JP6844110B2 - Manufacturing method of grain-oriented electrical steel sheet and manufacturing method of original sheet for grain-oriented electrical steel sheet - Google Patents
Manufacturing method of grain-oriented electrical steel sheet and manufacturing method of original sheet for grain-oriented electrical steel sheet Download PDFInfo
- Publication number
- JP6844110B2 JP6844110B2 JP2016014136A JP2016014136A JP6844110B2 JP 6844110 B2 JP6844110 B2 JP 6844110B2 JP 2016014136 A JP2016014136 A JP 2016014136A JP 2016014136 A JP2016014136 A JP 2016014136A JP 6844110 B2 JP6844110 B2 JP 6844110B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- annealing
- manufacturing
- forsterite
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Chemical Treatment Of Metals (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、皮膜密着性及び耐錆性を改善した一方向性電磁鋼板を得るための製造方法に関する。
The present invention relates to a manufacturing method for obtaining a unidirectional electrical steel sheet having improved film adhesion and rust resistance.
通常、一方向性電磁鋼板の表面には2層の皮膜を形成し、鋼板に張力を付与することで単板としての磁気特性を改善するとともに積層して磁気部材を構成する際の鋼板間の絶縁性を高めて部材の磁気効率を高めている。皮膜の内、母鋼板側のいわば下地皮膜となるグラス皮膜はフォルステライトを主体とする酸化物であり、これ自身が張力付与や絶縁性に寄与するが、上層の絶縁皮膜の密着性を確保するという重要な役割を持つ。このグラス皮膜に関しては、特に凹凸、根、皮膜厚さといったグラス皮膜の形成状態の構造が密着性と密接に関係していることが知られている。 Normally, a two-layer film is formed on the surface of a unidirectional electromagnetic steel sheet, and tension is applied to the steel sheet to improve the magnetic properties as a single sheet and between the steel sheets when laminated to form a magnetic member. The insulation is improved to improve the magnetic efficiency of the members. Of the films, the glass film, which is the base film on the mother steel plate side, is an oxide mainly composed of forsterite, which itself contributes to tension application and insulation, but ensures the adhesion of the upper insulation film. Has an important role. Regarding this glass film, it is known that the structure of the glass film in the formed state such as unevenness, roots, and film thickness is closely related to the adhesion.
また、製品が海外の需要家へ納入される場合、温度や湿度など鋼板にとって過酷な輸送環境下に長期間保管されることが多い。そのため錆などが発生し、需要家から外観のみならず製品磁性への影響が懸念されることがしばしば存在する。これは皮膜の密着性が低く、製品板の取り扱いにおいて皮膜に発生するわずかなクラックなどが問題となる他、皮膜の緻密さや均一性など、水分の透過に対する湿潤環境からの保護膜としての機能が重要となる。 In addition, when products are delivered to overseas customers, they are often stored for a long period of time in a harsh transportation environment for steel sheets such as temperature and humidity. As a result, rust or the like is generated, and there are often concerns from consumers about not only the appearance but also the magnetism of the product. This has low adhesion of the film, and there are problems such as slight cracks that occur in the film when handling the product board, and it also functions as a protective film from a wet environment such as the density and uniformity of the film against moisture permeation. It becomes important.
グラス皮膜に関する既存技術としては、例えば特許文献1(特開昭62−156226号公報)では、高温焼成したMgOの最表層のみを気相中で処理することにより水和層を形成して、MgOの反応性を高め、含有水分を減少させることで、絶縁性を向上させるという技術開示がなされている。また耐錆性を改善する手段として、特許文献2(特開平9−256164号公報)では、鋼表面に、ほう酸アルミニウムを主体とする皮膜を形成するにあたり、アルカリ金属化合物及びアルカリ土類金属化合物のうち一種または二種と、希土類金属化合物およびジルコニウム、ハフニウムのうち一種または二種以上の混合物とを添加する技術が開示されている。
しかし、これらの従来技術では、張力(磁気特性)、密着性、耐錆性の両立において改善の余地がある。
As an existing technique relating to a glass film, for example, in Patent Document 1 (Japanese Unexamined Patent Publication No. 62-156226), a hydrated layer is formed by treating only the outermost layer of MgO fired at a high temperature in a gas phase to form an MgO. There is a technical disclosure that the insulation property is improved by increasing the reactivity of the above and reducing the water content. Further, as a means for improving rust resistance, in Patent Document 2 (Japanese Unexamined Patent Publication No. 9-256164), when forming a film mainly composed of aluminum borate on the steel surface, alkali metal compounds and alkaline earth metal compounds are used. A technique for adding one or two of them and a mixture of a rare earth metal compound and one or more of zirconium and hafnium is disclosed.
However, in these conventional techniques, there is room for improvement in both tension (magnetic characteristics), adhesion, and rust resistance.
本発明は、グラス皮膜の構造を制御し、付与張力、密着性と耐錆性を両立した一方向性電磁鋼板の製造方法及び一方向性電磁鋼板用原板の製造方法を提供することを目的とする。
An object of the present invention is to provide a method for producing a unidirectional electrical steel sheet and a method for producing an original sheet for grain-oriented electrical steel sheet, which controls the structure of the glass film and has both applied tension, adhesion and rust resistance. To do.
本発明者は製造プロセスと皮膜特性の関連を検討したところ、脱炭焼鈍の前処理として熱処理を行うと密着性と耐錆性が向上する場合があることを知見した。さらにその前処理の条件を詳細に検討すると、特に高露点で短時間の熱処理とすると皮膜に関する特性が向上することがわかった。そして、この効果は特に脱炭焼鈍中の酸化初期の酸化挙動を変えると脱炭焼鈍全体で形成される酸化層の形態が変化し、それがその後の仕上げ焼鈍で形成されるグラス皮膜の形態に影響を及ぼすことに起因していると考えられた。この熱処理を工業的に実施する手段を検討し、脱炭焼鈍の昇温を高露点、急速加熱し、さらに脱炭初期を低露点、短時間だけ高温で実施すると同等の効果が得られることを確認し、本発明を完成した。具体的には以下のものである。 The present inventor examined the relationship between the manufacturing process and the film properties, and found that heat treatment as a pretreatment for decarburization annealing may improve adhesion and rust resistance. Further examination of the pretreatment conditions in detail revealed that the properties related to the film were improved, especially when the heat treatment was performed for a short time at a high dew point. And this effect changes the morphology of the oxide layer formed in the whole decarburization annealing, especially when the oxidation behavior at the initial stage of oxidation during decarburization annealing is changed, and it becomes the morphology of the glass film formed in the subsequent finish annealing. It was thought to be due to the influence. Considering the means to carry out this heat treatment industrially, it was found that the same effect can be obtained by raising the temperature of decarburization annealing at a high dew point and rapid heating, and then performing the initial decarburization at a low dew point and a high temperature for a short time. After confirmation, the present invention was completed. Specifically, it is as follows.
(1)
絶縁皮膜と母鋼板の間に平均粒径が0.6μm以上、2.0μm以下のフォルステライトを主体とする皮膜を有し、前記フォルステライトを主体とする皮膜のフォルステライトの粒径分布の標準偏差が0.6μm以下である一方向性電磁鋼板の製造方法であって、
鋼スラブを熱延し、必要により熱延板を焼鈍し、最終製品厚まで冷延し、脱炭焼鈍し、必要により窒化焼鈍し、最終仕上げ焼鈍し、絶縁皮膜処理して製造される一方向性電磁鋼板の製造プロセスにおいて、脱炭焼鈍での昇温を、雰囲気のPH2 O/PH2 :0.65〜3.0、加熱速度≧100℃/s以上、加熱温度≧800℃以上で実施し、750℃以上での滞在時間≦5秒として引き続き、脱炭を、雰囲気のP(H2 O)/P(H2 ):0.25〜0.6、最高到達温度Y:700〜900℃、Y−30℃超での滞在時間≦4秒、最高温度到達後のY−30℃〜Y−85℃での滞留時間≧10秒 で実施とすることを特徴とする、一方向性電磁鋼板の製造方法。
( 1 )
A forsterite-based film having an average particle size of 0.6 μm or more and 2.0 μm or less is provided between the insulating film and the mother steel sheet, and the standard deviation of the forsterite particle size distribution of the forsterite-based film is A method for manufacturing a unidirectional electromagnetic steel sheet having a size of 0.6 μm or less.
One-way manufacturing by hot-rolling steel slabs, annealing hot-rolled plates if necessary, cold-rolling to final product thickness, decarburization annealing, nitriding annealing if necessary, final finish annealing, insulation coating treatment In the manufacturing process of sex electromagnetic steel sheets, the temperature rise by decarburization annealing is performed at an atmosphere of PH 2 O / PH 2 : 0.65 to 3.0, a heating rate of ≥100 ° C / s, and a heating temperature of ≥800 ° C. The decarburization was continued with the residence time at 750 ° C. or higher ≤ 5 seconds, and the atmosphere P (H 2 O) / P (H 2 ): 0.25 to 0.6, the maximum temperature reached Y: 700 to. 900 ° C., residence time ≦ 4 seconds at Y-30 ° C. greater, characterized in that as in a residence time ≧ 10 seconds at Y-30 ℃ ~Y-85 ℃ after maximum temperature, unidirectional Manufacturing method of electromagnetic steel plate.
(2)
母鋼板の表面に平均粒径が0.6μm以上、2.0μm以下のフォルステライトを主体とする皮膜を有し、前記フォルステライトを主体とする皮膜のフォルステライトの粒径分布の標準偏差が0.6μm以下である一方向性電磁鋼板用原板の製造方法であって、
鋼スラブを熱延し、必要により熱延板を焼鈍し、最終製品厚まで冷延し、脱炭焼鈍し、必要により窒化焼鈍し、最終仕上げ焼鈍して製造される一方向性電磁鋼板用原板の製造プロセスにおいて、脱炭焼鈍での昇温を、雰囲気のP(H2 O)/P(H2 ):0.65〜3.0、加熱速度≧100℃/s以上、加熱温度≧800℃以上で実施し、750℃以上での滞在時間≦5秒として引き続き、脱炭を、雰囲気のP(H2 O)/P(H2 ):0.25〜0.6、最高到達温度Y:700〜810℃、Y−30℃超での滞在時間≦4秒、最高温度到達後のY−30℃〜Y−85℃での滞留時間≧10秒 で実施とすることを特徴とする、一方向性電磁鋼板用原板の製造方法。
( 2 )
The surface of the base steel sheet has a forsterite-based film with an average particle size of 0.6 μm or more and 2.0 μm or less, and the standard deviation of the forsterite particle size distribution of the forsterite-based film is 0.6 μm. The following method for manufacturing a unidirectional electromagnetic steel sheet original plate.
Original plate for unidirectional electromagnetic steel plate manufactured by hot-rolling a steel slab, annealing the hot-rolled plate if necessary, cooling it to the final product thickness, decarburizing and annealing, nitriding and annealing if necessary, and final finish annealing. In the manufacturing process of, the temperature rise by decarburization annealing is adjusted to P (H 2 O) / P (H 2 ) in the atmosphere: 0.65 to 3.0, heating rate ≥ 100 ° C / s, heating temperature ≥ 800. It was carried out at ℃ or higher, and the residence time at 750 ℃ or higher was ≤5 seconds, and then decarburization was continued with P (H 2 O) / P (H 2 ) in the atmosphere: 0.25 to 0.6, and the maximum temperature reached Y. : The period of stay at 700 to 810 ° C. and above Y-30 ° C. ≤ 4 seconds, and the residence time at Y-30 ° C. to Y-85 ° C. after reaching the maximum temperature ≥ 10 seconds . Manufacturing method of original plate for unidirectional electromagnetic steel plate.
本発明によれば、緻密で均一なグラス皮膜を有する、付与張力、密着性と耐錆性を両立した一方向性電磁鋼板、一方向性電磁鋼板用原板、及びそれらの製造方法が得られる。 According to the present invention, a unidirectional electrical steel sheet having a dense and uniform glass film and having both applied tension, adhesion and rust resistance, a master plate for unidirectional electrical steel sheet, and a method for producing the same can be obtained.
以下、本発明の実施の形態について説明する。
(製品の特徴)
本発明鋼の観察事例として、従来鋼と発明鋼における鋼板表面組織の観察例を図1(右図が従来鋼、左図が発明鋼)に示す。図1は、脱炭焼鈍の昇温を露点80℃または0℃の雰囲気にて、加熱速度180℃/sまたは50℃/sで実施した脱炭板に焼鈍分離剤を塗布し、仕上げ焼鈍を実施した後の鋼板の表面組織である。鋼板表面は、脱炭焼鈍で形成されていたSiO2主体の酸化物と、塗布した焼鈍分離剤中に含有されていたMgOが反応して形成されたグラス皮膜で覆われている。
Hereinafter, embodiments of the present invention will be described.
(Product features)
As an observation example of the steel of the present invention, FIG. 1 shows an example of observing the surface structure of the steel sheet in the conventional steel and the invention steel (the right figure is the conventional steel and the left figure is the invention steel). In FIG. 1, an annealing separator was applied to a decarburized plate in which the temperature of decarburization annealing was raised at a dew point of 80 ° C. or 0 ° C. at a heating rate of 180 ° C./s or 50 ° C./s, and finish annealing was performed. It is the surface structure of the steel sheet after it is carried out. The surface of the steel sheet is covered with a glass film formed by the reaction of the SiO 2-based oxide formed by decarburization annealing and MgO contained in the applied annealing separator.
詳細は不明であるが、このようなグラス皮膜の変化は脱炭時の酸化により脱炭板の表層に形成するSiO2などの酸化物の形態変化が起因になっていると考えられる。脱炭板については、露点や加熱速度に関わらず、ガス分析による酸素量は1000ppm程度と大きな変化が見られない。しかし高露点、高加熱速度とした脱炭板の方がSiO2などの酸化物が存在する酸化層が厚く、酸化物の形態も複雑になる傾向が見られる。このような変化は、急速な高温中での熱処理では、高温状態において鋼板表面への酸素の導入が進み易くなり、結果として酸化挙動が変化したため生じたものと思われる。このような脱炭板における酸化膜の変化が、結果として仕上げ焼鈍で形成されるグラス皮膜の緻密で均一な構造形成に寄与するものと考えている。グラス被膜の緻密さや均一さが密着性に影響する原因は必ずしも明らかではないが、グラス被膜の粒径が小さくなり緻密かつ均一なフォルステライトで形成されると、グラス皮膜と母鋼板との界面のミクロな凹凸も微細かつ均一になり、接触面積が増加するとともに鋼板変形時の応力集中も小さくなり耐剥離性が向上することが期待される。緻密さは、従来から知られ制御されているグラス皮膜と母鋼板との界面のマクロな凹凸の深さや皮膜自体の厚みなどに加え、皮膜特性を制御するための重要な要因であると考えられる。 Although the details are unknown, it is considered that such a change in the glass film is caused by a change in the morphology of oxides such as SiO 2 formed on the surface layer of the decarburized plate due to oxidation during decarburization. Regarding the decarburized plate, the amount of oxygen by gas analysis does not change significantly to about 1000 ppm regardless of the dew point and heating rate. However, the decarburized plate having a high dew point and a high heating rate tends to have a thicker oxide layer in which oxides such as SiO 2 are present, and the form of the oxides tends to be complicated. It is considered that such a change was caused by the rapid introduction of oxygen to the surface of the steel sheet in the high temperature state in the heat treatment at a high temperature, and as a result, the oxidation behavior was changed. It is believed that such changes in the oxide film on the decarburized plate contribute to the formation of a dense and uniform structure of the glass film formed by finish annealing as a result. The reason why the fineness and uniformity of the glass film affects the adhesion is not always clear, but when the particle size of the glass film becomes small and it is formed of dense and uniform forsterite, the interface between the glass film and the mother steel sheet It is expected that the micro-concavities and convexities will be fine and uniform, the contact area will increase, the stress concentration during steel plate deformation will decrease, and the peeling resistance will improve. Denseness is considered to be an important factor for controlling the film characteristics, in addition to the depth of macro unevenness at the interface between the glass film and the mother steel sheet, which has been known and controlled in the past, and the thickness of the film itself. ..
そして、このようなグラス皮膜であれば、付与張力も大きく磁気特性向上に寄与するばかりでなく、グラス皮膜の母鋼板への密着性が高く、その上に塗布される絶縁皮膜の密着性も向上するため高い張力を発生させる絶縁皮膜の塗布が可能となり、さらに皮膜のクラックなどの欠陥発生を回避するとともに、水分の透過を抑制することで耐錆性も良好なものとなるのである。 With such a glass film, not only the applied tension is large and it contributes to the improvement of magnetic characteristics, but also the adhesion of the glass film to the mother steel plate is high, and the adhesion of the insulating film applied on the glass film is also improved. As a result, an insulating film that generates high tension can be applied, and defects such as cracks in the film can be avoided, and moisture permeation can be suppressed to improve rust resistance.
本発明では、製品板(一方向性電磁鋼板)としては絶縁皮膜と母鋼板の間に粒径が2.0μm以下のフォルステライトを主体とする皮膜を有することを、中間製品(一方向性電磁鋼板用原板)としては、母鋼板の表面に粒径が2.0μm以下のフォルステライトを主体とする皮膜を有することを特徴とする。 In the present invention, the product plate (unidirectional steel sheet) has an intermediate product (unidirectional steel sheet) having a film mainly composed of forsterite having a particle size of 2.0 μm or less between the insulating film and the mother steel sheet. The original sheet) is characterized by having a film mainly composed of forsterite having a particle size of 2.0 μm or less on the surface of the base steel sheet.
ここで「フォルステライトを主体とする皮膜」は一般的には「グラス皮膜」と呼ばれているものであり、本発明では単に「グラス皮膜」として記述する場合もある。グラス皮膜は、例えば、フォルステライト(Mg2SiO4)、スピネル(MgAl2O4)、または、コーディエライト(Mg2Al4Si5O16)などの複合酸化物によって構成されている。詳細は後述するが、グラス皮膜は、一方向性電磁鋼板の製造プロセスの1つである仕上げ焼鈍工程において、鋼板に焼き付きが発生することを防止するために形成された皮膜である。 Here, the "film mainly composed of forsterite" is generally called a "glass film", and in the present invention, it may be simply described as a "glass film". The glass film is composed of a composite oxide such as forsterite (Mg 2 SiO 4 ), spinel (Mg Al 2 O 4 ), or cordierite (Mg 2 Al 4 Si 5 O 16). The details will be described later, but the glass film is a film formed to prevent seizure of the steel sheet in the finish annealing step, which is one of the manufacturing processes of the unidirectional electromagnetic steel sheet.
本発明ではこれらの不可避的に形成される複合酸化物などを含めて、「フォルステライトを主体とする皮膜」とし、その皮膜の観察において、粒径として観察されるものを「フォルステライトの粒径」とする。 In the present invention, including these unavoidably formed composite oxides, a "forsterite-based film" is defined, and in the observation of the film, what is observed as the particle size is "forsterite particle size". ".
本発明において、「フォルステライトを主体とする」とは、皮膜中におけるフォルステライトの比率が50%以上であることを意味する。フォルステライトの比率の確認方法は、皮膜の粒径観察面をSEM−EDSによりMg、Mn、Si、Al、Oについてマッピングした際、Mg、Si、Oが同時に検出される(Al、Mnも検出されても良い)領域を「フォルステライト」と判断し、この領域の面積率が50%以上である場合に、「フォルステライトを主体とする」と判断する。なお、フォルステライトと判断されないスピネル、コーディエライトなどの含有量、形態などについては特に規定はない。 In the present invention, "mainly forsterite" means that the ratio of forsterite in the film is 50% or more. The method for confirming the ratio of forsterite is that when the particle size observation surface of the film is mapped for Mg, Mn, Si, Al, and O by SEM-EDS, Mg, Si, and O are detected at the same time (Al and Mn are also detected). The area (which may be) is determined to be "forsterite", and when the area ratio of this area is 50% or more, it is determined to be "mainly forsterite". There is no particular regulation on the content and form of spinel, cordierite, etc. that are not judged to be forsterite.
製品においてはこのグラス皮膜がさらに上層に形成される絶縁皮膜と母鋼板の間に存在する形態となる。この構成自体は特に本発明で新たに規定されるものではなく一般的な構成である。 In the product, this glass film is formed between the insulating film formed on the upper layer and the mother steel sheet. This configuration itself is not particularly newly defined in the present invention, but is a general configuration.
絶縁皮膜は、例えば、コロイダルシリカ及びリン酸塩を含有し、電気的絶縁性だけでなく、張力、耐食性及び耐熱性等を鋼板に与える役割を担っている。これも本発明で特に限定するものでなく公知の絶縁皮膜であればよい。 The insulating film contains, for example, colloidal silica and phosphate, and plays a role of imparting not only electrical insulation but also tension, corrosion resistance, heat resistance and the like to the steel sheet. This is also not particularly limited in the present invention, and any known insulating film may be used.
本発明で特に重要となるのはグラス皮膜の形態である。本発明ではグラス皮膜の平均粒径を2.0μm以下とする。好ましくは0.01〜1.5μm、さらに好ましくは0.05〜1.0μmである。これは通常のグラス皮膜粒子が5μm前後であるのに対して小さい。本発明ではグラス皮膜の緻密さ、均一さを高めることで張力、密着性、耐錆性が向上していると考えれらるため、細かいほど好ましい。一方で実用的な雰囲気制御や加熱速度制御が困難となるため、下限を0.01μmまたは0.05μmと設定する。 Of particular importance in the present invention is the form of the glass film. In the present invention, the average particle size of the glass film is 2.0 μm or less. It is preferably 0.01 to 1.5 μm, more preferably 0.05 to 1.0 μm. This is small compared to normal glass film particles of around 5 μm. In the present invention, it is considered that the tension, adhesion, and rust resistance are improved by increasing the density and uniformity of the glass film, and therefore, the finer the thickness, the more preferable. On the other hand, practical atmosphere control and heating rate control become difficult, so the lower limit is set to 0.01 μm or 0.05 μm.
粒径分布の標準偏差は、0.6μm以下とする。これはグラス皮膜をより緻密な構造とし、鋼板製造後の雰囲気からの水分透過を抑制し、母鋼板からの発錆を抑えるためである。好ましくは0.4μm以下、さらに好ましくは0.2μm以下である。 The standard deviation of the particle size distribution shall be 0.6 μm or less. This is because the glass film has a more dense structure, moisture permeation from the atmosphere after steel sheet production is suppressed, and rusting from the mother steel sheet is suppressed. It is preferably 0.4 μm or less, more preferably 0.2 μm or less.
ここで、グラス皮膜組織は、一方向性電磁鋼板(製品板)については表面の絶縁皮膜を剥離した鋼板について、一方向性電磁鋼板用原板(中間製品板)については仕上げ焼鈍直後の鋼板について、表面のグラス皮膜をSEMにて観察する。 Here, the glass film structure is as follows: For unidirectional electromagnetic steel sheets (product plates), for steel sheets from which the insulating film on the surface has been peeled off, for unidirectional electromagnetic steel sheets (intermediate product plates), for steel sheets immediately after finish annealing. Observe the glass film on the surface with SEM.
なお、絶縁皮膜は、例えば、絶縁皮膜を有する方向性電磁鋼板を、NaOH:10質量%+H2O:90質量%の水酸化ナトリウム水溶液に、80℃で15分間、浸漬して洗浄する。最後に、温風のブロアーで1分間弱、乾燥させる方法によって除去することができる。このように絶縁被膜を剥離した後の鋼板で観察するグラス皮膜表面は、本発明で規定する特徴に関しては、絶縁被膜を形成する前のグラス皮膜の状態がほぼそのまま観察される。つまり、本発明において製品板で得られるグラス皮膜の状態は、絶縁被膜形成前の中間製品である仕上げ焼鈍後の鋼板において達成されているものである。 The insulating film is, for example, a grain-oriented electrical steel sheet having an insulation coating, NaOH: 10% by mass + H 2 O: to 90% by weight aqueous sodium hydroxide, 15 minutes at 80 ° C., washed immersed in. Finally, it can be removed by a method of drying with a warm air blower for a little less than 1 minute. As for the glass film surface observed on the steel sheet after the insulating film is peeled off in this way, the state of the glass film before forming the insulating film is observed almost as it is with respect to the characteristics specified in the present invention. That is, the state of the glass film obtained on the product plate in the present invention is achieved in the steel sheet after finish annealing, which is an intermediate product before forming the insulating film.
粒径は、一般的な線分法もしくは、SEM画像で粒界をトレースする画像処理により円相当径として求める。また、標準偏差の計算は、分散の平方根を求める一般的な計算方法により得る。 The particle size is determined as the equivalent circle diameter by a general line segment method or image processing that traces the grain boundaries with an SEM image. The standard deviation is calculated by a general calculation method for obtaining the square root of the variance.
(母鋼板について)
本発明の一方向性電磁鋼板は、冷間圧延処理と焼鈍処理との組み合わせによって、結晶粒の磁化容易軸と圧延方向とが一致するように結晶方位が制御された母鋼板(地鉄)と、母鋼板の表面に形成されたグラス皮膜と、グラス皮膜の表面に形成された絶縁皮膜とを備えている。
(About mother steel plate)
The unidirectional electromagnetic steel sheet of the present invention is a grain steel sheet (material steel) whose crystal orientation is controlled so that the easily magnetized axis of the crystal grains and the rolling direction coincide with each other by a combination of cold rolling treatment and annealing treatment. , A glass film formed on the surface of the mother steel sheet and an insulating film formed on the surface of the glass film are provided.
母鋼板は、化学成分として、例えば質量分率で、C:0%超〜0.003%、Si:2.5%〜4.0%、酸可溶性Al:0%〜0.065%、N:0%〜0.003%、Mn:0%〜3.0%、Cr:0%〜0.3%、Cu:0%〜0.4%、P:0%〜0.5%、Sn:0%〜0.30%、Ni:0%〜1%、S:0%〜0.030%、を含有し、残部がFe及び不純物からなる。 The base steel plate has chemical components such as C: more than 0% to 0.003%, Si: 2.5% to 4.0%, acid-soluble Al: 0% to 0.065%, N. : 0% to 0.003%, Mn: 0% to 3.0%, Cr: 0% to 0.3%, Cu: 0% to 0.4%, P: 0% to 0.5%, Sn : 0% to 0.30%, Ni: 0% to 1%, S: 0% to 0.030%, and the balance is composed of Fe and impurities.
上記の化学成分は、結晶方位を{110}<001>方位に集積させたGoss集合組織に制御するために好ましい化学成分である。上記元素のうち、Si及びCが基本元素であり、酸可溶性Al、N、Mn、Cr、Cu、P、Sn、NiおよびSが選択元素である。上記の選択元素は、その目的に応じて含有させればよいので下限値を制限する必要がなく、下限値が0%でもよい。その他、選択元素として、公知技術として知られている元素を含有しても、また、これらの選択元素が不純物として含有されても、本実施形態の効果は損なわれない。上記の母鋼板は、上記の基本元素および選択元素の残部がFe及び不純物からなってもよい。なお、不純物とは、母鋼板を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境等から不可避的に混入する元素を意味する。 The above chemical component is a preferable chemical component for controlling the crystal orientation to a Goss texture integrated in the {110} <001> orientation. Among the above elements, Si and C are basic elements, and acid-soluble Al, N, Mn, Cr, Cu, P, Sn, Ni and S are selective elements. Since the above-mentioned selective element may be contained according to its purpose, it is not necessary to limit the lower limit value, and the lower limit value may be 0%. In addition, even if an element known as a known technique is contained as the selective element, or even if these selective elements are contained as impurities, the effect of the present embodiment is not impaired. In the above-mentioned mother steel sheet, the balance of the above-mentioned basic element and selective element may be composed of Fe and impurities. The term “impurity” means an element that is inevitably mixed with ore as a raw material, scrap, or the manufacturing environment when the base steel sheet is industrially manufactured.
Cは、磁気時効を引き起こし磁気特性を劣化させるので、0.003%以下にする必要がある。存在してなくても本発明効果は失われるものではないが、低減コストの観点から下限を0.0001%とすることが好ましい。 C causes magnetic aging and deteriorates magnetic properties, so it should be 0.003% or less. Although the effect of the present invention is not lost even if it does not exist, the lower limit is preferably 0.0001% from the viewpoint of reduction cost.
Siは、添加量を多くして固有抵抗を高めて鉄損特性を改善するため2.5%以上とする。しかし、昜酸化元素であり、本発明の特徴である脱炭焼鈍初期の酸化挙動を適度に制御するため4.0%以下にすることが好ましい。 The amount of Si added should be 2.5% or more in order to increase the natural resistance and improve the iron loss characteristics. However, it is an oxidative element, and it is preferably 4.0% or less in order to appropriately control the oxidation behavior at the initial stage of decarburization annealing, which is a feature of the present invention.
酸可溶性Alは、不純物として微量に含まれてしまう元素であるため、完全にゼロにすることは困難である。実用的には0.003%以上である。0.065%以上含有すると、グラス皮膜密着性が低下する。 Acid-soluble Al is an element that is contained in a trace amount as an impurity, so it is difficult to completely eliminate it. Practically, it is 0.003% or more. If it is contained at 0.065% or more, the adhesion of the glass film is lowered.
Nは、不純物として微量に含まれてしまう元素であるため、完全にゼロにすることは困難である。実用的には0.0030%以下である。0.030%を超えて含有すると、緻密で均一なグラス皮膜を得にくくなる。 Since N is an element that is contained in a trace amount as an impurity, it is difficult to completely eliminate it. Practically, it is 0.0030% or less. If it is contained in excess of 0.030%, it becomes difficult to obtain a dense and uniform glass film.
Mnは固有抵抗を高め、鉄損特性を改善する。全く含有しなくてもよいが、実用の析出物として機能する含有量が0.01%以上、3.0%未満とする。3.0%を超えると仕上げ焼鈍時にγ変態が生じ良好な二次再結晶を阻害する。 Mn increases the intrinsic resistance and improves the iron loss characteristics. It does not have to be contained at all, but the content that functions as a practical precipitate is 0.01% or more and less than 3.0%. If it exceeds 3.0%, γ transformation occurs during finish annealing and inhibits good secondary recrystallization.
Crは、脱炭焼鈍の酸化膜を改善し、グラス皮膜形成に有効な元素であり、0.3%以下の範囲で添加する。0.3%を超えると皮膜の密着性に悪影響をきたす。 Cr is an element effective for improving the oxide film of decarburization annealing and forming a glass film, and is added in the range of 0.3% or less. If it exceeds 0.3%, the adhesion of the film will be adversely affected.
Cuは、固有抵抗を高めて鉄損を低減させることに有効な元素である。添加量が0.4%を超えると鉄損低減効果が飽和するとともに、熱延時に「カッパーヘゲ」なる表面疵の原因になる。 Cu is an element effective in increasing the natural resistance and reducing the iron loss. If the amount added exceeds 0.4%, the iron loss reduction effect will be saturated and it will cause surface defects such as "copper hesitation" during heat spreading.
Pは、添加量が0.5%を超えると圧延性に問題を生じる。 If the amount of P added exceeds 0.5%, there is a problem in rollability.
Snに関して、仕上げ焼鈍の条件によっては焼鈍分離剤から放出される水分によりAlが酸化されてインヒビター強度が変化する。そのため磁気特性がコイル位置の違いにより変動する場合がある。この対策の一つとして、粒界偏析を生じやすい元素を添加することにより、酸化を防止する方法がある。そのためにSnは0.30%以下の範囲で添加できる。一方0.30%を超えると脱炭焼鈍時に酸化されにくく、グラス皮膜の形成が不十分となると共に、脱炭性を著しく阻害する。 With respect to Sn, depending on the finish annealing conditions, Al is oxidized by the water released from the annealing separator and the inhibitor strength changes. Therefore, the magnetic characteristics may fluctuate due to the difference in coil position. As one of the countermeasures, there is a method of preventing oxidation by adding an element that easily causes grain boundary segregation. Therefore, Sn can be added in the range of 0.30% or less. On the other hand, if it exceeds 0.30%, it is difficult to be oxidized during decarburization annealing, the formation of a glass film becomes insufficient, and the decarburization property is significantly inhibited.
Niは固有抵抗を高めて鉄損を低減させることに有効な元素で、熱延板の金属組織を制御して磁気特性を向上させる上で有効な元素である。しかしながら、添加量が1%を超えると二次再結晶が不安定になる。 Ni is an element that is effective in increasing the natural resistance and reducing iron loss, and is an element that is effective in controlling the metallographic structure of the hot-rolled plate and improving the magnetic properties. However, if the amount added exceeds 1%, the secondary recrystallization becomes unstable.
Sは、全く含有しなくてもよいが、0.0030%以上0.030%以下の含有とすることが好ましい。本発明の特徴でもある緻密かつ均一なグラス皮膜が得られなくなる。全く含有しなくても良いが、不純物として微量に含まれてしまう元素であるため、完全にゼロにすることは困難であり、実用的には0.0001%以上である。 S may not be contained at all, but is preferably contained in an amount of 0.0030% or more and 0.030% or less. A dense and uniform glass film, which is also a feature of the present invention, cannot be obtained. It does not have to be contained at all, but since it is an element that is contained in a trace amount as an impurity, it is difficult to completely eliminate it, and it is practically 0.0001% or more.
また、電磁鋼板では二次再結晶時に純化焼鈍を経ることが一般的である。純化焼鈍においてはインヒビター形成元素の系外への排出が起きる。特にN、Sについては濃度の低下が顕著で、50ppm以下になる。通常の純化焼鈍条件であれば、9ppm以下、さらには6ppm以下、純化焼鈍を十分に行えば、一般的な分析では検出できない程度(1ppm以下)にまで達する。 In addition, electrical steel sheets generally undergo purification annealing during secondary recrystallization. In the purification annealing, the inhibitor-forming element is discharged to the outside of the system. In particular, the concentrations of N and S are significantly reduced to 50 ppm or less. Under normal purified annealing conditions, it reaches 9 ppm or less, further 6 ppm or less, and if purified annealing is sufficiently performed, it reaches a level that cannot be detected by general analysis (1 ppm or less).
上記母鋼板の化学成分は、鋼の一般的な分析方法によって測定すればよい。例えば、母鋼板の化学成分は、ICP−AES(Inductively Coupled Plasma−Atomic Emission Spectrometry)を用いて測定すればよい。具体的には、皮膜除去後の鋼板2の中央の位置から35mm角の試験片を、島津製作所製ICPS-8100等(測定装置)により、予め作成した検量線に基づいた条件で測定することにより特定できる。なお、CおよびSは燃焼−赤外線吸収法を用い、Nは不活性ガス融解−熱伝導度法を用いて測定すればよい。 The chemical composition of the mother steel sheet may be measured by a general method for analyzing steel. For example, the chemical composition of the mother steel sheet may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrum). Specifically, by measuring a 35 mm square test piece from the center position of the steel sheet 2 after removing the film with a Shimadzu ICPS-8100 or the like (measuring device) under conditions based on a calibration curve prepared in advance. Can be identified. In addition, C and S may be measured by using the combustion-infrared absorption method, and N may be measured by using the inert gas melting-thermal conductivity method.
(製法について)
次に本実施形態に係る一方向性電磁鋼板の製造方法について説明する。また本発明鋼板は、以下の製造方法で得られた鋼板に限定されるものではないことは言うまでもない。
(About the manufacturing method)
Next, a method for manufacturing the unidirectional electromagnetic steel sheet according to the present embodiment will be described. Needless to say, the steel sheet of the present invention is not limited to the steel sheet obtained by the following manufacturing method.
本発明鋼は、一般的に知られている一方向性電磁鋼板の製造法である、溶解、熱延、熱延板焼鈍、酸洗、冷延、脱炭焼鈍、必要に応じた窒化焼鈍、焼鈍分離剤塗布、仕上げ焼鈍の工程により製造できる。以下にまず一般的な一方向性電磁鋼板の製造法を示す。 The steel of the present invention is a generally known method for producing a unidirectional electromagnetic steel sheet, such as melting, hot-rolling, hot-rolled sheet annealing, pickling, cold-rolling, decarburization annealing, and nitriding annealing as required. It can be manufactured by the steps of applying an annealing separator and finish annealing. First, a general manufacturing method for grain-oriented electrical steel sheets is shown below.
最初の鋳造工程では、質量分率で、C:0%超〜0.10%、Si:2.5%〜7%、酸可溶性Al:0%〜0.065%、N:0%〜0.012%、Mn:0%〜3.0%、Cr:0%〜0.3%、Cu:0%〜0.4%、P:0%〜0.5%、Sn:0%〜0.30%、Ni:0%〜1%、S:0%〜0.050%、を含有し、残部がFe及び不純物からなる化学成分を有する溶鋼が連続鋳造機に供給されて、スラブが連続的に製出される。 In the first casting step, C: more than 0% to 0.10%, Si: 2.5% to 7%, acid-soluble Al: 0% to 0.065%, N: 0% to 0 in terms of mass fraction. .012%, Mn: 0% to 3.0%, Cr: 0% to 0.3%, Cu: 0% to 0.4%, P: 0% to 0.5%, Sn: 0% to 0 A molten steel containing .30%, Ni: 0% to 1%, S: 0% to 0.050%, and having a chemical component consisting of Fe and impurities as the balance is supplied to the continuous casting machine, and the slab is continuous. Is produced.
続いて、熱間圧延工程では、鋳造工程から得られたスラブが所定の温度(例えば1150〜1400℃)に加熱された後、そのスラブに対して熱間圧延が実施される。これにより、例えば、1.8〜3.5mmの厚さを有する熱延鋼板が得られる。 Subsequently, in the hot rolling step, the slab obtained from the casting step is heated to a predetermined temperature (for example, 1150 to 1400 ° C.), and then hot rolling is performed on the slab. As a result, for example, a hot-rolled steel sheet having a thickness of 1.8 to 3.5 mm can be obtained.
続いて、熱延板焼鈍を行う場合、熱間圧延工程から得られた熱延鋼板に対して、所定の温度条件(例えば750〜1200℃で30秒〜10分間加熱する条件)の下で焼鈍処理が実施される。続いて、冷間圧延工程では、酸洗処理が実施された後、熱延鋼板に対して冷間圧延が実施される。これにより、例えば、0.15〜0.35mmの厚さを有する冷延鋼板が得られる。 Subsequently, when hot-rolled sheet is annealed, the hot-rolled steel sheet obtained from the hot-rolling step is annealed under predetermined temperature conditions (for example, heating at 750 to 1200 ° C. for 30 seconds to 10 minutes). The process is carried out. Subsequently, in the cold rolling step, after the pickling treatment is performed, the hot-rolled steel sheet is cold-rolled. As a result, for example, a cold-rolled steel sheet having a thickness of 0.15 to 0.35 mm can be obtained.
続いて、脱炭焼鈍工程では、冷間圧延工程から得られた冷延鋼板に対して、所定の温度条件(例えば700〜900℃で1〜3分間加熱する条件)の下で熱処理(すなわち、脱炭焼鈍処理)が実施される。このような脱炭焼鈍処理が実施されると、冷延鋼板において、炭素が所定量以下に低減され、一次再結晶組織が形成される。また、脱炭焼鈍工程では、冷延鋼板の表面に、シリカ(SiO2)を主成分として含有する酸化物層が形成される。 Subsequently, in the decarburization annealing step, the cold-rolled steel sheet obtained from the cold rolling step is heat-treated (that is, under the condition of heating at 700 to 900 ° C. for 1 to 3 minutes) under predetermined temperature conditions (for example, heating at 700 to 900 ° C. for 1 to 3 minutes). Decarburization annealing treatment) is carried out. When such a decarburization annealing treatment is carried out, carbon is reduced to a predetermined amount or less in the cold-rolled steel sheet, and a primary recrystallization structure is formed. Further, in the decarburization annealing step, an oxide layer containing silica (SiO 2 ) as a main component is formed on the surface of the cold-rolled steel sheet.
続いて、焼鈍分離剤塗布工程では、マグネシア(MgO)を主成分として含有する焼鈍分離剤が、冷延鋼板の表面(酸化物層の表面)に塗布される。続いて、仕上げ焼鈍工程では、焼鈍分離剤が塗布された冷延鋼板に対して、所定の温度条件(例えば1100〜1300℃で20〜24時間加熱する条件)の下で熱処理(すなわち、仕上げ焼鈍処理)が実施される。このような仕上げ焼鈍処理が実施されると、二次再結晶が冷延鋼板に生じるとともに、冷延鋼板が純化される。その結果、上述の母鋼板の化学組成を有し、結晶粒の磁化容易軸と圧延方向とが一致するように結晶方位が制御された一方向性電磁鋼板の母材が得られる。 Subsequently, in the annealing separating agent coating step, an annealing separating agent containing magnesia (MgO) as a main component is applied to the surface of the cold-rolled steel sheet (the surface of the oxide layer). Subsequently, in the finish annealing step, the cold-rolled steel sheet coated with the annealing separator is heat-treated (that is, finish annealing) under predetermined temperature conditions (for example, conditions of heating at 1100 to 1300 ° C. for 20 to 24 hours). Processing) is carried out. When such a finish annealing treatment is carried out, secondary recrystallization occurs in the cold-rolled steel sheet and the cold-rolled steel sheet is purified. As a result, a base material of a unidirectional electromagnetic steel sheet having the above-mentioned chemical composition of the grain steel sheet and whose crystal orientation is controlled so that the easily magnetized axis of the crystal grains and the rolling direction coincide with each other can be obtained.
また、上記のような仕上げ焼鈍処理が実施されると、シリカを主成分として含有する酸化物層が、マグネシアを主成分として含有する焼鈍分離剤と反応して、鋼板の表面にフォルステライト(Mg2SiO4)等の複合酸化物を含むグラス皮膜が形成される。仕上げ焼鈍工程では、鋼板がコイル状に巻かれた状態で仕上げ焼鈍処理が実施される。仕上げ焼鈍処理中に鋼板の表面にグラス皮膜が形成されることにより、コイル状に巻かれた鋼板に焼き付きが発生することを防止することができる。 Further, when the finish annealing treatment as described above is carried out, the oxide layer containing silica as a main component reacts with the annealing separator containing magnesia as a main component, and forsterite (Mg) is formed on the surface of the steel sheet. 2 A glass film containing a composite oxide such as SiO 4) is formed. In the finish annealing step, the finish annealing treatment is performed with the steel sheet wound in a coil shape. By forming a glass film on the surface of the steel sheet during the finish annealing treatment, it is possible to prevent seizure from occurring on the coiled steel sheet.
最後の絶縁皮膜成形工程では、上記のグラス皮膜が形成された鋼板表面に対して、例えばコロイダルシリカ及びリン酸塩を含有する絶縁コーティング液が、グラス皮膜の上から塗布される。その後、所定の温度条件(例えば840〜920℃)の下で熱処理が実施されることにより、最終的に、グラス皮膜及び絶縁皮膜とを備える一方向性電磁鋼板が得られる。 In the final insulating film forming step, an insulating coating liquid containing, for example, colloidal silica and phosphate is applied over the glass film onto the surface of the steel sheet on which the glass film is formed. Then, the heat treatment is carried out under a predetermined temperature condition (for example, 840 to 920 ° C.) to finally obtain a unidirectional electromagnetic steel sheet having a glass film and an insulating film.
上記のように製造された一方向性電磁鋼板の母鋼板は、化学成分として、質量分率で、Si:2.5%〜7%、C:0%超〜0.10%、酸可溶性Al:0%〜0.065%、N:0%〜0.012%、Mn:0%〜3%、Cr:0%〜0.3%、Cu:0%〜0.4%、P:0%〜0.5%、Sn:0%〜0.3%、Ni:0%〜1%、S:0%〜0.050%、を含有し、残部がFe及び不純物からなる。 The mother steel plate of the unidirectional electromagnetic steel plate manufactured as described above has Si: 2.5% to 7%, C: more than 0% to 0.10%, and acid-soluble Al as chemical components. : 0% to 0.065%, N: 0% to 0.012%, Mn: 0% to 3%, Cr: 0% to 0.3%, Cu: 0% to 0.4%, P: 0 It contains% to 0.5%, Sn: 0% to 0.3%, Ni: 0% to 1%, S: 0% to 0.050%, and the balance is composed of Fe and impurities.
(製法の特徴)
本発明では、グラス皮膜形成までの母鋼材表面での酸化挙動を制御することで良好なグラス皮膜を形成させる。この酸化挙動を制御するのに脱炭焼鈍は重要な工程であり、特に酸化の初期過程となる昇温を、高露点かつ急速加熱で実施し、脱炭初期を短時間だけ高温で実施することが効果的である。本発明では、脱炭焼鈍の昇温の雰囲気中の「H2 Oの分圧」/「H2の分圧」であるP(H2 O)/P(H2 )を0.65〜3.0、好ましくは1.0〜2.5、加熱速度≧100℃/s、好ましくは200℃/s以上、さらに好ましくは400℃/s以上、加熱温度≧800℃以上、750℃以上での滞在時間≦5秒とする。また同時に、引き続きの脱炭を雰囲気のP(H2 O)/P(H2
):0.25〜0.6、好ましくは0.30〜0.5、最高到達温度Y:700〜900℃、好ましくは810〜890℃、Y−30℃超での滞在時間≦4秒、好ましくは3秒以下、最高温度到達後のY−30℃〜Y−85℃での滞留時間≧10秒、好ましくは20秒以上 とすることで発明効果を十分に得ることができる。
(Characteristics of manufacturing method)
In the present invention, a good glass film is formed by controlling the oxidation behavior on the surface of the base steel until the glass film is formed. Decarburization annealing is an important process for controlling this oxidation behavior. In particular, the temperature rise, which is the initial process of oxidation, should be carried out at a high dew point and rapid heating, and the initial decarburization should be carried out at a high temperature for a short time. Is effective. In the present invention, "partial pressure of H 2 O" in the atmosphere of temperature increase of decarburization annealing / a "partial pressure of H 2" P (H 2 O) / P a (H 2) 0.65~3 0.0, preferably 1.0 to 2.5, heating rate ≥ 100 ° C / s, preferably 200 ° C / s or higher, more preferably 400 ° C / s or higher, heating temperature ≥ 800 ° C or higher, 750 ° C or higher. Stay time ≤ 5 seconds. At the same time, continued decarburization of the atmosphere P (H2 O) / P (H 2)
): 0.25 to 0.6, preferably 0.30 to 0.5, maximum temperature reached Y: 700 to 900 ° C, preferably 81 to 890 ° C, staying time above Y-30 ° C ≤ 4 seconds, The effect of the invention can be sufficiently obtained by preferably setting the residence time at Y-30 ° C to Y-85 ° C after reaching the maximum temperature to 3 seconds or less, preferably 20 seconds or more.
上記の熱処理が有効である理由は明確ではないが、上記のような熱履歴と雰囲気で酸化を行うと、脱炭板の特に表面近傍での優先的な酸化が起きやすくなり、最終的なグラス皮膜と母鋼板の界面構造が複雑な様相を呈するようになり密着性を向上させる。そしてその後の仕上げ焼鈍で形成されるグラス皮膜のフォルステライトの粒径が微細かつ均一となり緻密性が向上する。 The reason why the above heat treatment is effective is not clear, but when oxidation is performed with the above thermal history and atmosphere, preferential oxidation of the decarburized plate is likely to occur, especially near the surface, and the final glass The interface structure between the film and the base steel plate becomes complicated and the adhesion is improved. Then, the particle size of the forsterite of the glass film formed by the subsequent finish annealing becomes fine and uniform, and the fineness is improved.
また、脱炭焼鈍後の時点での酸素量は、本発明効果の一つの指標となる。本発明では脱炭焼鈍板の酸素量が9〜12g/m2の場合に発明効果が現れやすい。 Further, the amount of oxygen at the time after decarburization annealing is one index of the effect of the present invention. In the present invention, the effect of the invention is likely to appear when the oxygen content of the decarburized annealing plate is 9 to 12 g / m2.
以下、本発明の実施例を説明する。実施例で採用した条件は、本発明の実施可能性及び効果を確認するための一例であり、これに限定されるものではない。本発明を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Hereinafter, examples of the present invention will be described. The conditions adopted in the examples are examples for confirming the feasibility and effect of the present invention, and the present invention is not limited thereto. Various conditions can be adopted as long as the object of the present invention is achieved without departing from the present invention.
(実施例) C:0.004%、Si:3.8%、S:0.002%、Al:0.003%、N:0.0080%、Mn:0.4%、残りはFeの溶鋼を2.6mm厚の熱延板とする。 (Example) C: 0.004%, Si: 3.8%, S: 0.002%, Al: 0.003%, N: 0.0080%, Mn: 0.4%, and the rest is Fe molten steel as a 2.6 mm thick hot-rolled plate.
1000℃x30秒の熱延板焼鈍を行い、その後0.23mmまで冷間圧延を施す。脱炭焼鈍工程を、加熱速度125℃/s、最高到達温度720〜911℃、5s以内保持が665〜825℃となるように、また脱炭工程で665〜825℃x80〜100秒、さらに5〜20秒の焼鈍を実施する。MgOを主とした焼鈍分離剤を塗布した材料に、窒化可能なガスを吹き込みながら、除加熱で1200℃x20時間の焼鈍を施す。さらにコロイダルシリカ及びリン酸塩を含有する絶縁コーティング液を塗布し、880℃の焼付により、リン酸塩系絶縁被膜を形成した。グラス皮膜の特徴は絶縁被膜を剥離後に測定した結果である。 Anneal the hot-rolled plate at 1000 ° C for 30 seconds, and then cold-roll to 0.23 mm. The decarburization annealing process is performed so that the heating rate is 125 ° C / s, the maximum temperature reaches 720 to 911 ° C, and the holding within 5 s is 665 to 825 ° C. Anneal for ~ 20 seconds. The material coated with the annealing separator mainly composed of MgO is annealed at 1200 ° C for 20 hours by deheating while blowing a nitridable gas. Further, an insulating coating liquid containing colloidal silica and phosphate was applied, and a phosphate-based insulating film was formed by baking at 880 ° C. The characteristic of the glass film is the result of measurement after peeling the insulating film.
皮膜外観…塗膜の平滑性、ワレ、ツヤ感を肉眼にて観察し下記基準にて評価した。
○:塗膜に異常がなく、良好、
△:平滑性またはツヤ感がやや劣るが、ワレは認められない、
×:ワレが認められる、又は平滑性もしくはツヤ感が著しく劣る。
Film appearance: The smoothness, cracking, and glossiness of the coating film were observed with the naked eye and evaluated according to the following criteria.
◯: There is no abnormality in the coating film and it is good.
Δ: Smoothness or glossiness is slightly inferior, but cracks are not observed.
X: Cracks are observed, or smoothness or glossiness is significantly inferior.
皮膜の耐錆性は、皮膜を形成した鋼板をそのまま100mlの沸騰水中に10分間浸漬し、その前後の重量変化によって評価する。結果は、いずれも50cm2 の鋼板あたり5mg未満の重量変化となる。また耐錆性は表1に示すように温度80℃、湿度98%の雰囲気において48時間以上の耐錆性を示し、非常に良好な結果となる。表1に、実施例で採用した製造条件と特性を示す。 The rust resistance of the film is evaluated by immersing the steel sheet on which the film is formed as it is in 100 ml of boiling water for 10 minutes and changing the weight before and after that. The result is a weight change of less than 5 mg per 50 cm2 steel sheet. Further, as shown in Table 1, the rust resistance shows rust resistance for 48 hours or more in an atmosphere of a temperature of 80 ° C. and a humidity of 98%, which is a very good result. Table 1 shows the manufacturing conditions and characteristics adopted in the examples.
平均粒径が2.0μm以下、粒径分布の標準偏差が0.6μm以下である本発明鋼は、皮膜の耐錆性に優れ、鉄損も低くなった。製品板で得られるグラス皮膜の状態は、絶縁被膜形成前の中間製品である仕上げ焼鈍後の鋼板において達成されている。 The steel of the present invention having an average particle size of 2.0 μm or less and a standard deviation of the particle size distribution of 0.6 μm or less had excellent rust resistance of the film and low iron loss. The state of the glass film obtained on the product plate is achieved on the steel sheet after finish annealing, which is an intermediate product before forming the insulating film.
Claims (2)
鋼スラブを熱延し、必要により熱延板を焼鈍し、最終製品厚まで冷延し、脱炭焼鈍し、必要により窒化焼鈍し、最終仕上げ焼鈍し、絶縁皮膜処理して製造される前記一方向性電磁鋼板の製造プロセスにおいて、脱炭焼鈍での昇温を、雰囲気のPH2 O/PH2 :0.65〜3.0、加熱速度≧100℃/s以上、加熱温度≧800℃以上で実施し、750℃以上での滞在時間≦5秒として、引き続き、脱炭を、雰囲気のP(H2 O)/P(H2 ):0.25〜0.6、最高到達温度Y:700〜810℃、Y−30℃超での滞在時間≦4秒、最高温度到達後のY−30℃〜Y−85℃での滞留時間≧10秒 で実施とすることを特徴とする、一方向性電磁鋼板の製造方法。 A forsterite-based film having an average particle size of 0.6 μm or more and 2.0 μm or less is provided between the insulating film and the mother steel sheet, and the standard deviation of the forsterite particle size distribution of the forsterite-based film is A method for manufacturing a unidirectional electromagnetic steel sheet having a size of 0.6 μm or less.
The steel slab hot rolled, annealed hot-rolled sheet as required, cold rolled to a final product thickness, decarburization annealing, nitriding necessary annealing, final finish annealing, the one that is produced by insulating film treatment In the manufacturing process of directional electromagnetic steel sheet, the temperature rise by decarburization annealing is adjusted to PH 2 O / PH 2 : 0.65 to 3.0, heating rate ≥ 100 ° C / s, heating temperature ≥ 800 ° C. With a staying time of 750 ° C. or higher ≤ 5 seconds, decarburization was continued in the atmosphere of P (H 2 O) / P (H 2 ): 0.25 to 0.6, and the maximum temperature reached: Y :. 700-810 ° C., characterized by that in at Y-30 ° C. residence time ≦ 4 seconds at greater residence time ≧ 10 seconds at Y-30 ℃ ~Y-85 ℃ after maximum temperature, single Manufacturing method of directional electromagnetic steel plate.
鋼スラブを熱延し、必要により熱延板を焼鈍し、最終製品厚まで冷延し、脱炭焼鈍し、必要により窒化焼鈍し、最終仕上げ焼鈍して製造される前記一方向性電磁鋼板用原板の製造プロセスにおいて、脱炭焼鈍での昇温を、雰囲気のP(H2 O)/P(H2 ):0.65〜3.0、加熱速度≧100℃/s以上、加熱温度≧800℃以上で実施し、750℃以上での滞在時間≦5秒として、引き続き、脱炭を、雰囲気のP(H2 O)/P(H2 ):0.25〜0.6、最高到達温度Y:700〜810℃、Y−30℃超での滞在時間≦4秒、最高温度到達後のY−30℃〜Y−85℃での滞留時間≧10秒 で実施とすることを特徴とする、一方向性電磁鋼板用原板の製造方法。
The surface of the base steel sheet has a forsterite-based film with an average particle size of 0.6 μm or more and 2.0 μm or less, and the standard deviation of the forsterite particle size distribution of the forsterite-based film is 0.6 μm. The following method for manufacturing a unidirectional electromagnetic steel sheet original plate.
The steel slab hot rolled, annealed hot-rolled sheet as required, cold rolled to a final product thickness, decarburization annealing, nitriding necessary annealing, final finish annealing and the grain-oriented electromagnetic steel sheet is produced by In the manufacturing process of the original plate, the temperature rise by decarburization annealing is adjusted to P (H 2 O) / P (H 2 ): 0.65 to 3.0, heating rate ≥ 100 ° C / s, heating temperature ≥ It was carried out at 800 ° C or higher, and the residence time at 750 ° C or higher was ≤5 seconds. Then, decarburization was continued, and the atmosphere P (H 2 O) / P (H 2 ): 0.25 to 0.6 reached the maximum. The feature is that the temperature Y: 700 to 810 ° C., the residence time above Y-30 ° C. ≤4 seconds, and the residence time at Y-30 ° C. to Y-85 ° C. after reaching the maximum temperature ≥10 seconds. A method for manufacturing an original plate for a unidirectional electromagnetic steel plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016014136A JP6844110B2 (en) | 2016-01-28 | 2016-01-28 | Manufacturing method of grain-oriented electrical steel sheet and manufacturing method of original sheet for grain-oriented electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016014136A JP6844110B2 (en) | 2016-01-28 | 2016-01-28 | Manufacturing method of grain-oriented electrical steel sheet and manufacturing method of original sheet for grain-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017133072A JP2017133072A (en) | 2017-08-03 |
JP6844110B2 true JP6844110B2 (en) | 2021-03-17 |
Family
ID=59504197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016014136A Active JP6844110B2 (en) | 2016-01-28 | 2016-01-28 | Manufacturing method of grain-oriented electrical steel sheet and manufacturing method of original sheet for grain-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6844110B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102550567B1 (en) * | 2019-01-08 | 2023-07-04 | 닛폰세이테츠 가부시키가이샤 | Grain-oriented electrical steel sheet, steel sheet for finish annealing, annealing separator, method for producing grain-oriented electrical steel sheet, and method for producing steel sheet for finish annealing |
CN113260719B (en) * | 2019-01-08 | 2023-01-20 | 日本制铁株式会社 | Grain-oriented electromagnetic steel sheet, annealing separator, and method for producing grain-oriented electromagnetic steel sheet |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2749783B2 (en) * | 1994-11-16 | 1998-05-13 | 新日本製鐵株式会社 | Manufacturing method of grain-oriented electrical steel sheet with extremely excellent glass coating performance and magnetic properties |
JP3539028B2 (en) * | 1996-01-08 | 2004-06-14 | Jfeスチール株式会社 | Forsterite coating on high magnetic flux density unidirectional silicon steel sheet and its forming method. |
JP3392669B2 (en) * | 1996-11-22 | 2003-03-31 | 新日本製鐵株式会社 | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss |
JP3839924B2 (en) * | 1997-08-18 | 2006-11-01 | 新日本製鐵株式会社 | Unidirectional electrical steel sheet excellent in film characteristics and magnetic characteristics, its manufacturing method, and decarburization annealing equipment used for the manufacturing method |
JP3952606B2 (en) * | 1998-08-19 | 2007-08-01 | Jfeスチール株式会社 | Oriented electrical steel sheet with excellent magnetic properties and coating properties and method for producing the same |
JP3387914B1 (en) * | 2001-09-21 | 2003-03-17 | 新日本製鐵株式会社 | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with excellent film properties and high magnetic field iron loss |
US9536657B2 (en) * | 2010-06-29 | 2017-01-03 | Jfe Steel Corporation | Grain oriented electrical steel sheet and method for manufacturing the same |
MX353671B (en) * | 2010-06-30 | 2018-01-23 | Jfe Steel Corp | Process for producing grain-oriented magnetic steel sheet. |
EP2770075B1 (en) * | 2011-10-20 | 2018-02-28 | JFE Steel Corporation | Grain-oriented electrical steel sheet and method of producing the same |
JP6028933B2 (en) * | 2013-10-31 | 2016-11-24 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
-
2016
- 2016-01-28 JP JP2016014136A patent/JP6844110B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017133072A (en) | 2017-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6512412B2 (en) | Directional electromagnetic steel sheet and method of manufacturing the same | |
JP6938886B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
WO2020149321A1 (en) | Method for manufacturing grain-oriented electrical steel sheet | |
JPWO2019013351A1 (en) | Grain-oriented electrical steel sheet and method for manufacturing the same | |
WO2020149351A1 (en) | Method for manufacturing grain-oriented electrical steel sheet | |
JP6519006B2 (en) | Unidirectional electrical steel sheet, decarburizing plate for unidirectional electrical steel sheet, and method for producing them | |
JP6844110B2 (en) | Manufacturing method of grain-oriented electrical steel sheet and manufacturing method of original sheet for grain-oriented electrical steel sheet | |
JP6624028B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
WO2020149337A1 (en) | Method for manufacturing grain-oriented electrical steel sheet | |
JP4608562B2 (en) | Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density | |
JP7364966B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
WO2020149326A1 (en) | Method for manufacturing grain-oriented electrical steel sheet | |
WO2020149327A1 (en) | Method for manufacturing grain-oriented electrical steel sheet | |
JP7352108B2 (en) | grain-oriented electrical steel sheet | |
JP7230930B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP6341382B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP2019094571A (en) | Oriented electromagnetic steel sheet and manufacturing method thereof | |
WO2020149323A1 (en) | Method for manufacturing grain-oriented electrical steel sheet | |
JP7151792B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
CN115066508B (en) | Method for producing grain-oriented electrical steel sheet | |
JP7510078B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP7269504B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP7214974B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
WO2022250156A1 (en) | Method for producing grain-oriented electromagnetic steel sheet | |
JP2022022481A (en) | Method for manufacturing grain-oriented electromagnetic steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180905 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20190605 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190614 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190730 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190924 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200303 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20201006 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201209 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20201209 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20201216 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20201222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210126 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210208 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6844110 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |