつた。 〔発明が解決しようとする問題点〕 この陽極処理によつて非晶質合金薄帯の表面に
設けられる酸化物系絶縁被膜は、前述の特願昭60
−67215号においては、単位板厚μm当たり通常10
mg/m2以下の厚みとしている。これは、酸化物系
絶縁被膜の厚みが大きすぎると、不均一応力を生
じ易く、磁気特性、特に商用周波数鉄損を劣化さ
せる傾向がでてくることを防ぐ観点から定められ
たものである。 ところが、本発明者等は、このように設けられ
た酸化物系絶縁被膜が非晶質合金薄帯の磁気特性
を改善する上でも効果があることを、その後の研
究により解明し、これを別途出願した。 本発明は、この酸化物系絶縁被膜を設けた非晶
質合金材料の特性を更に向上させるべく、表面処
理工程に改良を加えることにより、鉄損、層間抵
抗、耐食性等が改善された非晶質合金材料を製造
することを目的とする。 〔問題点を解決するための手段〕 本発明は、その目的を達成するために、非晶質
合金材料を陽極として、アルミン酸塩水溶液中に
浸漬することによりアルミ酸化物を前記非晶質合
金材料の表面に付着させ、ついで、該表面にクロ
ム酸もしくはクロム酸に燐酸、硫酸、シリカ、コ
ロイダルシリカの中の1種以上を含有させたコー
テイング剤を塗布することを特徴とする。 以下、本発明を具体的に説明する。なお、本願
明細書でいう非晶質合金材料としては、帯材、板
材、線材等の種々の形態のものがあるが、以下の
説明では薄帯を例にとつている。 高絶縁抵抗の酸化物は、陽極処理によつてたと
えば粒子状の形態で非晶質合金薄帯の表面に形成
される。すなわち、非晶質合金薄帯を陽極として
電解液中に浸漬し、或いは電解液を非晶質合金薄
帯表面に塗布し、陰極との間に電圧を印加するこ
とにより、電解液から析出する酸化物を非晶質合
金薄帯の表面に均一に付着させる。この陽極処理
の採用により、酸化物の付着は、凸部に薄く凹部
に厚くなることがないように、非晶質合金薄帯表
面の凹凸に倣つて行われる。 ここで使用される酸化物としては、溶液電解法
により陽極上に付着する全ての酸化物を使用する
ことができ、具体的にはAl2O3,ZrO2,TaO2
がある。ただし、この酸化物としては、非晶質合
金薄帯の層間抵抗を増加させることから、高絶縁
性のものであることが必要である。 この酸化物は、非晶質合金薄帯の両面又は片面
のいずれに付着させても良い。片面にのみ付着さ
せる場合、単ロール法で鋳造された非晶質合金薄
帯においては、表面粗さの大きなロール側表面に
酸化物を付着させる方が、自由面に付着させるこ
とに比較し、鉄損を向上させる上でより効果的で
ある。また、片面に酸化物を付着させる方法は、
ロール面上で非晶質合金薄帯の電解液を連続的に
塗布することにより行うことができるので、生産
性に優れている。 この陽極処理による酸化物の付着量は、5〜
500mg/m2、望ましくは50〜100mg/m2とすること
が良い。この付着量を厚みに換算すると、おおよ
そ平均厚みで0.003〜0.3μmとなる。この付着量が
5mg/m2を下回るとき、初期の絶縁抵抗が得られ
ず、また耐食性の向上も図られない。他方、付着
量が500mg/m2を越えるとき、不均一応力を生じ
易く、鉄損が劣化することになる。また、付着さ
れた酸化物が発粉し易くなる欠点も生じる。 次いで、この陽極処理によつて酸化物を付着し
た非晶質合金薄帯の表面に、磁性劣化抑制作用を
もつコーテイング材を塗布する。このコーテイン
グ材としては、クロム酸、或いは燐酸や硫酸等の
酸、シリカ、コロイダルシリカ等から選ばれた少
なくとも1種以上とクロム酸との混合物から得ら
れる酸化物、水和物等がある。また、有機質樹脂
を使用することも可能である。 また、その付着量は、1〜200mg/m2とするこ
とが望ましい。この付着量が200mg/m2を越える
とき鉄損の劣化を生じ、1mg/m2未満では磁性、
耐食性等の改善がみられない。この付着量のより
好ましい範囲は、3〜20mg/m2である。 このコーテイング材は、浸漬法、バーコート、
コールコート、スプレーコート等の通常採用され
ている塗布方法によつて、非晶質合金薄帯の表面
に塗布することができる。また、前述の酸化物系
と同様に、陽極処理によつて付着させることも可
能である。 〔作用〕 鋳造されたままの非晶質合金材料の表面には、
鋳造時に空気や不活性ガス等が溶湯とロール表面
との間に巻き込まれること等に起因して、凹凸が
生じる。この凹凸は、非晶質合金板を重ねた場合
に、板同士が面接触することを防ぎ、層間抵抗の
低下ひいては渦電流の増加を生起させない上で効
果があるものとされている。しかし、このような
凹凸面をもつ非晶質合金材料においても、その表
面に絶縁被膜を設けることにより、鉄心に積層し
た場合の層間抵抗が増加し、渦電流損の改善が図
られることは勿論である。 この点、先願の特願昭60−67215号では、陽極
処理によつて酸化物を非晶質合金薄帯の表面に付
着させている。しかし、この酸化物の付着量は、
鉄損を劣化させないために、単位板厚μm当たり
5mg/m2以下が好ましいとされている。ところ
が、その後の研究により、この陽極処理によつて
非晶質合金材料の表面に付着した酸化物は、その
付着量を5〜500mg/m2の範囲に維持する限り、
焼鈍時における磁区の整列に悪影響を与えること
なく、層間抵抗の向上に有効なものであることが
判明した。 このように、比較的大きな付着量で酸化物の被
膜を非晶質合金材料の表面に設けるとき、非晶質
合金材料の内部構造を顕微鏡で観察すると、とき
として磁区の境界が不鮮明になることがあつた。
これは、陽極処理によつて生成した酸化物が焼鈍
時に収縮するときの力が、非晶質合金材料の磁区
の成長に影響を与えた結果であると推察される。
すなわち、酸化物の収縮力が、非晶質合金材料の
長手方向に交叉して、たとえば板厚方向に沿つて
非晶質合金材料に作用した場合に、その作用方向
に沿つて磁区が整列する。そのため、配向性の異
なるものが磁区に含まれて、磁区の境界を不鮮明
にしているものであろう。 そこで、本発明にあつては、非晶質合金材料の
表面に陽極処理によつて酸化物系絶縁被膜を設け
た後で、更に磁性劣化抑制作用をもつコーテイン
グ材の層を設けている。このコーテイング材層は
陽極処理によつて形成された酸化物系絶縁被膜の
厚みを大きく変えないことから、酸化物の間隙に
充填された状態にあり、次のような理由により磁
気特性の改善が図られているものと推察される。 すなわち、このコーテイング材自体の収縮によ
つて、陽極処理で生成した酸化物が収縮するとき
の力が非晶質合金材料の表面に沿つて延びる張力
に変えられ、鉄損に悪影響を及ぼす磁区の成長が
抑制される。そのために、配向性に優れた磁区が
得られる。また、この表面方向の張力のため、非
晶質合金材料内部において磁区が細分化され、磁
壁の移動に必要なエネルギーが軽減される。この
ような理由から、陽極処理に続いてコーテイング
材層を設けるとき、得られた非晶質合金材料は優
れた鉄損を示すようになる。また、磁区が細分化
されているために、高周波用鉄心を始めとして
種々の鉄心として優れた材料となる。 〔実施例〕 以下、実施例により、本発明の効果を具体的に
説明する。 単ロール法で製造されたFe79.5B13.1Si6.9C0
.5(原子%)の組成を持ち板厚が25μmの非晶質
合金薄帯を、アルミン酸ソーダ25g/lを含む電
解液中で陽極として電流密度6A/dm2で電解を
行つた。電解を1秒間継続したところ、付着量60
mg/m2の割合でAl2O3が非晶質合金薄帯の表面に
付着した。 陽極処理により付着するアルミ酸化物は、水酸
化物を含むと推測されるが、ここでは、便宜上、
A12O3と称する。また、この被膜を1次被膜とい
う。 次いで、Al2O3が付着された非晶質合金薄帯の
表面を、5g/lのクロム酸を含む溶液に1秒間
浸漬した。これによつて、Cr2O3換算で5mg/m2
のクロム酸が付着した(実施例1)。これを2次
被膜という。 また、クロム酸にコロイダルシリカを添加し、
Cr2O3+SiO2で6mg/m2になるようにAl2O3被膜
に付着させた(実施例2)。 このようにして表面処理された非晶質合金薄帯
を、単板及びトロイダル鉄心として、窒素ガス雰
囲気中で磁場焼鈍した。得られた製品の鉄損を、
単板に付いては鉄損として、トロイダル鉄心に
付いては鉄損として、それぞれ次表に示す。な
お、この表には、湿度98%の湿潤雰囲気下で50℃
の恒温恒湿発錆テストを行つた結果を相対評価し
たものを併せて示している。
[Industrial Application Field] The present invention relates to a surface treatment method for an amorphous alloy material used as a core of electrical equipment such as a transformer or a rotating machine. [Prior Art] Iron core materials used in electrical equipment such as transformers and rotating machines are required to have good excitation characteristics and low iron loss. In order to reduce this iron loss, we must reduce hysteresis loss by reducing material defects and lowering internal stress, and reduce eddy current loss by increasing electrical resistance and reducing plate thickness. It is necessary. A silicon steel plate has been used so far as a material that satisfies these conditions. Silicon steel sheets are manufactured by conventional methods including casting, hot rolling, cold rolling, annealing, and other steps.
In response, a method has recently been developed to produce thin strips of amorphous alloys with a structure similar to that of liquids by ultra-quenching the alloys from a high-temperature molten state. When using this method for producing an amorphous alloy, a ribbon can be produced directly without going through a process such as rolling. Furthermore, the obtained amorphous alloy ribbon has high electrical resistance, significantly reduced core loss, and has an amorphous structure, so there is no anisotropy. Furthermore, since it has excellent excitation properties, this amorphous alloy ribbon is highly expected to be used as an iron core material. When processing this amorphous alloy ribbon and using it as an iron core of electrical equipment, problems such as interlayer resistance and corrosion resistance arise. Therefore, in order to solve this problem, the present inventors developed a method of forming an oxide-based insulating film on the surface of the amorphous alloy ribbon by anodizing.
This was filed as Japanese Patent Application No. 60-67215. Since this oxide-based insulating coating is applied by anodization, it is uniformly provided to follow the surface shape of the amorphous alloy ribbon to be treated. Therefore, it has become possible to increase the interlayer resistance and improve the corrosion resistance without applying uneven stress to the amorphous alloy ribbon coated with the oxide-based insulating film. [Problems to be Solved by the Invention] The oxide-based insulating coating provided on the surface of the amorphous alloy ribbon by this anodizing process is disclosed in the above-mentioned patent application filed in 1983.
-67215, normally 10 per unit plate thickness μm
The thickness shall be less than mg/m 2 . This was determined from the viewpoint of preventing the tendency for non-uniform stress to occur if the thickness of the oxide-based insulating film is too large, which tends to deteriorate the magnetic properties, especially the commercial frequency iron loss. However, through subsequent research, the present inventors discovered that the oxide-based insulating film provided in this way was also effective in improving the magnetic properties of the amorphous alloy ribbon. I applied. In order to further improve the characteristics of the amorphous alloy material provided with this oxide-based insulating coating, the present invention provides an amorphous material with improved iron loss, interlayer resistance, corrosion resistance, etc. by improving the surface treatment process. The purpose is to produce quality alloy materials. [Means for Solving the Problems] In order to achieve the object, the present invention uses an amorphous alloy material as an anode and immerses it in an aqueous aluminate solution. It is characterized in that it is attached to the surface of the material, and then a coating agent containing chromic acid or chromic acid containing one or more of phosphoric acid, sulfuric acid, silica, and colloidal silica is applied to the surface. The present invention will be specifically explained below. Although the amorphous alloy material referred to in this specification has various forms such as a strip, a plate, and a wire, the following explanation uses a thin strip as an example. The oxide having high insulation resistance is formed, for example, in particulate form on the surface of the amorphous alloy ribbon by anodizing. That is, the amorphous alloy ribbon is immersed in an electrolytic solution as an anode, or the electrolytic solution is applied to the surface of the amorphous alloy ribbon, and a voltage is applied between the cathode and the electrolytic solution. The oxide is uniformly attached to the surface of the amorphous alloy ribbon. By employing this anodic treatment, the oxide is deposited following the irregularities of the surface of the amorphous alloy ribbon so that the oxide is not deposited thinly on the convex portions and thickly on the concave portions. As the oxide used here, all oxides that are deposited on the anode by solution electrolysis can be used, and specific examples thereof include Al 2 O 3 , ZrO 2 , TaO 2 , etc. However, this oxide needs to be highly insulating since it increases the interlayer resistance of the amorphous alloy ribbon. This oxide may be attached to either both sides or one side of the amorphous alloy ribbon. When attaching the oxide to only one side, in an amorphous alloy ribbon cast by the single roll method, it is better to attach the oxide to the roll side surface, which has a large surface roughness, than to attach it to the free surface. It is more effective in improving iron loss. In addition, the method of attaching oxide to one side is
This can be carried out by continuously applying an electrolytic solution to the amorphous alloy ribbon on the roll surface, resulting in excellent productivity. The amount of oxide deposited by this anodization is 5~
The amount is preferably 500 mg/m 2 , preferably 50 to 100 mg/m 2 . When this amount of adhesion is converted into thickness, the average thickness is approximately 0.003 to 0.3 μm. When the amount of adhesion is less than 5 mg/m 2 , initial insulation resistance cannot be obtained and corrosion resistance cannot be improved. On the other hand, when the amount of adhesion exceeds 500 mg/m 2 , non-uniform stress tends to occur and iron loss deteriorates. Further, there is also a drawback that the attached oxide tends to become powder. Next, a coating material having an effect of suppressing magnetic deterioration is applied to the surface of the amorphous alloy ribbon to which oxides have been adhered by this anodizing. Examples of this coating material include oxides and hydrates obtained from chromic acid, or a mixture of chromic acid and at least one selected from acids such as phosphoric acid and sulfuric acid, silica, colloidal silica, and the like. It is also possible to use organic resins. Moreover, the amount of adhesion is preferably 1 to 200 mg/m 2 . When the amount of this adhesion exceeds 200mg/ m2 , iron loss deteriorates, and when it is less than 1mg/ m2 , magnetism,
No improvement in corrosion resistance, etc. is seen. A more preferable range of this amount is 3 to 20 mg/m 2 . This coating material can be applied using the dipping method, bar coating,
The coating can be applied to the surface of the amorphous alloy ribbon by a commonly employed coating method such as coal coating or spray coating. Further, like the oxide-based materials described above, it is also possible to deposit the material by anodization. [Operation] On the surface of the as-cast amorphous alloy material,
Irregularities occur due to air, inert gas, etc. getting caught between the molten metal and the roll surface during casting. This unevenness is said to be effective in preventing surface contact between the plates when the amorphous alloy plates are stacked, and in preventing a decrease in interlayer resistance and an increase in eddy current. However, even with such an amorphous alloy material having an uneven surface, by providing an insulating coating on its surface, the interlayer resistance increases when laminated to an iron core, and of course it is possible to improve eddy current loss. It is. In this regard, in the earlier application, Japanese Patent Application No. 60-67215, an oxide is attached to the surface of an amorphous alloy ribbon by anodizing. However, the amount of this oxide attached is
In order to prevent iron loss from deteriorating, it is said that the preferable amount is 5 mg/m 2 or less per unit plate thickness μm. However, subsequent research has shown that as long as the amount of oxides attached to the surface of the amorphous alloy material is maintained within the range of 5 to 500 mg/m 2 through this anodization,
It has been found that this method is effective in improving interlayer resistance without adversely affecting the alignment of magnetic domains during annealing. In this way, when a relatively large amount of oxide film is applied to the surface of an amorphous alloy material, when the internal structure of the amorphous alloy material is observed under a microscope, the boundaries of magnetic domains sometimes become unclear. It was hot.
This is presumed to be the result of the force when the oxide produced by anodizing contracts during annealing, which affects the growth of the magnetic domains of the amorphous alloy material.
In other words, when the contraction force of the oxide acts on the amorphous alloy material across the longitudinal direction of the amorphous alloy material, for example along the plate thickness direction, the magnetic domains align along the direction of the action. . Therefore, the magnetic domains contain substances with different orientations, making the boundaries between the magnetic domains unclear. Therefore, in the present invention, after an oxide-based insulating film is provided on the surface of the amorphous alloy material by anodizing, a layer of a coating material having a magnetic deterioration suppressing effect is further provided. Since this coating material layer does not significantly change the thickness of the oxide-based insulating film formed by anodizing, it is filled in the gaps between the oxides, and the magnetic properties cannot be improved for the following reasons. It is assumed that this is planned. In other words, due to the contraction of the coating material itself, the force of the contraction of the oxide produced during the anodization is converted into tension extending along the surface of the amorphous alloy material, causing the magnetic domain to have a negative effect on iron loss. Growth is suppressed. Therefore, magnetic domains with excellent orientation can be obtained. Moreover, due to this tension in the surface direction, the magnetic domains are subdivided inside the amorphous alloy material, and the energy required for movement of the domain walls is reduced. For this reason, when a coating material layer is provided following anodization, the resulting amorphous alloy material exhibits superior core loss. Furthermore, because the magnetic domains are subdivided, it is an excellent material for various iron cores including high frequency iron cores. [Example] Hereinafter, the effects of the present invention will be specifically explained with reference to Examples. Fe 79.5 B 13.1 Si 6.9 C 0 produced by single roll method
.. An amorphous alloy ribbon having a composition of 5 ( at . When electrolysis was continued for 1 second, the amount of adhesion was 60
Al 2 O 3 was deposited on the surface of the amorphous alloy ribbon at a rate of mg/m 2 . It is assumed that the aluminum oxide deposited by anodization contains hydroxide, but for convenience,
It is called A1 2 O 3 . Moreover, this coating is called a primary coating. Next, the surface of the amorphous alloy ribbon to which Al 2 O 3 was attached was immersed for 1 second in a solution containing 5 g/l of chromic acid. As a result, 5 mg/m 2 in terms of Cr 2 O 3
of chromic acid was attached (Example 1). This is called a secondary coating. In addition, colloidal silica is added to chromic acid,
Cr 2 O 3 +SiO 2 was attached to the Al 2 O 3 film at a concentration of 6 mg/m 2 (Example 2). The thus surface-treated amorphous alloy ribbon was magnetically annealed in a nitrogen gas atmosphere as a single plate and a toroidal core. The iron loss of the obtained product is
The iron loss for a single plate and the iron loss for a toroidal core are shown in the following table. In addition, this table shows the temperature at 50℃ in a humid atmosphere with a humidity of 98%.
A relative evaluation of the results of a constant temperature and humidity rusting test is also shown.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明の表面処理方法
によるとき、陽極処理によつて非晶質合金材料表
面に付着している酸化物の上に更に磁性劣化抑制
作用をもつコーテイング材を塗布しているので、
非晶質合金材料の表面がこれら酸化物及びコーテ
イング材によつて覆われる。そのため、この非晶
質合金材料を磁場焼鈍した際に、陽極処理によつ
て生成した酸化物によつて付与される張力がコー
テイング材により非晶質合金材料の表面方向に沿
つた張力に変換され、磁束に対して抵抗となるよ
うな磁区の発生を抑えることができ、鉄損が大幅
に改良される。また、酸化物及びコーテイング材
により非晶質合金材料の全面を覆つているので、
層間抵抗及び耐食性も優れた製品が得られる。し
たがつて、このようにして得られた非晶質合金材
料を電気機器の鉄心として使用するとき、長期間
にわたつて優れた磁気特性を発揮させることがで
きる。
As explained above, when using the surface treatment method of the present invention, a coating material having a magnetic deterioration suppressing effect is further applied on the oxide that has adhered to the surface of the amorphous alloy material by anodizing. Because there are
The surface of the amorphous alloy material is covered with these oxides and the coating material. Therefore, when this amorphous alloy material is annealed in a magnetic field, the tension imparted by the oxide produced by anodizing is converted into tension along the surface direction of the amorphous alloy material by the coating material. , it is possible to suppress the generation of magnetic domains that create resistance to magnetic flux, and iron loss is significantly improved. In addition, since the entire surface of the amorphous alloy material is covered with the oxide and coating material,
A product with excellent interlayer resistance and corrosion resistance can be obtained. Therefore, when the amorphous alloy material obtained in this way is used as an iron core of an electrical device, it can exhibit excellent magnetic properties for a long period of time.

Claims (1)

【特許請求の範囲】[Claims] 1 非晶質合金材料を陽極として、アルミン酸塩
水溶液中に浸漬することによりアルミ酸化物を前
記非晶質合金材料の表面に付着させ、ついで、該
表面にクロム酸もしくはクロム酸に燐酸、硫酸、
シリカ、コロイダルシリカの中の1種以上を含有
させたコーテイング剤を塗布することを特徴とす
る非晶質合金材料の表面処理方法。
1 Using an amorphous alloy material as an anode, aluminum oxide is attached to the surface of the amorphous alloy material by immersing it in an aluminate aqueous solution, and then the surface is coated with chromic acid, phosphoric acid, sulfuric acid in chromic acid, etc. ,
A method for surface treatment of an amorphous alloy material, comprising applying a coating agent containing one or more of silica and colloidal silica.
JP61233939A 1986-09-30 1986-09-30 Surface treatment of amorphous alloy material Granted JPS6387716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61233939A JPS6387716A (en) 1986-09-30 1986-09-30 Surface treatment of amorphous alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61233939A JPS6387716A (en) 1986-09-30 1986-09-30 Surface treatment of amorphous alloy material

Publications (2)

Publication Number Publication Date
JPS6387716A JPS6387716A (en) 1988-04-19
JPH0586043B2 true JPH0586043B2 (en) 1993-12-09

Family

ID=16962982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61233939A Granted JPS6387716A (en) 1986-09-30 1986-09-30 Surface treatment of amorphous alloy material

Country Status (1)

Country Link
JP (1) JPS6387716A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10022074A1 (en) * 2000-05-06 2001-11-08 Henkel Kgaa Protective or priming layer for sheet metal, comprises inorganic compound of different metal with low phosphate ion content, electrodeposited from solution
US7820300B2 (en) 2001-10-02 2010-10-26 Henkel Ag & Co. Kgaa Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to organic or inorganic coating
US7569132B2 (en) 2001-10-02 2009-08-04 Henkel Kgaa Process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating
US9701177B2 (en) 2009-04-02 2017-07-11 Henkel Ag & Co. Kgaa Ceramic coated automotive heat exchanger components

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171612A (en) * 1984-09-17 1986-04-12 Toshiba Corp Manufacture of laminated core

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171612A (en) * 1984-09-17 1986-04-12 Toshiba Corp Manufacture of laminated core

Also Published As

Publication number Publication date
JPS6387716A (en) 1988-04-19

Similar Documents

Publication Publication Date Title
US3856568A (en) Method for forming an insulating film on an oriented silicon steel sheet
KR20000075590A (en) Ultra-low core loss grain oriented silicon steel sheet and method of producing the same
KR100300209B1 (en) Method for producing oriented silicon steel sheet and oriented silicon steel decarburization annealing plate
US5125991A (en) Silicon steel sheets having low iron loss and method of producing the same
JPH0586043B2 (en)
JPH03130376A (en) Production of unidirectionally oriented silicon steel sheet excellent in magnetic characteristic
KR960006448B1 (en) Method of manufacturing low iron loss grain oriented electromagnetic steel
JP7027925B2 (en) Electrical steel sheet and its manufacturing method
JP2001303215A (en) Low core loss grain oriented silicon steel sheet and its producing method
JPH0141720B2 (en)
JP2703604B2 (en) Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties
JP4300604B2 (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacturing method thereof
JPH0215639B2 (en)
JP3162624B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
JP3394845B2 (en) Low iron loss unidirectional silicon steel sheet
JPH11236682A (en) Superlow core loss grain oriented silicon steel sheet and its production
JPS6386894A (en) Surface treatment of amorphous alloy material
JPH11310882A (en) Ultralow iron loss grain oriented silicon steel sheet and its production
JPH03240922A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property and bendability
JPH0430474B2 (en)
JP7222450B1 (en) Method for manufacturing electrical steel sheet with pretreatment liquid and insulation coating
JP3098691B2 (en) Low iron loss unidirectional silicon steel sheet with excellent coating water resistance and rust resistance
JPS63118097A (en) Surface treatment of amorphous alloy material
JPS6386889A (en) Surface treated amorphous alloy material
JPS59215421A (en) Method for forming film containing zirconia on surface of silicon steel sheet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term