JP7265122B2 - Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet - Google Patents

Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP7265122B2
JP7265122B2 JP2019005235A JP2019005235A JP7265122B2 JP 7265122 B2 JP7265122 B2 JP 7265122B2 JP 2019005235 A JP2019005235 A JP 2019005235A JP 2019005235 A JP2019005235 A JP 2019005235A JP 7265122 B2 JP7265122 B2 JP 7265122B2
Authority
JP
Japan
Prior art keywords
steel sheet
grain
oriented electrical
electrical steel
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019005235A
Other languages
Japanese (ja)
Other versions
JP2020111814A (en
Inventor
和年 竹田
一郎 田中
智也 末永
隆史 片岡
雄樹 国田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019005235A priority Critical patent/JP7265122B2/en
Publication of JP2020111814A publication Critical patent/JP2020111814A/en
Application granted granted Critical
Publication of JP7265122B2 publication Critical patent/JP7265122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、方向性電磁鋼板及び方向性電磁鋼板の製造方法に関する。 TECHNICAL FIELD The present invention relates to a grain-oriented electrical steel sheet and a method for producing a grain-oriented electrical steel sheet.

一般に、方向性電磁鋼板は、トランスなどの鉄芯として用いられており、方向性電磁鋼板の磁気特性がトランスの性能に多大な影響を与えることから、磁気特性を改善するよう様々な研究開発がなされてきた。方向性電磁鋼板の鉄損を低減する手段として、例えば以下の特許文献1には、仕上げ焼鈍後の鋼板表面にコロイド状シリカとリン酸塩とを主成分とする溶液を塗布した後焼き付けることで、張力付与コーティングを形成して鉄損を低減する技術が開示されている。更に、以下の特許文献2には、仕上げ焼鈍後の材料表面に対し、レーザービームを照射して局部歪みを鋼板に付与することにより磁区を細分化して、鉄損を低減する技術が開示されている。これらの技術により、方向性電磁鋼板の鉄損は、極めて良好なものとなってきている。 Generally, grain-oriented electrical steel sheets are used as iron cores for transformers, etc. Since the magnetic properties of grain-oriented electrical steel sheets have a great impact on the performance of transformers, various research and development efforts are being made to improve their magnetic properties. has been done. As a means for reducing the iron loss of a grain-oriented electrical steel sheet, for example, in Patent Document 1 below, a solution containing colloidal silica and phosphate as main components is applied to the surface of the steel sheet after finish annealing, and then baked. , disclose techniques for forming tensioning coatings to reduce core losses. Furthermore, Patent Document 2 below discloses a technique for reducing iron loss by irradiating a laser beam on the material surface after finish annealing to impart local strain to the steel sheet, thereby refining the magnetic domains. there is With these technologies, the iron loss of grain-oriented electrical steel sheets has become extremely good.

ところで、近年では、トランスの小型化及び高性能化の要求が高まっており、トランスの小型化のために、磁束密度の高い場合であっても鉄損が良好であるような、高磁場鉄損に優れることが方向性電磁鋼板に求められている。この高磁場鉄損を改善する手段として、通常の方向性電磁鋼板に存在する無機質系被膜を無くし、更に張力を付与することが研究されている。後に張力付与コーティングが形成されることから、無機質系被膜を1次被膜と称し、張力付与コーティングを2次被膜と称することもある。 By the way, in recent years, there has been an increasing demand for smaller transformers with higher performance. A grain-oriented electrical steel sheet is required to be excellent in As a means of improving this high magnetic field iron loss, studies have been conducted to remove the inorganic coating present in ordinary grain-oriented electrical steel sheets and to apply tension. Since the tension imparting coating is formed later, the inorganic coating is sometimes referred to as the primary coating and the tension imparting coating is sometimes referred to as the secondary coating.

方向性電磁鋼板の表面には、脱炭焼鈍工程で生じるシリカ(SiO)を主成分とする酸化層と、焼き付き防止のために表面に塗布された酸化マグネシウムとが、仕上げ焼鈍中に反応することで、フォルステライト(MgSiO)を主成分とする無機質系被膜が生成する。無機質系被膜には若干の張力効果があり、方向性電磁鋼板の鉄損を改善する効果がある。しかしながら、これまでの研究の結果、無機質系被膜は非磁性層であることから、磁気特性(特に、高磁場鉄損特性)に悪影響を及ぼすことが明らかとなってきている。従って、無機質系被膜を研磨などの機械的手段、又は、酸洗などの化学的手段を用いて除去したり、高温仕上げ焼鈍における無機質系被膜の生成を防止したりすることにより、無機質系被膜を有しない方向性電磁鋼板を製造する技術や、鋼板表面を鏡面状態とする技術(換言すれば、鋼板表面を磁気的に平滑化する技術)が研究されている。 On the surface of the grain-oriented electrical steel sheet, an oxide layer mainly composed of silica (SiO 2 ) generated in the decarburization annealing process and magnesium oxide applied to the surface to prevent seizure react during finish annealing. As a result, an inorganic coating containing forsterite (Mg 2 SiO 4 ) as a main component is produced. The inorganic coating has a slight tensile effect and is effective in improving the iron loss of the grain-oriented electrical steel sheet. However, as a result of previous research, it has become clear that the inorganic coating, being a non-magnetic layer, adversely affects magnetic properties (especially, high magnetic field iron loss properties). Therefore, the inorganic coating is removed by mechanical means such as polishing or chemical means such as pickling, or by preventing the formation of the inorganic coating during high-temperature final annealing. Techniques for producing grain-oriented electrical steel sheets without grains and techniques for mirror-finishing the steel sheet surface (in other words, techniques for magnetically smoothing the steel sheet surface) are being researched.

このような無機質系被膜の生成防止又は鋼板表面の平滑化技術として、例えば以下の特許文献3には、通常の仕上げ焼鈍後に酸洗して表面形成物を除去した後、化学研磨又は電解研磨により鋼板表面を鏡面状態とする技術が開示されている。近年では、例えば以下の特許文献4に開示されるような、仕上げ焼鈍時に使用される焼鈍分離剤に対し、ビスマス(Bi)又はビスマス化合物を含有させることにより、無機質系被膜の生成を防止する技術などがある。これら公知の方法により得られた、無機質系被膜を有しない、又は、磁気的平滑性に優れた方向性電磁鋼板の表面に対して、張力付与コーティングを形成することにより、更に優れた鉄損改善効果が得られることが判明している。 As a technique for preventing the formation of such an inorganic coating or smoothing the surface of a steel sheet, for example, Patent Document 3 below discloses that after normal finish annealing, pickling is performed to remove surface formations, and then chemical polishing or electrolytic polishing is performed. A technique for making the surface of a steel sheet mirror-finished has been disclosed. In recent years, for example, as disclosed in Patent Document 4 below, an annealing separation agent used during finish annealing contains bismuth (Bi) or a bismuth compound to prevent the formation of an inorganic coating. and so on. By forming a tension-applying coating on the surface of the grain-oriented electrical steel sheet that does not have an inorganic coating or has excellent magnetic smoothness obtained by these known methods, the iron loss is further improved. It has been found to be effective.

しかしながら、無機質系被膜には、絶縁性を発現する効果と共に、張力付与絶縁被膜を塗布する際に密着性を確保する中間層としての効果があり、無機質系被膜を有しない方向性電磁鋼板に対し張力付与型の2次被膜を形成する場合には、無機質系被膜の中間層としての役割を代替する必要がある。 However, the inorganic coating has the effect of exhibiting insulation properties and also has the effect of serving as an intermediate layer to ensure adhesion when applying the tension-imparting insulating coating. When forming a tension imparting type secondary coating, it is necessary to replace the role of the inorganic coating as an intermediate layer.

すなわち、方向性電磁鋼板を通常の製造工程により製造する場合、仕上げ焼鈍後の鋼板表面に無機質系被膜が形成されるが、かかる無機質系被膜は、鋼板中に深く入り込んだ状態で形成されることから、金属である鋼板との密着性に優れている。そのため、コロイド状シリカやリン酸塩などを主成分とする張力付与型被膜を、無機質系被膜の表面に形成することが可能である。ところが、一般に、金属と酸化物との結合は困難であるため、無機質系被膜が存在しない場合には、張力付与型絶縁被膜と電磁鋼板表面との間で、十分な密着性を確保することが困難であった。 That is, when a grain-oriented electrical steel sheet is produced by a normal manufacturing process, an inorganic coating is formed on the surface of the steel sheet after finish annealing. Therefore, it has excellent adhesion to a steel plate, which is a metal. Therefore, it is possible to form a tension-applying coating containing colloidal silica, phosphate, or the like as a main component on the surface of the inorganic coating. However, in general, it is difficult to bond metals and oxides, so if there is no inorganic coating, it is difficult to ensure sufficient adhesion between the tension-imparting insulating coating and the surface of the electrical steel sheet. It was difficult.

このような鋼板と張力付与型絶縁被膜との間の密着性を改善する方法として、例えば以下の特許文献5には、無機質系被膜を有しない方向性電磁鋼板を弱還元性雰囲気中で焼鈍し、ケイ素鋼板中に必然的に含有されているシリコンを選択的に熱酸化させることにより、鋼板表面にSiO層を形成した後、張力付与型絶縁被膜を形成する技術が開示されている。また、以下の特許文献6には、無機質系被膜を有しない方向性電磁鋼板を、ケイ酸塩水溶液中で陽極電解処理することにより鋼板表面にSiO層を形成した後、張力付与型絶縁被膜を形成する技術が開示されている。 As a method for improving the adhesion between such a steel sheet and a tension-applying insulating coating, for example, Patent Document 5 below discloses that a grain-oriented electrical steel sheet having no inorganic coating is annealed in a weakly reducing atmosphere. , discloses a technique of selectively thermally oxidizing the silicon naturally contained in a silicon steel sheet to form a SiO2 layer on the surface of the steel sheet and then forming a tension-applying insulation coating. Further, in Patent Document 6 below, a grain-oriented electrical steel sheet having no inorganic coating is subjected to anodic electrolysis in a silicate aqueous solution to form a SiO2 layer on the surface of the steel sheet. is disclosed.

更に、以下の特許文献7には、張力付与コーティングを形成する際に予め中間層となるコーティングを施すことにより、張力付与絶縁被膜の密着性を確保する技術が開示されており、以下の特許文献8には、無機質系被膜の存在しない方向性電磁鋼板の表面に絶縁被膜を塗布形成する際に、接触角が特定範囲内である塗布液を用いることにより、密着性の優れた絶縁被膜を形成する技術が開示されている。 Furthermore, Patent Document 7 below discloses a technique for ensuring the adhesion of a tension-applying insulating film by applying a coating that serves as an intermediate layer in advance when forming the tension-applying coating. In 8, when an insulating coating is formed on the surface of a grain-oriented electrical steel sheet without an inorganic coating, an insulating coating with excellent adhesion is formed by using a coating liquid having a contact angle within a specific range. A technique for doing so is disclosed.

また、以下の特許文献9には、鋼板の地鉄表面の平均粗さが0.4μm以下であり、線状又は点状の溝を圧延方向に対して45~90°の方向に2~15mm間隔に形成して耐SRA磁区制御を施した一方向性電磁鋼板に対し、750℃超950℃以下の温度範囲で張力付与コーティングを形成する超低鉄損一方向性電磁鋼板の製造において、コーティング処理前に鋼板を硫酸又は硫酸塩を硫酸濃度として2~30%含有する水溶液に浸漬洗浄することを特徴とする技術が開示されている。 Further, in Patent Document 9 below, the average roughness of the base iron surface of the steel plate is 0.4 μm or less, and linear or dotted grooves are formed in a direction of 45 to 90° with respect to the rolling direction. In the manufacture of an ultra-low core loss unidirectional electrical steel sheet that forms a tension applying coating in a temperature range of 750 ° C to 950 ° C on the unidirectional electrical steel sheet that is formed at intervals and subjected to SRA resistant magnetic domain control, the coating A technique is disclosed in which a steel plate is immersed and washed in an aqueous solution containing 2 to 30% sulfuric acid or a sulfate before treatment.

また、以下の特許文献10には、フォルステライト被膜を形成させない方向性電磁鋼板の仕上げ焼鈍において、純化焼鈍完了後、冷却過程の鋼板温度が1000℃から200℃の間で酸素又は水蒸気を含む雰囲気に晒し、冷却後に張力被膜を形成することを特徴とする技術が開示されている。 In addition, in Patent Document 10 below, in the finish annealing of a grain-oriented electrical steel sheet that does not form a forsterite coating, after the completion of purification annealing, the steel sheet temperature in the cooling process is between 1000 ° C. and 200 ° C. An atmosphere containing oxygen or water vapor A technique is disclosed characterized by exposing to heat and forming a tension coating after cooling.

更に、以下の特許文献11には、表面に無機質系被膜を有しない方向性電磁鋼板に張力絶縁被膜を施す際に、硫酸又は硝酸の1種又は2種からなる酸化性酸を用いて鋼板表面を前処理した後、張力絶縁被膜を形成することを特徴とする技術が開示されている。 Furthermore, in Patent Document 11 below, when applying a tensile insulation coating to a grain-oriented electrical steel sheet having no inorganic coating on the surface, an oxidizing acid consisting of one or two of sulfuric acid and nitric acid is used to treat the surface of the steel sheet. A technique is disclosed in which a tensile insulation coating is formed after pretreatment of the .

特開昭48-39338号公報JP-A-48-39338 特公昭58-26405号公報Japanese Patent Publication No. 58-26405 特開昭49-96920号公報JP-A-49-96920 特開平7-54155号公報JP-A-7-54155 特開平6-184762号公報JP-A-6-184762 特開平11-209891号公報JP-A-11-209891 特開平5-279747号公報JP-A-5-279747 特開2003-34880号公報JP-A-2003-34880 特許2671076号公報Japanese Patent No. 2671076 特許2579714号公報Japanese Patent No. 2579714 特許4018878号公報Japanese Patent No. 4018878

しかしながら、上記特許文献5に開示されている技術は、弱還元性雰囲気中で焼鈍を実施するために、雰囲気制御が可能な焼鈍設備を準備する必要があり、処理コストに問題がある。また、上記特許文献6に開示されている技術において、ケイ酸塩水溶液中で陽極電解処理を実施することにより、張力付与型絶縁被膜と十分な密着性を保持するSiO層を鋼板表面に得るためには、新たな電解処理設備を準備する必要があり、処理コストに問題がある。 However, the technique disclosed in Patent Literature 5 requires the preparation of annealing equipment capable of controlling the atmosphere in order to carry out annealing in a weakly reducing atmosphere, which poses a problem of processing costs. In addition, in the technique disclosed in Patent Document 6, an SiO2 layer that maintains sufficient adhesion to the tension-imparting insulating coating is obtained on the surface of the steel sheet by carrying out anodic electrolytic treatment in an aqueous silicate solution. Therefore, it is necessary to prepare a new electrolytic treatment facility, which poses a problem of treatment cost.

また、上記特許文献7及び特許文献8に開示されている技術では、大きな張力を有する張力付与絶縁被膜を密着性良く保持することができないという問題がある。 Moreover, the techniques disclosed in Patent Documents 7 and 8 have a problem that the tension-imparting insulation coating having a large tension cannot be held with good adhesion.

更に、上記特許文献9に開示されている技術では、張力付与被膜と鋼板との密着性が安定して得られず、密着性にバラツキが多いという問題がある。 Furthermore, the technique disclosed in Patent Document 9 has the problem that the adhesion between the tension-applying film and the steel sheet cannot be stably obtained, and the adhesion is highly uneven.

また、上記特許文献10に開示されている技術では、コイルの内周側外周側の部分で冷却過程が異なるために、生産性が悪いという問題がある。 Further, the technique disclosed in Patent Document 10 has a problem of poor productivity because the cooling process differs between the inner and outer circumferences of the coil.

更に、上記特許文献11に開示されている技術では、酸化性酸を用いて鋼板表面を酸化させるが、方向性電磁鋼板を製造し続けると酸化性酸が中和されていき、酸化性酸の機能が低下していく。そのため、新たな酸化性酸を定期的に供給することが必要であり、生産効率が悪いという問題がある。 Furthermore, in the technique disclosed in Patent Document 11, the surface of the steel sheet is oxidized using an oxidizing acid. function is declining. Therefore, it is necessary to periodically supply fresh oxidizing acid, which poses a problem of poor production efficiency.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、無機質系被膜を有しない方向性電磁鋼板であっても、処理コストの増加及び生産性の低下を招くことなく、張力付与絶縁被膜の密着性を安定的に向上させることが可能な、方向性電磁鋼板及び方向性電磁鋼板の製造方法を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to increase processing costs and reduce productivity even in grain-oriented electrical steel sheets that do not have inorganic coatings. To provide a grain-oriented electrical steel sheet and a method for manufacturing a grain-oriented electrical steel sheet, which can stably improve the adhesion of a tension-applying insulating coating without causing a problem.

上記課題を解決するために、本発明者らが鋭意検討を行った結果、特定の酸を用いた酸洗処理と熱処理とを組み合わせ、無機質系被膜を有しない方向性電磁鋼板に対して、所定厚みの鉄系酸化物層を形成することで、処理コストの増加及び生産性の低下を招くことなく、張力付与絶縁被膜の密着性を安定的に向上させることが可能であるとの知見を得ることができた。
上記知見に基づき完成された本発明の要旨は、以下の通りである。
In order to solve the above-mentioned problems, the present inventors have made extensive studies, and as a result, a combination of a pickling treatment using a specific acid and a heat treatment is applied to a grain-oriented electrical steel sheet having no inorganic coating. Obtained knowledge that by forming a thick iron-based oxide layer, it is possible to stably improve the adhesion of the tension-applying insulating coating without increasing the processing cost and decreasing productivity. I was able to
The gist of the present invention completed based on the above knowledge is as follows.

[1]母材鋼板と、張力付与絶縁被膜とを備える方向性電磁鋼板において、前記母材鋼板の表面には、エッチピットが存在し、前記張力付与絶縁被膜が、前記方向性電磁鋼板の表面に存在し、前記母材鋼板と前記張力付与絶縁被膜との間に、マグネタイト、ヘマタイト及びファイアライトを主成分とする、厚みが100~500nmの鉄系酸化物層が存在する、方向性電磁鋼板。
[2]前記張力付与絶縁被膜は、リン酸塩及びコロイダルシリカを主たる素材とする被膜である、[1]に記載の方向性電磁鋼板。
[3]前記母材鋼板の厚みが、0.27mm以下である、[1]又は[2]に記載の方向性電磁鋼板。
[4]表面に無機質系被膜を有しない仕上げ焼鈍後の方向性電磁鋼板を用い、当該方向性電磁鋼板の表面を洗浄した後、硫酸、硝酸、及び、リン酸の1種又は2種以上を含有する、合計の酸濃度が2~30%であり、かつ、液温が70℃以上の混合溶液を前記方向性電磁鋼板の表面に塗布し、当該方向性電磁鋼板を、酸素濃度が1~21体積%であり、かつ、露点が-20~30℃である雰囲気中において、鋼板温度700~900℃で20~60秒間加熱処理し、加熱処理後の前記方向性電磁鋼板の表面に張力付与絶縁被膜を形成する、方向性電磁鋼板の製造方法。
[5]前記仕上げ焼鈍後の方向性電磁鋼板は、2~7質量%のSiを含有する鋼片を熱間圧延し、必要に応じて焼鈍を施し、1回の冷間圧延又は中間焼鈍を含む2回以上の冷間圧延を施し、脱炭焼鈍を施した後に、焼鈍分離剤として、MgOとAlの混合物にビスマス塩化物を含有させたもの、又は、MgOとAlの混合物にビスマス化合物と金属の塩素化合物を含有させたものを塗布して乾燥させた後、仕上げ焼鈍を施したものである、[4]に記載の方向性電磁鋼板の製造方法。
[1] A grain-oriented electrical steel sheet comprising a base steel sheet and a tension-imparting insulating coating, wherein etch pits are present on the surface of the base material steel sheet, and the tension-imparting insulating coating is the surface of the grain-oriented electrical steel sheet. and an iron-based oxide layer containing magnetite, hematite and fayalite as main components and having a thickness of 100 to 500 nm exists between the base steel sheet and the tension-imparting insulating coating. .
[2 ] The grain-oriented electrical steel sheet according to [1], wherein the tension-imparting insulating coating is a coating mainly composed of phosphate and colloidal silica.
[3] The grain-oriented electrical steel sheet according to [1] or [2], wherein the base material steel sheet has a thickness of 0.27 mm or less.
[4] Using a grain-oriented electrical steel sheet after finish annealing that does not have an inorganic coating on the surface, washing the surface of the grain-oriented electrical steel sheet, and then adding one or more of sulfuric acid, nitric acid, and phosphoric acid. A mixed solution containing a total acid concentration of 2 to 30% and a liquid temperature of 70 ° C. or higher is applied to the surface of the grain-oriented electrical steel sheet, and the grain-oriented electrical steel sheet is treated with an oxygen concentration of 1 to 1. 21% by volume and a dew point of −20 to 30° C., heat treatment is performed at a steel plate temperature of 700 to 900° C. for 20 to 60 seconds, and tension is applied to the surface of the grain-oriented electrical steel sheet after heat treatment. A method for producing a grain-oriented electrical steel sheet, which forms an insulating coating.
[5] The grain-oriented electrical steel sheet after the finish annealing is obtained by hot-rolling a steel slab containing 2 to 7% by mass of Si, annealing it if necessary, and performing one cold rolling or intermediate annealing. After performing cold rolling two or more times including decarburization annealing, as an annealing separating agent, a mixture of MgO and Al 2 O 3 containing bismuth chloride, or MgO and Al 2 O 3 The method for producing a grain-oriented electrical steel sheet according to [4], wherein a mixture containing a bismuth compound and a metal chlorine compound is applied, dried, and then subjected to finish annealing.

以上説明したように本発明によれば、無機質系被膜を有しない方向性電磁鋼板であっても、処理コストの増加及び生産性の低下を招くことなく、張力付与絶縁被膜の密着性を安定的に向上させることが可能となる。 As described above, according to the present invention, even in a grain-oriented electrical steel sheet having no inorganic coating, the adhesion of the tension-applying insulating coating can be stably improved without increasing the processing cost and lowering the productivity. can be improved to

本発明の実施形態に係る方向性電磁鋼板の構造の一例を模式的に示した説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which showed typically an example of the structure of the grain-oriented electrical steel plate which concerns on embodiment of this invention. 同実施形態に係る方向性電磁鋼板について説明するための説明図である。It is an explanatory view for explaining a grain-oriented electrical steel sheet according to the same embodiment. 同実施形態に係る方向性電磁鋼板の製造方法の流れの一例を示した流れ図である。It is the flow chart which showed an example of the flow of the manufacturing method of the grain-oriented electrical steel sheet which concerns on the same embodiment. 実験例1~3における張力付与絶縁被膜の密着性と鉄系酸化物層の厚みとの関係を示したグラフ図である。FIG. 2 is a graph showing the relationship between the adhesion of the tension-applying insulating coating and the thickness of the iron-based oxide layer in Experimental Examples 1 to 3. FIG.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.

(方向性電磁鋼板について)
まず、図1~図2を参照しながら、本発明の実施形態に係る方向性電磁鋼板について、詳細に説明する。図1は、本実施形態に係る方向性電磁鋼板の構造の一例を模式的に示した説明図である。図2は、本実施形態に係る方向性電磁鋼板について説明するための説明図である。
(Regarding grain-oriented electrical steel sheets)
First, a grain-oriented electrical steel sheet according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2. FIG. FIG. 1 is an explanatory view schematically showing an example of the structure of a grain-oriented electrical steel sheet according to this embodiment. FIG. 2 is an explanatory diagram for explaining the grain-oriented electrical steel sheet according to the present embodiment.

本発明者らは、(1)例えば1.7T~1.9Tといった高磁場鉄損には、フォルステライト(MgSiO)などの無機質系被膜を除去した場合の鉄損低減率が非常に大きいこと、(2)1.0kg/mm以上の高張力を発現する張力付与絶縁被膜を無機質系被膜の無い鋼板表面に密着性良く形成するためには、鋼板表面に鉄系酸化物を主体とする中間層を形成することが必要であり、特定範囲の厚みの鉄系酸化物層を形成することにより、張力付与絶縁被膜の密着性と高磁場鉄損とが良好となること、をそれぞれ見出し、かかる知見に基づいて、以下で詳述するような、本実施形態に係る方向性電磁鋼板に想到した。 The present inventors have found that (1) for high magnetic field iron loss such as 1.7 T to 1.9 T, the iron loss reduction rate when inorganic coating such as forsterite (Mg 2 SiO 4 ) is removed is very high. (2) In order to form a tension-imparting insulating coating that develops a high tension of 1.0 kg/mm2 or more on a steel plate surface without an inorganic coating with good adhesion, iron-based oxides are mainly used on the steel plate surface. By forming an iron-based oxide layer with a thickness in a specific range, the adhesion of the tension-applying insulating coating and the high magnetic field iron loss are improved. Based on these findings and findings, the inventors have arrived at the grain-oriented electrical steel sheet according to the present embodiment, which will be described in detail below.

本実施形態に係る方向性電磁鋼板1は、無機質系被膜を有しない方向性電磁鋼板であり、図1Aに模式的に示したように、母材鋼板11と、張力付与絶縁被膜13と、鉄系酸化物層15と、を備え、張力付与絶縁被膜13は、方向性電磁鋼板1の表面に存在し、鉄系酸化物層15は、母材鋼板11と張力付与絶縁被膜13との間に存在する。ここで、鉄系酸化物層15及び張力付与絶縁被膜13は、図1に模式的に示したように、母材鋼板11の両面上に設けられる。なお、図1では、鉄系酸化物層15及び張力付与絶縁被膜13が母材鋼板11の両面上に設けられる場合について図示しているが、鉄系酸化物層15及び張力付与絶縁被膜13は、母材鋼板11の一方の面上にのみ設けられる場合もある。 A grain-oriented electrical steel sheet 1 according to the present embodiment is a grain-oriented electrical steel sheet having no inorganic coating, and as schematically shown in FIG. A tension-applying insulating coating 13 is present on the surface of the grain-oriented electrical steel sheet 1, and the iron-based oxide layer 15 is provided between the base steel plate 11 and the tension-applying insulating coating 13. exist. Here, the iron-based oxide layer 15 and the tension applying insulating coating 13 are provided on both sides of the base steel plate 11 as schematically shown in FIG. Although FIG. 1 illustrates the case where the iron-based oxide layer 15 and the tension-applying insulating coating 13 are provided on both sides of the base steel plate 11, the iron-based oxide layer 15 and the tension-applying insulating coating 13 are , may be provided only on one side of the base material steel plate 11 .

以下、本実施形態に係る方向性電磁鋼板1が有する母材鋼板11、張力付与絶縁被膜13及び鉄系酸化物層15について、詳細に説明する。 The base material steel sheet 11, the tension-imparting insulating coating 13, and the iron-based oxide layer 15 of the grain-oriented electrical steel sheet 1 according to this embodiment will be described in detail below.

<母材鋼板11について>
一般に、方向性電磁鋼板には、その鋼成分としてケイ素(Si)が含有されるが、鋼成分であるケイ素元素は極めて酸化されやすいため、脱炭焼鈍後の鋼板表面には、ケイ素元素を含有する酸化被膜(より詳細には、シリカを主成分とする酸化被膜)が形成される。脱炭焼鈍後の鋼板表面に対し焼鈍分離剤を塗布した後、鋼板をコイル状に巻き取り、仕上げ焼鈍が行われる。通常の方向性電磁鋼板の製造方法では、MgOを主成分とする焼鈍分離剤が用いられることで、仕上げ焼鈍中に、MgOと鋼板表面の酸化被膜とが反応して、フォルステライト(MgSiO)を主成分とする無機質系被膜が形成される。しかしながら、本実施形態に係る方向性電磁鋼板1では、上記のような無機質系被膜を表面に有する方向性電磁鋼板ではなく、無機質系被膜を表面に有しない方向性電磁鋼板が、母材鋼板11として用いられる。
<Regarding the base material steel plate 11>
In general, grain-oriented electrical steel sheets contain silicon (Si) as a steel component.Since the silicon element, which is a steel component, is extremely easily oxidized, the surface of the steel sheet after decarburization annealing contains the silicon element. An oxide film (more specifically, an oxide film containing silica as a main component) is formed. After applying an annealing separator to the surface of the steel sheet after decarburization annealing, the steel sheet is coiled up and subjected to finish annealing. In a conventional method for producing grain-oriented electrical steel sheets, an annealing separator containing MgO as a main component is used, so that MgO reacts with an oxide film on the surface of the steel sheet during finish annealing to form forsterite (Mg 2 SiO 4 ) is formed as a main component. However, in the grain-oriented electrical steel sheet 1 according to the present embodiment, the base material steel sheet 11 is not the grain-oriented electrical steel sheet having the inorganic coating on the surface as described above, but the grain-oriented electrical steel sheet having no inorganic coating on the surface. used as

なお、表面に、フォルステライトを主成分とする無機質系被膜を有しない方向性電磁鋼板の製造方法については、以下で改めて説明する。 A method of manufacturing a grain-oriented electrical steel sheet that does not have an inorganic coating containing forsterite as a main component on the surface will be described again below.

本実施形態に係る方向性電磁鋼板1において、母材鋼板11として用いられる方向性電磁鋼板は、特に限定されるものではなく、公知の鋼成分からなる方向性電磁鋼板を利用することが可能である。このような方向性電磁鋼板として、例えば、質量%で2~7%のSiを少なくとも含有する方向性電磁鋼板を挙げることができる。鋼成分中のSi濃度を2%以上とすることで、所望の磁気特性を実現することが可能となる。一方、鋼成分中のSi濃度が7%超となる場合には、鋼板の脆性が低く、製造が困難となるため、鋼成分中のSi濃度は7%以下であることが好ましい。 In the grain-oriented electrical steel sheet 1 according to the present embodiment, the grain-oriented electrical steel sheet used as the base material steel sheet 11 is not particularly limited, and a grain-oriented electrical steel sheet made of known steel components can be used. be. As such a grain-oriented electrical steel sheet, for example, a grain-oriented electrical steel sheet containing at least 2 to 7% by mass of Si can be mentioned. Desired magnetic properties can be achieved by setting the Si concentration in the steel composition to 2% or more. On the other hand, if the Si concentration in the steel composition exceeds 7%, the brittleness of the steel sheet is low and production becomes difficult, so the Si concentration in the steel composition is preferably 7% or less.

<張力付与絶縁被膜13について>
本実施形態に係る方向性電磁鋼板1の表面には、張力付与絶縁被膜13が位置している。かかる張力付与絶縁被膜13は、方向性電磁鋼板に電気絶縁性を付与することで渦電流損を低減して、方向性電磁鋼板の鉄損を向上させる。また、張力付与絶縁被膜13は、上記のような電気絶縁性以外にも、耐蝕性、耐熱性、すべり性といった種々の特性を実現する。
<Regarding the tension applying insulating coating 13>
A tension applying insulating coating 13 is positioned on the surface of the grain-oriented electrical steel sheet 1 according to the present embodiment. Such a tension-applying insulating coating 13 provides electrical insulation to the grain-oriented electrical steel sheet, thereby reducing eddy current loss and improving iron loss of the grain-oriented electrical steel sheet. Moreover, the tension-applying insulating coating 13 realizes various properties such as corrosion resistance, heat resistance, and sliding property in addition to the electrical insulation properties described above.

更に、張力付与絶縁被膜13は、方向性電磁鋼板に張力を付与するという機能を有する。方向性電磁鋼板に張力を付与して方向性電磁鋼板における磁壁移動を容易にすることで、方向性電磁鋼板の鉄損を向上させることができる。 Furthermore, the tension-applying insulating coating 13 has the function of applying tension to the grain-oriented electrical steel sheet. The iron loss of the grain-oriented electrical steel sheet can be improved by applying tension to the grain-oriented electrical steel sheet to facilitate domain wall movement in the grain-oriented electrical steel sheet.

かかる張力付与絶縁被膜13は、特に限定されるものではなく、従来、方向性電磁鋼板の張力付与絶縁被膜として用いられてきたものを、適宜適用することが可能である。このような張力付与絶縁被膜として、例えば、リン酸塩及びコロイダルシリカを主たる素材とする被膜等を挙げることができる。 The tension-applying insulating coating 13 is not particularly limited, and it is possible to appropriately apply one that has been conventionally used as a tension-applying insulating coating for grain-oriented electrical steel sheets. Examples of such a tension-applying insulating coating include a coating mainly composed of phosphate and colloidal silica.

かかる張力付与絶縁被膜の付着量については、特に限定されるものではないが、1.0kg/mm以上の高張力を実現可能な付着量とすることが好ましい。本実施形態に係る張力付与被膜の付着量は、例えば、2.0~7.0g/m程度である。 The adhesion amount of the tension-applying insulating coating is not particularly limited, but it is preferable that the adhesion amount is such that a high tension of 1.0 kg/mm 2 or more can be achieved. The adhesion amount of the tension imparting coating according to this embodiment is, for example, about 2.0 to 7.0 g/m 2 .

<鉄系酸化物層15について>
鉄系酸化物層15は、本実施形態に係る方向性電磁鋼板1において、母材鋼板11と張力付与絶縁被膜13との間の中間層として機能する層であり、鉄系酸化物を主体とする。かかる鉄系酸化物層15は、例えば、マグネタイト(Fe)、ヘマタイト(Fe)、ファイアライト(FeSiO)等の鉄系酸化物を主成分とする層である。
<Regarding the iron-based oxide layer 15>
The iron-based oxide layer 15 is a layer that functions as an intermediate layer between the base material steel plate 11 and the tension applying insulating coating 13 in the grain-oriented electrical steel sheet 1 according to the present embodiment, and is mainly composed of an iron-based oxide. do. The iron-based oxide layer 15 is a layer mainly composed of iron-based oxides such as magnetite (Fe 3 O 4 ), hematite (Fe 2 O 3 ), and fayalite (Fe 2 SiO 4 ), for example.

鉄系酸化物は、母材鋼板11の表面と、酸素と、が反応することで形成されることから、鉄系酸化物層15と母材鋼板11との間の密着性は、良好なものとなる。また、母材鋼板11の表面には、図2に模式的に示したような、エッチピットとも呼ばれる微細構造17が設けられているため、かかる微細構造17の部分に形成された鉄系酸化物層15は、いわゆるアンカー効果を発現して、母材鋼板11と鉄系酸化物層15との間の密着性を更に向上させることができる。 Since the iron-based oxide is formed by the reaction between the surface of the base steel plate 11 and oxygen, the adhesion between the iron-based oxide layer 15 and the base steel plate 11 is good. becomes. In addition, since the surface of the base steel plate 11 is provided with a microstructure 17, also called an etch pit, as schematically shown in FIG. The layer 15 exhibits a so-called anchor effect, and can further improve the adhesion between the base steel plate 11 and the iron-based oxide layer 15 .

また、一般に、金属とセラミックスとの間の密着性を向上させることは、困難を伴うことが多いが、本実施形態に係る方向性電磁鋼板1では、母材鋼板11と、セラミックスの一種である張力付与絶縁被膜13と、の間に鉄系酸化物層15が位置することで、母材鋼板11が無機質系被膜を有しないものであっても、張力付与絶縁被膜13の密着性を向上させることができる。 Generally, it is often difficult to improve the adhesion between metal and ceramics, but in the grain-oriented electrical steel sheet 1 according to this embodiment, the base material steel sheet 11 and Since the iron-based oxide layer 15 is positioned between the tension-applying insulating coating 13 and the tension-applying insulating coating 13, the adhesion of the tension-applying insulating coating 13 is improved even if the base steel plate 11 does not have an inorganic coating. be able to.

本実施形態に係る方向性電磁鋼板1において、上記のような鉄系酸化物層15の厚み(図1A及び図1Bにおける厚みd)は、100~500nmの範囲内とする。鉄系酸化物層15の厚みdが100nm未満である場合には、十分な密着性を実現することができない。一方、鉄系酸化物層15の厚みdが500nmを超える場合には、鉄系酸化物層15が厚くなりすぎて部分的に剥離する可能性が高くなる。本実施形態に係る方向性電磁鋼板1において、鉄系酸化物層15の厚みdは、150~400nmの範囲内とすることが好ましく、170~250nmの範囲内とすることがより好ましい。 In the grain-oriented electrical steel sheet 1 according to the present embodiment, the thickness of the iron-based oxide layer 15 (the thickness d 1 in FIGS. 1A and 1B) is set within the range of 100 to 500 nm. If the thickness d1 of the iron-based oxide layer 15 is less than 100 nm, sufficient adhesion cannot be achieved. On the other hand, if the thickness d1 of the iron-based oxide layer 15 exceeds 500 nm, the iron-based oxide layer 15 becomes too thick and is likely to partially peel off. In the grain-oriented electrical steel sheet 1 according to the present embodiment, the thickness d1 of the iron-based oxide layer 15 is preferably within the range of 150-400 nm, more preferably within the range of 170-250 nm.

なお、上記のような鉄系酸化物層15の厚みdは、例えば、X線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)を用い、本実施形態に係る方向性電磁鋼板1の断面について鉄-酸素間結合の分布を観測することで、特定することができる。すなわち、XPSにて、712eVに出現するFe-Oピークの強度と、708eVに出現する金属Feピークの強度に着目しながら、張力付与絶縁被膜13を除去した方向性電磁鋼板1の表面側から母材鋼板11側に向かってスパッタリングを行っていき、測定を開始した最表層から、712eVに出現するFe-Oピークの強度と、708eVに出現する金属Feピークの強度とが入れ替わる深さ方向位置までを、鉄系酸化物層15の厚みとすることができる。 Note that the thickness d 1 of the iron-based oxide layer 15 as described above can be obtained, for example, using X-ray Photoelectron Spectroscopy (XPS) for the cross section of the grain-oriented electrical steel sheet 1 according to the present embodiment. It can be identified by observing the distribution of iron-oxygen bonds. That is, in XPS, while paying attention to the intensity of the Fe—O peak appearing at 712 eV and the intensity of the metal Fe peak appearing at 708 eV, the grain-oriented electrical steel sheet 1 from which the tension-applying insulating coating 13 was removed was removed from the surface side. Sputtering is performed toward the material steel plate 11 side, and from the outermost layer where the measurement is started to the depth direction position where the intensity of the Fe—O peak appearing at 712 eV and the intensity of the metallic Fe peak appearing at 708 eV are replaced. can be taken as the thickness of the iron-based oxide layer 15 .

また、鉄系酸化物層15の主成分がどのような物質であるかは、X線結晶構造解析法やXPSにより分析を行うことで、特定することが可能である。本発明者らによるこれまでの測定結果から、鉄系酸化物層15は、主に酸化鉄を主成分とし、若干のシリカを含有していることが判明している。 Further, it is possible to specify what kind of substance the main component of the iron-based oxide layer 15 is by performing analysis using an X-ray crystal structure analysis method or XPS. From the results of measurements made by the present inventors so far, it has been found that the iron-based oxide layer 15 is mainly composed of iron oxide and contains a small amount of silica.

<母材鋼板11の厚みについて>
本実施形態に係る方向性電磁鋼板1において、母材鋼板11の厚み(図1における厚みd)は、特に限定されるものではなく、例えば、0.27mm以下とすることができる。一般に、方向性電磁鋼板において、鋼板の厚みが薄くなるほど張力付与絶縁被膜の密着性が低下することが多い。しかしながら、本実施形態に係る方向性電磁鋼板1では、上記のような鉄系酸化物層15が設けられることで、厚みdが0.27mm以下となる場合であっても張力付与絶縁被膜13の優れた密着性を保持することができる。
<Regarding the thickness of the base material steel plate 11>
In the grain-oriented electrical steel sheet 1 according to the present embodiment, the thickness of the base material steel sheet 11 (thickness d in FIG. 1) is not particularly limited, and can be, for example, 0.27 mm or less. In general, in grain-oriented electrical steel sheets, the thinner the steel sheet, the lower the adhesion of the tension-imparting insulating coating. However, in the grain-oriented electrical steel sheet 1 according to the present embodiment, by providing the iron-based oxide layer 15 as described above, even when the thickness d is 0.27 mm or less, the tension-applying insulating coating 13 is Excellent adhesion can be maintained.

また、本実施形態においては、厚みdが0.23mm以下と薄くなる場合であっても、上記のような張力付与絶縁被膜13の優れた密着性を保持することができる。本実施形態に係る方向性電磁鋼板1において、母材鋼板11の厚みdは、0.17~0.23mmの範囲内であることがより好ましい。なお、本実施形態に係る方向性電磁鋼板1における母材鋼板11の厚みdは、上述した範囲に制限されるものではない。 Moreover, in the present embodiment, even when the thickness d is as thin as 0.23 mm or less, the excellent adhesion of the tension-applying insulating coating 13 as described above can be maintained. In the grain-oriented electrical steel sheet 1 according to this embodiment, the thickness d of the base material steel sheet 11 is more preferably within the range of 0.17 to 0.23 mm. Note that the thickness d of the base material steel sheet 11 in the grain-oriented electrical steel sheet 1 according to this embodiment is not limited to the range described above.

以上説明したような本実施形態に係る方向性電磁鋼板は、母材鋼板11と張力付与絶縁被膜13との間に上記のような鉄系酸化物層15を有することで、張力付与絶縁被膜13の密着性をより一層向上させることが可能となり、また、例えば1.7T~1.9Tといった高磁場鉄損の極めて低い方向性電磁鋼板を実現することが可能となる。 The grain-oriented electrical steel sheet according to the present embodiment as described above has the iron-based oxide layer 15 as described above between the base steel sheet 11 and the tension-imparting insulating coating 13, so that the tension-imparting insulating coating 13 In addition, it is possible to realize a grain-oriented electrical steel sheet with extremely low high magnetic field iron loss of, for example, 1.7T to 1.9T.

なお、本実施形態に係る方向性電磁鋼板の示す磁束密度や鉄損等といった各種の磁気特性は、JIS C2550に規定されたエプスタイン法や、JIS C2556に規定された単板磁気特性測定法(Single Sheet Tester:SST)に則して、測定することが可能である。 Various magnetic properties such as magnetic flux density and iron loss exhibited by the grain-oriented electrical steel sheet according to the present embodiment can be measured by the Epstein method specified in JIS C2550 or the single plate magnetic property measurement method (single Sheet Tester: SST).

以上、本実施形態に係る方向性電磁鋼板について、詳細に説明した。 The grain-oriented electrical steel sheet according to the present embodiment has been described above in detail.

(方向性電磁鋼板の製造方法について)
続いて、図3を参照しながら、本実施形態に係る方向性電磁鋼板の製造方法について、詳細に説明する。図3は、本実施形態に係る方向性電磁鋼板の製造方法の流れの一例を示した流れ図である。
(Method for manufacturing grain-oriented electrical steel sheet)
Next, a method for manufacturing a grain-oriented electrical steel sheet according to this embodiment will be described in detail with reference to FIG. FIG. 3 is a flow chart showing an example of the flow of the method for manufacturing a grain-oriented electrical steel sheet according to this embodiment.

本実施形態に係る方向性電磁鋼板の製造方法では、先だって言及したように、表面に無機質系被膜を有しない方向性電磁鋼板(より詳細には、表面に無機質系被膜を有しない、仕上げ焼鈍後の方向性電磁鋼板)を、母材鋼板11として使用する。 In the method for producing a grain-oriented electrical steel sheet according to the present embodiment, as mentioned above, a grain-oriented electrical steel sheet having no inorganic coating on the surface (more specifically, no inorganic coating on the surface, after finish annealing grain-oriented electrical steel sheet) is used as the base material steel sheet 11 .

無機質系被膜を有しない方向性電磁鋼板を得るための方法については、特に限定されるものではなく、例えば、仕上げ焼鈍で塗布する焼鈍分離剤に無機質系被膜を形成しないものを用いてもよいし、一般的に用いられる焼鈍分離剤を用いて仕上げ焼鈍を行った後、生成した無機質系被膜を研削や酸洗等といった公知の方法で除去したものを用いてもよい。 The method for obtaining a grain-oriented electrical steel sheet having no inorganic coating is not particularly limited, and for example, an annealing separator applied in the final annealing that does not form an inorganic coating may be used. Alternatively, after performing finish annealing using a generally used annealing separator, the produced inorganic coating may be removed by a known method such as grinding or pickling.

ただし、上記のような方法のうち、無機質系被膜を形成しない焼鈍分離剤を用いて仕上げ焼鈍を実施する方法を用いる方が、制御が容易であり、かつ、鋼板表面状態も良好となるため、好適である。このような焼鈍分離剤として、例えば、MgOとAlの混合物にビスマス塩化物を含有させたもの、又は、MgOとAlの混合物にビスマス化合物と金属の塩素化合物を含有させたものを用いることが好ましい。 However, among the above methods, the method of carrying out finish annealing using an annealing separator that does not form an inorganic coating is easier to control and the surface condition of the steel sheet is better. preferred. Examples of such an annealing separator include a mixture of MgO and Al 2 O 3 containing bismuth chloride, or a mixture of MgO and Al 2 O 3 containing a bismuth compound and a metal chlorine compound. It is preferable to use a material.

ここで、上記のビスマス塩化物としては、例えば、オキシ塩化ビスマス(BiOCl)、三塩化ビスマス(BiCl)等を挙げることができる。また、上記のビスマス化合物としては、例えば、酸化ビスマス、水酸化ビスマス、硫化ビスマス、硫酸ビスマス、リン酸ビスマス、炭酸ビスマス、硝酸ビスマス、有機酸ビスマス、ハロゲン化ビスマス等を挙げることができ、金属の塩素化合物としては、例えば、塩化鉄、塩化コバルト、塩化ニッケル等を挙げることができる。また、ビスマス塩化物、又は、ビスマス化合物と金属の塩素化物の含有量については、特に限定するものではないが、MgOとAlの混合物100質量部に対して、3~15質量部程度とすることが好ましい。 Examples of the bismuth chloride include bismuth oxychloride (BiOCl) and bismuth trichloride (BiCl 3 ). Examples of the bismuth compound include bismuth oxide, bismuth hydroxide, bismuth sulfide, bismuth sulfate, bismuth phosphate, bismuth carbonate, bismuth nitrate, bismuth organic acid, and bismuth halide. Examples of chlorine compounds include iron chloride, cobalt chloride, and nickel chloride. In addition, the content of bismuth chloride or bismuth compound and metal chloride is not particularly limited, but about 3 to 15 parts by mass with respect to 100 parts by mass of the mixture of MgO and Al 2 O 3 It is preferable to

通常、方向性電磁鋼板を製造する場合には、仕上げ焼鈍後、余分に付着した焼鈍分離剤を洗浄により除去した上で、平坦化焼鈍を施す。本実施形態に係る方向性電磁鋼板の製造方法の特徴は、図3に示したように、無機質系被膜を有しない仕上げ焼鈍後の方向性電磁鋼板を用い、余剰の焼鈍分離剤を洗浄により除去(ステップS101)した後、特定濃度の酸(酸性混合溶液)を鋼板表面に塗布することで表面処理し(ステップS103)、酸化性雰囲気中で特定温度の加熱処理を行う(ステップS105)ことにある。これにより、無機質系被膜を有しない仕上げ焼鈍後の方向性電磁鋼板の表面に、上記のような鉄系酸化物を主体とする中間層(すなわち、上記の鉄系酸化物層)を形成させる。その後、鉄系酸化物層の形成された方向性電磁鋼板に対し、張力付与絶縁被膜を密着性よく形成させる(ステップS107)。 Generally, when a grain-oriented electrical steel sheet is produced, after finishing annealing, the excess annealing separating agent is removed by washing, and then flattening annealing is performed. As shown in FIG. 3, the method of manufacturing a grain-oriented electrical steel sheet according to the present embodiment is characterized in that, as shown in FIG. 3, a grain-oriented electrical steel sheet having no inorganic coating after finish annealing is used, and excess annealing separator is removed by washing. After (step S101), the surface of the steel sheet is treated by applying acid (acid mixed solution) of a specific concentration to the surface of the steel sheet (step S103), and heat treatment is performed at a specific temperature in an oxidizing atmosphere (step S105). be. As a result, an intermediate layer (that is, the above-mentioned iron-based oxide layer) mainly composed of the above-described iron-based oxide is formed on the surface of the grain-oriented electrical steel sheet having no inorganic coating after finish annealing. After that, a tension applying insulating coating is formed with good adhesion on the grain-oriented electrical steel sheet on which the iron-based oxide layer is formed (step S107).

<酸性混合溶液を用いた表面処理について>
ここで、表面処理に際して用いられる酸性混合溶液は、硫酸、硝酸、及び、リン酸の1種又は2種以上を含有し、合計の酸濃度が2~30質量%である、液温が70℃以上の混合溶液である。このような酸性混合溶液を用いて鋼板表面を軽くエッチングすることで、鋼板表面にエッチピットが形成され、更に、通常では得られない活性な表面状態を生成することが可能となる。鋼板表面に形成されるエッチピットが、図2に模式的に示したような微細構造17となる。
<Surface treatment using acidic mixed solution>
Here, the acidic mixed solution used for surface treatment contains one or more of sulfuric acid, nitric acid, and phosphoric acid, has a total acid concentration of 2 to 30% by mass, and has a liquid temperature of 70°C. It is the above mixed solution. By lightly etching the surface of the steel sheet using such an acidic mixed solution, etch pits are formed on the surface of the steel sheet, and it is possible to generate an active surface state that cannot normally be obtained. Etch pits formed on the surface of the steel sheet form fine structures 17 as schematically shown in FIG.

混合溶液の液温が70℃未満である場合には、酸性混合溶液の溶解度が低下して、沈殿物が生成する可能性が高まるだけでなく、効果的なエッチピットを得ることができない。混合溶液の液温は、好ましくは70~95℃の範囲内であり、より好ましくは80~85℃の範囲内である。 If the liquid temperature of the mixed solution is lower than 70° C., the solubility of the acidic mixed solution is lowered, which not only increases the possibility of forming precipitates but also makes it impossible to obtain effective etch pits. The liquid temperature of the mixed solution is preferably within the range of 70 to 95°C, more preferably within the range of 80 to 85°C.

また、酸性混合溶液の合計の酸濃度が2質量%未満である場合には、鋼板表面にエッチピットを形成させることができず、また、処理時間が長時間になって工業的に不利であり、酸性混合溶液の合計の酸濃度が30質量%を超える場合には、酸洗減量が過大となるため、好ましくない。酸性混合溶液の合計の酸濃度は、好ましくは5~15質量%の範囲内であり、更に好ましくは5~10質量%の範囲内である。 Further, when the total acid concentration of the acidic mixed solution is less than 2% by mass, etch pits cannot be formed on the surface of the steel sheet, and the processing time becomes long, which is industrially disadvantageous. If the total acid concentration of the acidic mixed solution exceeds 30% by mass, the pickling weight loss becomes excessive, which is not preferable. The total acid concentration of the acidic mixed solution is preferably within the range of 5 to 15% by mass, more preferably within the range of 5 to 10% by mass.

なお、上記のような酸性混合溶液による処理時間は、特に限定するものではない。上記のような酸性混合溶液を用いた処理は、かかる酸性混合溶液が保持された処理浴中に、鋼板を連続的に浸漬させることで実施されることが多いが、一般的な通板速度により鋼板を処理浴中に浸漬させることで、上記のような活性な表面状態を実現することができる。 In addition, the treatment time with the acidic mixed solution as described above is not particularly limited. The treatment using the acidic mixed solution as described above is often carried out by continuously immersing the steel sheet in a treatment bath containing such an acidic mixed solution. By immersing the steel sheet in the treatment bath, the active surface state as described above can be achieved.

<酸化性雰囲気中での加熱処理について>
また、上記のような鉄系酸化物層を形成するために、酸素濃度が1~21体積%であり、かつ、露点が-20~30℃である雰囲気中において、鋼板温度700~900℃で5~60秒間、表面処理後の方向性電磁鋼板を加熱処理することを、加熱処理の条件とする。
<Regarding heat treatment in an oxidizing atmosphere>
Further, in order to form the iron-based oxide layer as described above, in an atmosphere having an oxygen concentration of 1 to 21% by volume and a dew point of -20 to 30 ° C., the steel sheet temperature is 700 to 900 ° C. The heat treatment condition is to heat the surface-treated grain-oriented electrical steel sheet for 5 to 60 seconds.

酸素濃度が1体積%未満である場合には、鉄系酸化物層が形成されるのに時間が掛かり過ぎて、生産性が低下する。一方、酸素濃度が21体積%を超える場合には、生成する鉄系酸化物層が不均一になりやすくなり、好ましくない。雰囲気中の酸素濃度は、好ましくは2~21体積%の範囲内であり、より好ましくは15~21体積%の範囲内である。 If the oxygen concentration is less than 1% by volume, it takes too long to form the iron-based oxide layer, resulting in low productivity. On the other hand, if the oxygen concentration exceeds 21% by volume, the resulting iron-based oxide layer tends to be uneven, which is not preferable. The oxygen concentration in the atmosphere is preferably in the range of 2-21% by volume, more preferably in the range of 15-21% by volume.

雰囲気の露点が-20℃未満である場合には、鉄系酸化物層が形成されるのに時間が掛かり過ぎて、生産性が低下する。一方、雰囲気の露点が30℃を超える場合には、生成する鉄系酸化物層が不均一になりやすくなり、好ましくない。雰囲気中の露点は、好ましくは-10~25℃の範囲内であり、より好ましくは-10~20℃の範囲内である。 If the dew point of the atmosphere is less than −20° C., it takes too long to form the iron-based oxide layer, resulting in low productivity. On the other hand, if the dew point of the atmosphere exceeds 30° C., the generated iron-based oxide layer tends to be uneven, which is not preferable. The dew point in the atmosphere is preferably within the range of -10 to 25°C, more preferably within the range of -10 to 20°C.

加熱処理における鋼板温度が700℃未満である場合には、加熱時間を60秒としたとしても、十分な厚みの鉄系酸化物層を形成させることが困難となり、好ましくない。一方、鋼板温度が900℃を超える場合には、鉄系酸化物層が不均一になりやすいため、好ましくない。加熱処理における鋼板温度は、好ましくは750~800℃の範囲内である。 If the steel sheet temperature in the heat treatment is less than 700° C., even if the heating time is set to 60 seconds, it becomes difficult to form a sufficiently thick iron-based oxide layer, which is not preferable. On the other hand, if the steel sheet temperature exceeds 900°C, the iron-based oxide layer tends to become uneven, which is not preferable. The steel sheet temperature in the heat treatment is preferably within the range of 750 to 800°C.

また、加熱時間が5秒未満である場合には、生成する鉄系酸化物層が不均一になりやすく、好ましくない。一方、加熱時間が60秒を超える場合には、工業的にコスト高となるため、好ましくない。加熱時間は、好ましくは20~30秒の範囲内である。 Moreover, when the heating time is less than 5 seconds, the generated iron-based oxide layer tends to be uneven, which is not preferable. On the other hand, if the heating time exceeds 60 seconds, the industrial cost becomes high, which is not preferable. The heating time is preferably within the range of 20-30 seconds.

上記のような特定の酸性溶液を用いた表面処理の後に、上記のような加熱条件で加熱処理を施すことで、無機質系被膜を有しない方向性電磁鋼板の活性化された表面が酸化されていき、熱膨張率が金属と絶縁被膜の間に位置する鉄系酸化物層が形成される。方向性電磁鋼板の表面にエッチピットが形成され、かつ、好ましい熱膨張率を有する鉄系酸化物層が形成されて歪みが緩和されることで、張力付与絶縁被膜のより一層の密着性向上が実現され、高磁場鉄損の改善効果を発現させることができる。 After the surface treatment using the specific acidic solution as described above, heat treatment is performed under the heating conditions described above, so that the activated surface of the grain-oriented electrical steel sheet having no inorganic coating is oxidized. As a result, an iron-based oxide layer having a coefficient of thermal expansion between the metal and the insulating coating is formed. Etch pits are formed on the surface of the grain-oriented electrical steel sheet, and an iron-based oxide layer having a preferable coefficient of thermal expansion is formed to relax the strain, thereby further improving the adhesion of the tension-applying insulating coating. It is realized, and the effect of improving the high magnetic field iron loss can be expressed.

<張力付与絶縁被膜の形成について>
本実施形態に係る方向性電磁鋼板の製造方法において、張力付与絶縁被膜の形成工程については、特に限定されるものではなく、下記のような公知の絶縁被膜処理液を用いて、公知の方法により処理液の塗布及び乾燥を行えばよい。鋼板表面に張力付与絶縁被膜を形成することで、方向性電磁鋼板の磁気特性を更に向上させることが可能となる。
<Regarding the formation of tension-applying insulating coating>
In the method for producing a grain-oriented electrical steel sheet according to the present embodiment, the step of forming the tension-imparting insulating coating is not particularly limited, and a known method using a known insulating coating treatment liquid as described below. The treatment liquid may be applied and dried. By forming a tension-applying insulating coating on the surface of the steel sheet, it is possible to further improve the magnetic properties of the grain-oriented electrical steel sheet.

なお、絶縁被膜が形成される鋼板の表面は、処理液を塗布する前に、アルカリなどによる脱脂処理や、塩酸、硫酸、リン酸などによる酸洗処理など、任意の前処理を施してもよいし、これら前処理を施さずに仕上焼鈍後のままの表面であってもよい。 In addition, the surface of the steel sheet on which the insulating coating is formed may be subjected to any pretreatment such as degreasing treatment with alkali or pickling treatment with hydrochloric acid, sulfuric acid, phosphoric acid, etc. before applying the treatment liquid. However, the surface may be as it is after finish annealing without performing these pretreatments.

ここで、鋼板の表面に形成される張力付与絶縁被膜は、方向性電磁鋼板の張力付与絶縁被膜として用いられるものであれば、特に限定されるものではなく、公知の張力付与絶縁被膜を用いることが可能である。このような張力付与絶縁被膜として、例えば、リン酸塩及びコロイダルシリカを主たる素材とする被膜を挙げることができ、更には、無機物を主体とし、更に有機物を含んだ複合絶縁被膜を挙げることができる。ここで、複合絶縁被膜とは、例えば、クロム酸金属塩、リン酸金属塩又はコロイダルシリカ、Zr化合物、Ti化合物等の無機物の少なくとも何れかを主体とし、微細な有機樹脂の粒子が分散している絶縁被膜である。特に、近年ニーズの高まっている製造時の環境負荷低減の観点からは、リン酸金属塩やZrあるいはTiのカップリング剤、又は、これらの炭酸塩やアンモニウム塩を出発物質として用いた絶縁被膜が好ましく用いられる。 Here, the tension-applying insulating coating formed on the surface of the steel sheet is not particularly limited as long as it is used as a tension-applying insulating coating for grain-oriented electrical steel sheets, and a known tension-applying insulating coating may be used. is possible. Examples of such a tension-applying insulating coating include a coating containing phosphate and colloidal silica as main materials, and a composite insulating coating containing an inorganic substance as a main component and an organic substance. . Here, the composite insulating coating is mainly composed of, for example, at least one of inorganic substances such as metal chromate, metal phosphate, colloidal silica, Zr compound, Ti compound, etc., and fine organic resin particles are dispersed. It is an insulating film that has In particular, from the viewpoint of reducing the environmental impact during production, which has been in increasing demand in recent years, insulating coatings using metal phosphates, Zr or Ti coupling agents, or their carbonates or ammonium salts as starting materials. It is preferably used.

また、上記のような絶縁被膜形成工程に続いて、形状矯正のための平坦化焼鈍を施しても良い。鋼板に対して平坦化焼鈍を行うことで、更に鉄損を低減させることが可能となる。 Further, flattening annealing for shape correction may be performed following the insulating coating forming process as described above. By flattening the steel sheet, the iron loss can be further reduced.

以上、本実施形態に係る方向性電磁鋼板の製造方法について、詳細に説明した。 The method for manufacturing the grain-oriented electrical steel sheet according to the present embodiment has been described above in detail.

以下では、実施例及び比較例を示しながら、本発明に係る方向性電磁鋼板及び方向性電磁鋼板の製造方法について、具体的に説明する。なお、以下に示す実施例は、本発明に係る方向性電磁鋼板及び方向性電磁鋼板の製造方法のあくまでも一例にすぎず、本発明に係る方向性電磁鋼板及び方向性電磁鋼板の製造方法が、下記の例に限定されるものではない。 EXAMPLES Hereinafter, the grain-oriented electrical steel sheet and the method for manufacturing the grain-oriented electrical steel sheet according to the present invention will be specifically described while showing examples and comparative examples. The examples shown below are merely examples of the grain-oriented electrical steel sheet and the method for manufacturing the grain-oriented electrical steel sheet according to the present invention. It is not limited to the following examples.

(実験例1)
質量%で、C:0.08%、Si:3.23%、Al:0.028%、N:0.008%を含み、残部がFe及び不純物である鋼片(ケイ素鋼スラブ)を鋳造し、得られた鋼片を加熱後に熱間圧延して、板厚2.2mmの熱延鋼板とした。鋼板温度1100℃で5分間焼鈍した後、板厚0.22mmまで冷間圧延し、鋼板温度830℃で脱炭焼鈍を行った。その後、MgOとAlを主成分とし、ビスマス塩化物であるBiOClを10質量%含有する焼鈍分離剤を、脱炭焼鈍後の冷延鋼板の表面に塗布した後に乾燥させて、鋼板温度1200℃で20時間の仕上げ焼鈍を行った。仕上げ焼鈍後に水洗して、余剰の焼鈍分離剤を取り除いたところ、鋼板表面には、無機質系被膜は形成されていなかった。
(Experimental example 1)
Cast a steel slab (silicon steel slab) containing, by mass%, C: 0.08%, Si: 3.23%, Al: 0.028%, N: 0.008%, and the balance being Fe and impurities Then, the obtained steel slab was heated and then hot-rolled to obtain a hot-rolled steel sheet having a thickness of 2.2 mm. After annealing at a steel plate temperature of 1100°C for 5 minutes, the steel plate was cold-rolled to a thickness of 0.22 mm and decarburized at a steel plate temperature of 830°C. After that, an annealing separator containing MgO and Al 2 O 3 as main components and containing 10% by mass of BiOCl, which is a bismuth chloride, is applied to the surface of the cold-rolled steel sheet after decarburization annealing, and then dried. Finish annealing was performed at 1200° C. for 20 hours. After finishing annealing, the steel sheet was washed with water to remove excess annealing separating agent. As a result, no inorganic coating was formed on the surface of the steel sheet.

仕上げ焼鈍後の鋼板を、以下の表1に示すような酸性混合溶液中に浸漬させて、仕上げ焼鈍後の鋼板を表面処理し、続いて、以下の表1に示した条件下で、加熱処理を行った。その後、リン酸アルミニウムとコロイダルシリカを主成分とする水溶液を塗布し、850℃の炉中で1分間焼付け、鋼板表面に、リン酸塩及びコロイダルシリカを主たる素材とする張力付与絶縁被膜を、目付量4.5g/mで形成した。 The steel plate after finish annealing is immersed in an acidic mixed solution as shown in Table 1 below to surface-treat the steel plate after finish annealing, and then heat-treated under the conditions shown in Table 1 below. did After that, an aqueous solution containing aluminum phosphate and colloidal silica as main components is applied and baked in a furnace at 850°C for 1 minute to form a tension-imparting insulating coating mainly composed of phosphate and colloidal silica on the surface of the steel sheet. Formed in an amount of 4.5 g/m 2 .

このようにして製造された方向性電磁鋼板のそれぞれについて、XPSを用いて、上記の方法に則して鉄系酸化物層の厚みdを測定するとともに、X線結晶構造解析法により、鉄系酸化物層の主成分を特定した。また、JIS C2550に規定されたエプスタイン法により、レーザービームを照射し磁区細分化処理を施した後の高磁場鉄損(最大磁束密度が1.7T、又は、1.9Tの場合における、周波数50Hzのもとでの鉄損)を測定した。更に、以下の評価方法に従って、張力付与絶縁被膜の密着性を評価した。得られた結果を、以下の表2にまとめて示した。 For each of the grain-oriented electrical steel sheets thus produced, XPS was used to measure the thickness d1 of the iron-based oxide layer according to the above method, and the iron The main components of the system oxide layer were identified. In addition, according to the Epstein method specified in JIS C2550, the high magnetic field iron loss after irradiating the laser beam and applying the magnetic domain refining treatment (maximum magnetic flux density is 1.7 T or 1.9 T, frequency 50 Hz (iron loss under ) was measured. Furthermore, the adhesion of the tension-imparting insulating coating was evaluated according to the following evaluation method. The results obtained are summarized in Table 2 below.

(実験例2)
質量%で、C:0.08%、Si:3.25%、Al:0.025%、N:0.008%、Bi:0.005%、Mn:0.08%、Se:0.020%を含み、残部がFe及び不純物である鋼片(ケイ素鋼スラブ)を鋳造し、得られた鋼片を加熱後に熱間圧延して、板厚2.2mmの熱延鋼板とした。鋼板温度1100℃で5分間焼鈍した後、板厚0.22mmまで冷間圧延し、鋼板温度830℃で脱炭焼鈍を行った。その後、MgOとAlを主成分とし、ビスマス塩化物であるBiClを5%含有する焼鈍分離剤を、脱炭焼鈍後の冷延鋼板の表面に塗布した後に乾燥させて、鋼板温度1200℃で20時間の仕上げ焼鈍を行った。仕上げ焼鈍後に水洗して、余剰の焼鈍分離剤を取り除いたところ、鋼板表面には、無機質系被膜は形成されていなかった。
(Experimental example 2)
% by mass, C: 0.08%, Si: 3.25%, Al: 0.025%, N: 0.008%, Bi: 0.005%, Mn: 0.08%, Se: 0.08%. A steel slab (silicon steel slab) containing 020% and the balance being Fe and impurities was cast, and the obtained steel slab was heated and then hot-rolled to obtain a hot-rolled steel sheet having a thickness of 2.2 mm. After annealing at a steel plate temperature of 1100°C for 5 minutes, the steel plate was cold-rolled to a thickness of 0.22 mm and decarburized at a steel plate temperature of 830°C. After that, an annealing separator containing MgO and Al 2 O 3 as main components and containing 5% of bismuth chloride BiCl 3 is applied to the surface of the cold-rolled steel sheet after decarburization annealing, and then dried. Finish annealing was performed at 1200° C. for 20 hours. After finishing annealing, the steel sheet was washed with water to remove excess annealing separating agent. As a result, no inorganic coating was formed on the surface of the steel sheet.

仕上げ焼鈍後の鋼板を、以下の表1に示すような酸性混合溶液中に浸漬させて、仕上げ焼鈍後の鋼板を表面処理し、続いて、以下の表1に示した条件下で、加熱処理を行った。その後、リン酸アルミニウムとコロイダルシリカを主成分とする水溶液を塗布し、850℃の炉中で1分間焼付け、鋼板表面に、リン酸塩及びコロイダルシリカを主たる素材とする張力付与絶縁被膜を、目付量4.5g/mで形成した。 The steel plate after finish annealing is immersed in an acidic mixed solution as shown in Table 1 below to surface-treat the steel plate after finish annealing, and then heat-treated under the conditions shown in Table 1 below. did After that, an aqueous solution containing aluminum phosphate and colloidal silica as main components is applied and baked in a furnace at 850°C for 1 minute to form a tension-imparting insulating coating mainly composed of phosphate and colloidal silica on the surface of the steel sheet. Formed in an amount of 4.5 g/m 2 .

このようにして製造された方向性電磁鋼板のそれぞれについて、XPSを用いて、上記の方法に則して鉄系酸化物層の厚みdを測定するとともに、X線結晶構造解析法により、鉄系酸化物層の主成分を特定した。また、JIS C2550に規定されたエプスタイン法により、レーザービームを照射し磁区細分化処理を施した後の高磁場鉄損(最大磁束密度が1.7T、又は、1.9Tの場合における、周波数50Hzのもとでの鉄損)を測定した。更に、以下の評価方法に従って、張力付与絶縁被膜の密着性を評価した。得られた結果を、以下の表2にまとめて示した。 For each of the grain-oriented electrical steel sheets thus produced, XPS was used to measure the thickness d1 of the iron-based oxide layer according to the above method, and the iron The main components of the system oxide layer were identified. In addition, according to the Epstein method specified in JIS C2550, the high magnetic field iron loss after irradiating the laser beam and applying the magnetic domain refining treatment (maximum magnetic flux density is 1.7 T or 1.9 T, frequency 50 Hz (iron loss under ) was measured. Furthermore, the adhesion of the tension-imparting insulating coating was evaluated according to the following evaluation method. The results obtained are summarized in Table 2 below.

(実験例3)
質量%で、C:0.08%、Si:3.21%、Al:0.027%、N:0.008%を含み、残部がFe及び不純物である鋼片(ケイ素鋼スラブ)を鋳造し、得られた鋼片を加熱後に熱間圧延して、板厚2.2mmの熱延鋼板とした。鋼板温度1100℃で5分間焼鈍した後、板厚0.22mmまで冷間圧延した。得られた冷延鋼板を、昇温速度400℃/秒で鋼板温度850℃まで昇温した後、脱炭焼鈍を行った。その後、MgOを主成分とし、TiOを5質量%含有する焼鈍分離剤を、脱炭焼鈍後の冷延鋼板の表面に塗布した後に乾燥させて、鋼板温度1200℃で20時間の仕上げ焼鈍を行った。仕上げ焼鈍後に水洗して、余剰の焼鈍分離剤を取り除いたところ、鋼板表面には、フォルステライトを主体とする無機質系被膜が形成されていた。そこで、得られた鋼板に対して硫フッ酸処理を行い、完全に無機質系被膜を除去した。
(Experimental example 3)
Cast a steel slab (silicon steel slab) containing, in mass%, C: 0.08%, Si: 3.21%, Al: 0.027%, N: 0.008%, and the balance being Fe and impurities Then, the obtained steel slab was heated and then hot-rolled to obtain a hot-rolled steel sheet having a thickness of 2.2 mm. After annealing at a steel plate temperature of 1100° C. for 5 minutes, it was cold rolled to a plate thickness of 0.22 mm. The obtained cold-rolled steel sheet was heated to a steel sheet temperature of 850°C at a heating rate of 400°C/sec, and then subjected to decarburization annealing. After that, an annealing separator containing MgO as a main component and containing 5% by mass of TiO 2 is applied to the surface of the cold-rolled steel sheet after decarburization annealing, dried, and subjected to finish annealing at a steel sheet temperature of 1200 ° C. for 20 hours. gone. After the finish annealing, the steel sheet was washed with water to remove the excess annealing separator. Therefore, the obtained steel sheet was treated with sulfuric acid hydrofluoric acid to completely remove the inorganic coating.

無機質系被膜を除去した後の鋼板を、以下の表1に示すような酸性混合溶液中に浸漬させて、仕上げ焼鈍後の鋼板を表面処理し、続いて、以下の表1に示した条件下で、加熱処理を行った。その後、リン酸アルミニウムとコロイダルシリカを主成分とする水溶液を塗布し、850℃の炉中で1分間焼付け、鋼板表面に、リン酸塩及びコロイダルシリカを主たる素材とする張力付与絶縁被膜を、目付量4.5g/mで形成した。 The steel sheet after removing the inorganic coating is immersed in an acidic mixed solution as shown in Table 1 below to surface-treat the steel sheet after final annealing, and then under the conditions shown in Table 1 below. was subjected to heat treatment. After that, an aqueous solution containing aluminum phosphate and colloidal silica as main components is applied and baked in a furnace at 850°C for 1 minute to form a tension-imparting insulating coating mainly composed of phosphate and colloidal silica on the surface of the steel sheet. Formed in an amount of 4.5 g/m 2 .

このようにして製造された方向性電磁鋼板のそれぞれについて、XPSを用いて、上記の方法に則して鉄系酸化物層の厚みdを測定するとともに、X線結晶構造解析法により、鉄系酸化物層の主成分を特定した。また、JIS C2550に規定されたエプスタイン法により、レーザービームを照射し磁区細分化処理を施した後の高磁場鉄損(最大磁束密度が1.7T、又は、1.9Tの場合における、周波数50Hzのもとでの鉄損)を測定した。更に、以下の評価方法に従って、張力付与絶縁被膜の密着性を評価した。得られた結果を、以下の表2にまとめて示した。 For each of the grain-oriented electrical steel sheets thus produced, XPS was used to measure the thickness d1 of the iron-based oxide layer according to the above method, and the iron The main components of the system oxide layer were identified. In addition, according to the Epstein method specified in JIS C2550, the high magnetic field iron loss after irradiating the laser beam and applying the magnetic domain refining treatment (maximum magnetic flux density is 1.7 T or 1.9 T, frequency 50 Hz (iron loss under ) was measured. Furthermore, the adhesion of the tension-imparting insulating coating was evaluated according to the following evaluation method. The results obtained are summarized in Table 2 below.

<張力付与絶縁被膜の密着性評価>
なお、上記実験例1~実験例3において、張力付与絶縁被膜の密着性は、以下のようにして評価した。まず、各方向性電磁鋼板から、幅30mm×長さ300mmのサンプルを採取し、800℃で2時間、窒素気流中で歪取り焼鈍後、10mmφの円柱を用いた曲げ密着試験を行い、張力付与絶縁被膜の剥離度合いに応じて評価を行った。評価基準は、以下の通りであり、評点A及び評点Bを合格とした。
評点A:剥離無し
B:殆ど剥離していない
C:数mmの剥離が見られる
D:1/3~1/2の剥離が見られる
E:全面剥離
<Evaluation of Adhesion of Tensioning Insulating Coating>
In Experimental Examples 1 to 3 above, the adhesion of the tension-imparting insulating coating was evaluated as follows. First, a sample of width 30 mm x length 300 mm was taken from each grain-oriented electrical steel sheet, strain-relief annealed at 800 ° C. for 2 hours in a nitrogen stream, and subjected to a bending adhesion test using a 10 mmφ cylinder, and tension was applied. Evaluation was performed according to the degree of peeling of the insulating coating. The evaluation criteria were as follows, and grades A and B were considered acceptable.
Rating A: No peeling B: Virtually no peeling C: Several mm of peeling observed D: 1/3 to 1/2 peeling observed E: Whole surface peeling

Figure 0007265122000001
Figure 0007265122000001

Figure 0007265122000002
Figure 0007265122000002

上記のようなX線結晶構造解析法による解析の結果、上記の実験例1~実験例3において、本発明の実施例に該当するサンプルの鉄系酸化物層は、マグネタイト、ヘマタイト、及び、ファイアライトを主成分とするものであった。一方、加熱処理条件が本発明の範囲外となった比較例では、鉄系酸化物層の構成成分を特定できるほどの鉄系酸化物層は形成されず、また、表面処理条件が本発明の範囲外となった比較例では、鉄系酸化物層は、マグネタイト、ヘマタイト、及び、ファイアライトを主成分とするものではなかった。 As a result of the analysis by the X-ray crystal structure analysis method as described above, in the above Experimental Examples 1 to 3, the iron-based oxide layers of the samples corresponding to the examples of the present invention are magnetite, hematite, and fire. The main component was light. On the other hand, in the comparative examples in which the heat treatment conditions were outside the scope of the present invention, an iron-based oxide layer was not formed to the extent that the constituent components of the iron-based oxide layer could be specified, and the surface treatment conditions were not within the scope of the present invention. In Comparative Examples outside the range, the iron-based oxide layer did not contain magnetite, hematite, and fayalite as main components.

また、上記表2から明らかなように、各実験例において、本発明の実施例に該当するサンプルでは、張力付与絶縁被膜の密着性が極めて優れており、高磁場鉄損が改善されていることがわかる。一方、各実験例において、本発明の比較例に該当するサンプルでは、張力付与絶縁被膜の密着性が劣っており、また、高磁場鉄損も改善されていないことがわかる。 In addition, as is clear from Table 2 above, in each experimental example, the samples corresponding to the examples of the present invention exhibited extremely excellent adhesion of the tension-imparting insulating coating, and improved high magnetic field iron loss. I understand. On the other hand, in each of the experimental examples, the samples corresponding to the comparative examples of the present invention were inferior in the adhesion of the tension-imparting insulating coating, and the high magnetic field core loss was not improved.

図4は、実験例1~3における張力付与絶縁被膜の密着性と鉄系酸化物層の厚みとの関係を示したグラフ図である。図4から明らかなように、鉄系酸化物層の厚みが100nm未満となる場合には、張力付与絶縁被膜の密着性に関する評点は、C又はDとなっており、張力付与絶縁被膜に剥離が生じることがわかる。一方、鉄系酸化物層の厚みが100nm以上となる場合には、張力付与絶縁被膜の密着性に関する評点は、A又はBとなっており、優れた密着性が実現されており、また、鉄系酸化物層の厚みが厚いほど密着性も向上することがわかる。 FIG. 4 is a graph showing the relationship between the adhesion of the tension-imparting insulating coating and the thickness of the iron-based oxide layer in Experimental Examples 1-3. As is clear from FIG. 4, when the thickness of the iron-based oxide layer is less than 100 nm, the adhesion of the tension-applying insulating coating is C or D, indicating that the tension-applying insulating coating is peeled off. I know it will happen. On the other hand, when the thickness of the iron-based oxide layer is 100 nm or more, the score for the adhesion of the tension applying insulating coating is A or B, and excellent adhesion is realized. It can be seen that the thicker the base oxide layer is, the more the adhesion is improved.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention belongs can conceive of various modifications or modifications within the scope of the technical idea described in the claims. It is understood that these also naturally belong to the technical scope of the present invention.

1 方向性電磁鋼板
11 母材鋼板
13 張力付与絶縁被膜
15 鉄系酸化物層
17 微細構造(エッチピット)

REFERENCE SIGNS LIST 1 grain-oriented electrical steel sheet 11 base steel sheet 13 tension-imparting insulating coating 15 iron-based oxide layer 17 fine structure (etch pit)

Claims (5)

母材鋼板と、張力付与絶縁被膜とを備える方向性電磁鋼板において、
前記母材鋼板の表面には、エッチピットが存在し、
前記張力付与絶縁被膜が、前記方向性電磁鋼板の表面に存在し、
前記母材鋼板と前記張力付与絶縁被膜との間に、マグネタイト、ヘマタイト及びファイアライトを主成分とする、厚みが100~500nmの鉄系酸化物層が存在する、方向性電磁鋼板。
In a grain-oriented electrical steel sheet comprising a base material steel sheet and a tension-imparting insulating coating,
Etch pits are present on the surface of the base steel plate,
The tension-applying insulating coating is present on the surface of the grain-oriented electrical steel sheet,
A grain-oriented electrical steel sheet, wherein an iron-based oxide layer containing magnetite, hematite and fayalite as main components and having a thickness of 100 to 500 nm exists between the base steel sheet and the tension-imparting insulating coating.
記張力付与絶縁被膜は、リン酸塩及びコロイダルシリカを主たる素材とする被膜である、請求項1に記載の方向性電磁鋼板。 The grain-oriented electrical steel sheet according to claim 1 , wherein the tension-imparting insulating coating is a coating mainly composed of phosphate and colloidal silica. 前記母材鋼板の厚みが、0.27mm以下である、請求項1又は2に記載の方向性電磁鋼板。 The grain-oriented electrical steel sheet according to claim 1 or 2, wherein the base material steel sheet has a thickness of 0.27 mm or less. 表面に無機質系被膜を有しない仕上げ焼鈍後の方向性電磁鋼板を用い、
当該方向性電磁鋼板の表面を洗浄した後、硫酸、硝酸、及び、リン酸の1種又は2種以上を含有する、合計の酸濃度が2~30%であり、かつ、液温が70℃以上の混合溶液を前記方向性電磁鋼板の表面に塗布し、当該方向性電磁鋼板を、酸素濃度が1~21体積%であり、かつ、露点が-20~30℃である雰囲気中において、鋼板温度700~900℃で20~60秒間加熱処理し、
加熱処理後の前記方向性電磁鋼板の表面に張力付与絶縁被膜を形成する、方向性電磁鋼板の製造方法。
Using a grain-oriented electrical steel sheet after finish annealing that does not have an inorganic coating on the surface,
After washing the surface of the grain-oriented electrical steel sheet, the solution contains one or more of sulfuric acid, nitric acid, and phosphoric acid, has a total acid concentration of 2 to 30%, and has a liquid temperature of 70°C. The above mixed solution is applied to the surface of the grain-oriented electrical steel sheet, and the grain-oriented electrical steel sheet is placed in an atmosphere having an oxygen concentration of 1 to 21% by volume and a dew point of -20 to 30 ° C. The steel sheet Heat treatment at a temperature of 700 to 900 ° C. for 20 to 60 seconds,
A method for producing a grain-oriented electrical steel sheet, comprising forming a tension-applying insulating coating on the surface of the grain-oriented electrical steel sheet after heat treatment.
前記仕上げ焼鈍後の方向性電磁鋼板は、2~7質量%のSiを含有する鋼片を熱間圧延し、必要に応じて焼鈍を施し、1回の冷間圧延又は中間焼鈍を含む2回以上の冷間圧延を施し、脱炭焼鈍を施した後に、焼鈍分離剤として、MgOとAlの混合物にビスマス塩化物を含有させたもの、又は、MgOとAlの混合物にビスマス化合物と金属の塩素化合物を含有させたものを塗布して乾燥させた後、仕上げ焼鈍を施したものである、請求項4に記載の方向性電磁鋼板の製造方法。
The grain-oriented electrical steel sheet after the finish annealing is obtained by hot-rolling a steel slab containing 2 to 7% by mass of Si, annealing it if necessary, and performing cold rolling once or twice including intermediate annealing. After performing the above cold rolling and decarburizing annealing, a mixture of MgO and Al 2 O 3 containing bismuth chloride or a mixture of MgO and Al 2 O 3 is used as an annealing separator. 5. The method for producing a grain-oriented electrical steel sheet according to claim 4, wherein a material containing a bismuth compound and a metal chlorine compound is applied, dried, and then subjected to final annealing.
JP2019005235A 2019-01-16 2019-01-16 Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet Active JP7265122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019005235A JP7265122B2 (en) 2019-01-16 2019-01-16 Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019005235A JP7265122B2 (en) 2019-01-16 2019-01-16 Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2020111814A JP2020111814A (en) 2020-07-27
JP7265122B2 true JP7265122B2 (en) 2023-04-26

Family

ID=71665848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019005235A Active JP7265122B2 (en) 2019-01-16 2019-01-16 Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP7265122B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117098872A (en) 2021-04-06 2023-11-21 日本制铁株式会社 Grain-oriented electrical steel sheet and method for forming insulating film
EP4321635A1 (en) 2021-04-06 2024-02-14 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for forming insulating film
WO2022215709A1 (en) 2021-04-06 2022-10-13 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for forming insulating film
WO2023195518A1 (en) * 2022-04-06 2023-10-12 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and method for forming insulating film
WO2023195517A1 (en) * 2022-04-06 2023-10-12 日本製鉄株式会社 Grain-oriented electrical steel sheet and formation method for insulating coating film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249880A (en) 2001-02-22 2002-09-06 Nippon Steel Corp Method for forming insulating coating film of grain oriented electrical steel sheet
JP2003313644A (en) 2002-04-25 2003-11-06 Nippon Steel Corp Grain-oriented silicon steel sheet with insulative film for imparting tension superior in adhesiveness to steel sheet, and manufacturing method therefor
JP2018062682A (en) 2016-10-12 2018-04-19 新日鐵住金株式会社 Grain oriented silicon steel sheet and method for forming tension insulating coating thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213530A (en) * 1985-07-12 1987-01-22 Hitachi Ltd Simultaneously processing device for annealing and bluing electromagnetic sheet for closed type compressor
JPS6236803A (en) * 1985-07-15 1987-02-17 Nippon Steel Corp One directional electromagnetic steel plate with superior film adhesiveness and its manufacture
JP2671076B2 (en) * 1992-05-08 1997-10-29 新日本製鐵株式会社 Manufacturing method of ultra-low iron loss unidirectional electrical steel sheet
JP2679944B2 (en) * 1993-10-26 1997-11-19 新日本製鐵株式会社 Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH07216517A (en) * 1994-02-03 1995-08-15 Nippon Steel Corp Silicon steel sheet with high magnetic flux density and low iron loss for high frequency use
JPH08203718A (en) * 1994-10-04 1996-08-09 Nisshin Steel Co Ltd Soft magnetic material having insulating film and manufacture thereof
JP3551517B2 (en) * 1995-01-06 2004-08-11 Jfeスチール株式会社 Oriented silicon steel sheet with good magnetic properties and method for producing the same
JPH08337824A (en) * 1995-06-08 1996-12-24 Nippon Steel Corp Production of silicon steel sheet for laminated silicon steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249880A (en) 2001-02-22 2002-09-06 Nippon Steel Corp Method for forming insulating coating film of grain oriented electrical steel sheet
JP2003313644A (en) 2002-04-25 2003-11-06 Nippon Steel Corp Grain-oriented silicon steel sheet with insulative film for imparting tension superior in adhesiveness to steel sheet, and manufacturing method therefor
JP2018062682A (en) 2016-10-12 2018-04-19 新日鐵住金株式会社 Grain oriented silicon steel sheet and method for forming tension insulating coating thereof

Also Published As

Publication number Publication date
JP2020111814A (en) 2020-07-27

Similar Documents

Publication Publication Date Title
JP7265122B2 (en) Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP7040888B2 (en) Method of forming a tension insulating film for grain-oriented electrical steel sheets and grain-oriented electrical steel sheets
CN113396242B (en) Grain-oriented electrical steel sheet, method for forming insulating film on grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
KR102577485B1 (en) Manufacturing method of grain-oriented electrical steel sheet
RU2767356C1 (en) Method for producing a sheet of electrotechnical steel with oriented grain structure
JP3551517B2 (en) Oriented silicon steel sheet with good magnetic properties and method for producing the same
CN111902555A (en) Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
JP4018878B2 (en) Method for forming insulating coating on grain-oriented electrical steel sheet
JP7196622B2 (en) Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
WO2020149329A1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing same
JP7519913B2 (en) Grain-oriented electrical steel sheets and steel sheets that are the base material for grain-oriented electrical steel sheets
JP3412959B2 (en) Method for producing mirror-oriented silicon steel sheet with low iron loss
KR102613708B1 (en) Grain-oriented electrical steel sheet and its manufacturing method
CN113396231B (en) Grain-oriented electrical steel sheet, method for forming insulating film on grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
RU2776246C1 (en) Anisotropic electrical steel sheet and its production method
WO2022215714A1 (en) Grain-oriented electrical steel sheet and method for forming insulating film
WO2023195517A1 (en) Grain-oriented electrical steel sheet and formation method for insulating coating film
BR112021013519A2 (en) METHOD TO PRODUCE ORIENTED GRAIN ELECTRIC STEEL SHEET
BR112021013546A2 (en) METHOD TO PRODUCE ELECTRIC STEEL SHEET WITH ORIENTED GRAIN
BR112021013547A2 (en) METHOD TO PRODUCE AN ORIENTED GRAIN ELECTRIC STEEL SHEET
BR112021013773A2 (en) METHOD TO PRODUCE AN ORIENTED GRAIN ELECTRIC STEEL SHEET
JP2000160352A (en) Tension insulating film treating equipment for grain oriented silicon steel sheet

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190426

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230327

R151 Written notification of patent or utility model registration

Ref document number: 7265122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151