JP6519006B2 - Unidirectional electrical steel sheet, decarburizing plate for unidirectional electrical steel sheet, and method for producing them - Google Patents

Unidirectional electrical steel sheet, decarburizing plate for unidirectional electrical steel sheet, and method for producing them Download PDF

Info

Publication number
JP6519006B2
JP6519006B2 JP2015075740A JP2015075740A JP6519006B2 JP 6519006 B2 JP6519006 B2 JP 6519006B2 JP 2015075740 A JP2015075740 A JP 2015075740A JP 2015075740 A JP2015075740 A JP 2015075740A JP 6519006 B2 JP6519006 B2 JP 6519006B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
strength
intensity
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015075740A
Other languages
Japanese (ja)
Other versions
JP2016196669A (en
Inventor
知江 ▲濱▼
知江 ▲濱▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015075740A priority Critical patent/JP6519006B2/en
Publication of JP2016196669A publication Critical patent/JP2016196669A/en
Application granted granted Critical
Publication of JP6519006B2 publication Critical patent/JP6519006B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、軟磁性材料として電気機器の鉄心に用いられる一方向性電磁鋼板の磁気特性とグラス皮膜密着性を改善するものである。   The present invention improves the magnetic properties and glass film adhesion of a unidirectional electromagnetic steel sheet used as a soft magnetic material for an iron core of an electric device.

一方向性電磁鋼板は、Siを2〜4%程度含有し、二次再結晶により結晶粒の方位を{110}<001>方位に高度に集積させ、表面にグラス皮膜を形成した鋼板で、積層して鉄心を形成し、電力用変圧器あるいは回転機の部材として用いられている。特性としては、鉄損が低いことと、磁束密度が高いこと、グラス皮膜密着性が良好であることが求められる。特に結晶方位については、結晶方位集積度を極限まで高めることで、これに連動する鉄損も極限まで低下させている。   A unidirectional steel sheet contains about 2 to 4% of Si, is a steel sheet in which the orientation of crystal grains is highly accumulated in the {110} <001> orientation by secondary recrystallization, and a glass film is formed on the surface, It is laminated to form an iron core, and is used as a member of a power transformer or a rotating machine. As the characteristics, it is required that the iron loss is low, the magnetic flux density is high, and the glass film adhesion is good. In particular, with regard to crystal orientation, by increasing the degree of integration of crystal orientation to the limit, the core loss linked to this is also reduced to the limit.

鋼板には、鋼板への張力付与による磁気特性向上と積層鋼板間の絶縁による鉄心特性確保のための皮膜(以降、張力皮膜と呼ぶ)が塗布される。この張力被膜は鋼に直接塗布しても密着性を確保することが困難なため、張力被膜との密着性が高いグラス皮膜を張力皮膜と鋼板表面の間に介在させている。母鋼板に対してのグラス皮膜の密着性が劣ると、鋼板加工時にグラス皮膜ととともに張力被膜が脱落してしまう。   The steel sheet is coated with a film (hereinafter referred to as a tension film) for improving the magnetic characteristics by applying tension to the steel plate and securing the core characteristics by insulation between laminated steel plates. Since it is difficult to ensure adhesion even when this tension film is directly applied to steel, a glass film having high adhesion to the tension film is interposed between the tension film and the steel sheet surface. If the adhesion of the glass coating to the base steel plate is poor, the tensile coating may drop off together with the glass coating during steel plate processing.

Siは素材の固有抵抗を高めて渦電流損を低くするため添加される。しかし、過度な添加は鋼板の脆化を招いて製造上困難となるため、冷延工程を経て製造される場合、工業的には3.5%程度までの添加に留まっている。このためSi以外の元素を含有させることで高固有抵抗の特徴を持たせた鋼板の報告、提案がなされている。例えば特許文献1、4では、Mnの2〜4%の添加を試みている。しかし、この技術は二次再結晶挙動に重大な役割を持つインヒビター(主としてMnS)が変化することに加え、オーステナイトフォーマー元素であるMnを多量に含有するため二次再結晶中に組織の一部がγ相に変態してしまい方位集積度の著しい劣化が問題となる。   Si is added to increase the resistivity of the material and lower the eddy current loss. However, excessive addition causes embrittlement of the steel sheet, which makes production difficult, and therefore, when it is manufactured through a cold rolling process, it is industrially limited to about 3.5% or so. For this reason, a report and a proposal of a steel plate having characteristics of high specific resistance by containing elements other than Si have been made. For example, Patent Documents 1 and 4 attempt to add 2 to 4% of Mn. However, in addition to the change of the inhibitor (mainly MnS) which plays an important role in the secondary recrystallization behavior, this technology contains a large amount of Mn, which is an austenite former element, and thus one of the structures during secondary recrystallization. The part is transformed to the γ phase, and significant deterioration of the degree of orientation integration becomes a problem.

グラス皮膜密着性の改善に関する技術として、特許文献2では、中間焼鈍で形成され性状劣化の一因となるSi濃化層を、中間焼鈍後に除去することを特徴とするものが開示されている。しかし、この技術ではグラス皮膜密着性の改善は十分ではない。   As a technique relating to improvement of glass film adhesion, Patent Document 2 discloses that a Si-concentrated layer formed by intermediate annealing and contributing to property deterioration is removed after intermediate annealing. However, this technique does not sufficiently improve the adhesion of the glass film.

また融点が低いFeSに起因する熱延中の割れによる鋼板表面の性状悪化が、最終製品のグラス皮膜密着性劣化の原因となることがある。特許文献3は、熱延前の鋼材表面にMo含有溶液を塗布しておき熱延中の鋼材表面でMoのS化合物を優先析出させることで、熱延材表面の割れを抑制し、結果として製品のグラス皮膜密着性を向上させるものである。しかしインヒビターとして二次再結晶挙動を調整する硫化物の形態を変えてしまうため、磁性不良が起きやすいことが問題となっている。   In addition, the deterioration of the surface properties of the steel sheet due to cracking during hot rolling due to FeS having a low melting point may cause the deterioration of the glass film adhesion of the final product. Patent document 3 suppresses the crack of the surface of a hot-rolled material by applying a Mo-containing solution to the surface of the steel before hot-rolling and preferentially precipitating the S compound of Mo on the surface of the steel during hot-rolling. It is intended to improve the glass film adhesion of products. However, since it changes the form of the sulfide which adjusts secondary recrystallization behavior as an inhibitor, it is a problem that magnetic defect tends to occur.

特開平5-51705号公報JP-A-5-51705 特願平5-201707号公報Japanese Patent Application No. 5-201707 特開昭59-85820号公報JP-A-59-85820 特開平9-104923号公報JP-A-9-104923

本発明は、低鉄損、高磁束密度、良好なグラス皮膜密着性を有する一方向性電磁鋼板、中間製品として一方向性電磁鋼板用の脱炭板及びその製造方法を提供するものである。低鉄損化のため固有抵抗を十分に高めた成分の鋼材において、二次再結晶中にγ変態を起こさずα単相状態を前提とした良好な二次再結晶を発現させ、さらに良好なグラス皮膜が形成されるようグラス皮膜形成前の鋼材の表面の元素濃化や性状を制御することを課題とする。   The present invention provides a unidirectional steel sheet having low iron loss, high magnetic flux density, and good glass film adhesion, a decarburized sheet for the unidirectional steel sheet as an intermediate product, and a method for producing the same. In steels of components whose specific resistance is increased sufficiently for low iron loss, good secondary recrystallization is generated without secondary transition due to γ transformation and expression of good secondary recrystallization assuming an α single phase state, and further better It is an object to control the element concentration and properties of the surface of the steel before forming the glass film so as to form a glass film.

本発明者は、上記の要求を満足するため、まずMn、Al、Cu、Mo、Niなどを比較的多量に含有させ固有抵抗を高めた材料の探索を実施した。これらの元素は、二次再結晶制御の要とも言えるインヒビター制御に多大な影響を与えるが、Mn含有量が1〜3%程度であれば良好な二次再結晶が発現する場合があることがわかった。   In order to satisfy the above-mentioned requirements, the present inventor first carried out a search for a material containing a relatively large amount of Mn, Al, Cu, Mo, Ni, etc. to enhance the specific resistance. These elements have a great effect on inhibitor control which can be said to be the key to secondary recrystallization control, but good secondary recrystallization may sometimes occur if the Mn content is about 1 to 3%. all right.

さらに詳細に検討した結果、Mnは酸化を促進させる作用も併せ持つため、製造途中の熱処理で生じる酸化膜が従来材料とは著しく異なり、中間製品の表面に不均一に生成、残存し、最終製品のグラス皮膜の密着性を悪化させていることが判明した。そして、中間製品の鋼板表面でのMn及びその酸化膜形成に影響を及ぼす元素の存在状況を制御することで、鋼板表面に良好なグラス皮膜を形成することに成功した。最終的に良好なグラス皮膜密着性を示す一方向性電磁鋼板は、グラス皮膜表面での元素分布状況、または途中製品として脱炭板表面の元素分布状況に特徴があり、これを規定することで特定でき、さらにその製造方法を提供できることがわかった。具体的には以下のものである。   As a result of further examination, since Mn also has the action of promoting oxidation, the oxide film produced by the heat treatment during production is remarkably different from the conventional material, and is unevenly formed on the surface of the intermediate product and remains. It was found that the adhesion of the glass coating was deteriorated. And by controlling the existence condition of Mn on the steel plate surface of an intermediate product and the element which affects the oxide film formation, it succeeded in forming a good glass film on the steel plate surface. One-way electrical steel sheets that finally show good glass film adhesion are characterized by the element distribution condition on the glass film surface or the element distribution condition on the decarburizing plate surface as a product, It turned out that it can be specified and the manufacturing method can be further provided. Specifically, it is as follows.

[1]
母鋼板の表面にグラス皮膜が形成された一方向性電磁鋼板であって、
前記母鋼板は、質量%でSi:3.0〜4.0%、Mn:1.0〜3.0%、C:0.0001〜0.1%、S:0.0001〜0.01%、酸可溶性Al:0.003〜0.030%、N:0.0030〜0.050%を含有し、残部はFe及び不可避不純物からなり、下記で規定されるSM値が7以上50未満であり、下記で規定されるAl検出強度のピークを3以上を有し、下記で規定されるS検出強度のピークを2以上を有し、GDSで測定されるNの最高検出強度が0.05以上0.1未満であることを特徴とする一方向性電磁鋼板。
SM値:
グラス皮膜の表面から内部にわたりGDSで元素強度分布を測定し、板厚方向のSiおよびMnの強度分布において、表面に濃化しているSiの最高強度をSi(S)とし、その最高強度をSi(S)を検出した深さでのMn強度をMn(S)とする。さらに母鋼板内部でSi強度およびMn強度が安定した領域での強度をそれぞれSi(B)、Mn(B)とする。これらの値から、次式(1)でをSM値を計算する。
SM値=Si(S)/Si(B)*Mn(B)/Mn(S) ・・・式(1)
Al検出強度のピーク:
グラス皮膜の表面から内部にわたりGDSで元素強度分布を測定し、板厚方向のAlの強度分布において、Al検出強度の極大値および極小値を求める。得られた極大値の内、表面側または内部側に隣接する極小値との強度差が極小値の10%以上である極大値をAl検出強度のピークと規定する。
S検出強度のピーク:
グラス皮膜の表面から内部にわたりGDSで元素強度分布を測定し、板厚方向のSの強度分布において、S検出強度の極大値および極小値を求める。得られた極大値の内、表面側または内部側に隣接する極小値との強度差が極小値の10%以上である極大値をS検出強度のピークと規定する。
[2]
前記母鋼板は、質量%でさらにCr:0.3%以下、Cu:0.4%以下、P:0.5%以下、Sn:0.3%以下、Ni:1%以下、B、Bi、Te及びSe:B+Bi+Se+S+Teの合計で0.015%以下のうち1種もしくは2種以上の元素を含有することを特徴とする[1]に記載の一方向性電磁鋼板。
[3]
一方向性電磁鋼板の中間製品となる脱炭板であって、
質量%でSi:3.0〜4.0%、Mn:1.0〜3.0%、C:0.0001〜0.1%、S:0.0001〜0.01%、酸可溶性Al:0.003〜0.030%、N:0.0030〜0.050%を含有し、残部はFe及び不可避不純物からなり、下記で規定されるSM値が4以上30未満であることを特徴とする一方向性電磁鋼板用の脱炭板。
SM値:
酸化膜で皮膜された表面から内部にわたりGDSで板厚方向のSiおよびMnの強度分布を測定し、表面に濃化しているSiの最高強度をSi(S)とし、その最高強度をSi(S)を検出した深さでのMn強度をMn(S)とする。さらに母鋼板内部でSi強度およびMn強度が安定した領域での強度をそれぞれSi(B)、Mn(B)とする。これらの値から、次式(1)でをSM値を計算する。
SM値=Si(S)/Si(B)*Mn(B)/Mn(S) ・・・式(1)
[4]
質量%でさらにCr:0.3%以下、Cu:0.4%以下、P:0.5%以下、Sn:0.3%以下、Ni:1%以下、B、Bi、Te及びSe:B+Bi+Se+S+Teの合計で0.015%以下のうち1種もしくは2種以上の元素を含有することを特徴とする[3]に記載の一方向性電磁鋼板用の脱炭板。
[5]
熱間圧延、冷間圧延、脱炭焼鈍、仕上焼鈍を経て[1]または[2]のいずれか1項に記載の一方向性電磁鋼板を製造する方法であって、
前記脱炭焼鈍の最高到達温度をY:700〜900℃とし、Y−30℃超での滞在時間:4秒以下、その後のY−30℃以下、Y−85℃以上の温度域での滞留時間:10秒以上とすることを特徴とする、一方向性電磁鋼板の製造方法。
[6]
前記脱炭焼鈍後から仕上焼鈍前の間で、酸洗、機械研磨または化学研磨の1つ又は2つ以上の工程により鋼板表面の酸化膜を除去することを特徴とする、[5]に記載の一方向性電磁鋼板の製造方法。
[7]
熱間圧延、冷間圧延、脱炭焼鈍、仕上焼鈍を経て[1]または[2]のいずれか1項に記載の一方向性電磁鋼板を製造する方法であって、
前記熱間圧延、前記冷間圧延、前記脱炭焼鈍、前記仕上焼鈍の少なくともいずれか一つの前処理として、鋼板表面にB、Al、Te、Mn、Bi、Si、Cuのうち1種もしくは2種以上の元素を0.002〜0.120g/m2塗布することを特徴とする、一方向性電磁鋼板の製造方法。
[8]
熱間圧延、冷間圧延、脱炭焼鈍を経て[3]または[4]のいずれか1項に記載の脱炭板を製造する方法であって、
前記脱炭焼鈍の最高到達温度をY:700〜900℃とし、Y−30℃超での滞在時間:4秒以下、その後のY−30℃以下、Y−85℃以上の温度域での滞留時間:10秒以上とすることを特徴とする、一方向性電磁鋼板用の脱炭板の製造方法。
[9]
前記熱間圧延、前記冷間圧延、前記脱炭焼鈍の少なくともいずれか一つの前処理として、鋼板表面にB、Al、Te、Mn、Bi、Si、Cuのうち1種もしくは2種以上の元素を0.002〜0.120g/m2塗布することを特徴とする、[8]に記載の一方向性電磁鋼板用の脱炭板の製造方法。
[1]
A unidirectional electromagnetic steel sheet having a glass coating formed on the surface of a base steel sheet,
The base steel sheet is, by mass%, Si: 3.0 to 4.0%, Mn: 1.0 to 3.0%, C: 0.0001 to 0.1%, S: 0.0001 to 0.01%, acid soluble Al: 0.003 to 0.030%, N: 0.0030 to 0.050 %, The balance being composed of Fe and unavoidable impurities, the SM value defined below is 7 or more and less than 50, has 3 or more peaks of Al detection intensity defined below, and is specified below A unidirectional electromagnetic steel sheet having two or more peaks of detected S intensity and having a maximum detected intensity of N measured by GDS of 0.05 or more and less than 0.1.
SM value:
The element strength distribution is measured by GDS from the surface to the inside of the glass film, and in the strength distribution of Si and Mn in the thickness direction, the highest strength of Si concentrated on the surface is Si (S), and the highest strength is Si Let the Mn intensity at the depth at which (S) is detected be Mn (S). Further, the strength in the region where the Si strength and the Mn strength are stable inside the base steel sheet is taken as Si (B) and Mn (B), respectively. From these values, the SM value is calculated by the following equation (1).
SM value = Si (S) / Si (B) * Mn (B) / Mn (S) formula (1)
Peak of Al detection intensity:
The element strength distribution is measured by GDS from the surface to the inside of the glass film, and the maximum value and the minimum value of the Al detection strength are determined in the strength distribution of Al in the plate thickness direction. Among the obtained maximum values, the maximum value of which the intensity difference with the minimum value adjacent to the surface side or the inner side is 10% or more of the minimum value is defined as the peak of the Al detection intensity.
Peak of S detected intensity:
Elemental intensity distribution is measured by GDS from the surface to the inside of the glass film, and the maximum value and the minimum value of the S detection intensity are determined in the intensity distribution of S in the plate thickness direction. Among the obtained local maximums, the local maximum at which the intensity difference between the local minimum adjacent to the surface side or the inner side is 10% or more of the local minimum is defined as the peak of the S detection intensity.
[2]
The base steel sheet further contains, in mass%, Cr: 0.3% or less, Cu: 0.4% or less, P: 0.5% or less, Sn: 0.3% or less, Ni: 1% or less, B, Bi , Te and Se: B + Bi + Se + S + Te total The one-way electrical steel sheet according to [1], which contains one or more elements of 0.015% or less.
[3]
It is a decarburized plate that is an intermediate product of unidirectional magnetic steel plates,
Si: 3.0 to 4.0%, Mn: 1.0 to 3.0%, C: 0.0001 to 0.1%, S: 0.0001 to 0.01%, acid soluble Al: 0.003 to 0.030%, N: 0.0030 to 0.050% in mass%, A decarburizing plate for a unidirectional electromagnetic steel sheet, characterized in that the balance is made of Fe and unavoidable impurities, and the SM value defined below is 4 or more and less than 30.
SM value:
The strength distribution of Si and Mn in the thickness direction is measured by GDS from the surface coated with the oxide film to the inside, and the highest strength of Si concentrated on the surface is Si (S), and the highest strength is Si (S (S) The Mn intensity at the depth at which) is detected is taken as Mn (S). Further, the strength in the region where the Si strength and the Mn strength are stable inside the base steel sheet is taken as Si (B) and Mn (B), respectively. From these values, the SM value is calculated by the following equation (1).
SM value = Si (S) / Si (B) * Mn (B) / Mn (S) formula (1)
[4]
Cr: 0.3% or less, Cu: 0.4% or less, P: 0.5% or less, Sn: 0.3% or less, Ni: 1% or less, B, Bi , Te, and Se: B + Bi + Se + S + Te in total of 0.015% or less The decarburizing plate for a unidirectional magnetic steel sheet according to [3], which contains one or more elements among them.
[5]
A method for producing the grain-oriented electrical steel sheet according to any one of [1] or [2] after hot rolling, cold rolling, decarburizing annealing, and finish annealing,
The maximum reaching temperature of the decarburization annealing is Y: 700 to 900 ° C., residence time at Y-30 ° C. or higher: 4 seconds or less, and thereafter residence at a temperature range of Y-30 ° C. or less, Y-85 ° C. or higher Time: 10 seconds or more, The manufacturing method of a unidirectional electromagnetic steel sheet characterized by the above-mentioned.
[6]
The oxide film on the surface of the steel sheet is removed by one or more steps of pickling, mechanical polishing or chemical polishing between the decarburizing annealing and before the finish annealing, as described in [5]. Manufacturing method of one-way electrical steel sheet.
[7]
A method for producing the grain-oriented electrical steel sheet according to any one of [1] or [2] after hot rolling, cold rolling, decarburizing annealing, and finish annealing,
One or two of B, Al, Te, Mn, Bi, Si, and Cu on the steel sheet surface as at least any one pretreatment of the hot rolling, the cold rolling, the decarburizing annealing, and the finish annealing. The manufacturing method of the unidirectional electromagnetic steel sheet characterized by apply | coating 0.002-0.120 g / m <2> of elements more than seed | species.
[8]
A method for producing a decarburized sheet according to any one of [3] or [4] through hot rolling, cold rolling, decarburizing annealing,
The maximum reaching temperature of the decarburization annealing is Y: 700 to 900 ° C., residence time at Y-30 ° C. or higher: 4 seconds or less, and thereafter residence at a temperature range of Y-30 ° C. or less, Y-85 ° C. or higher Time: 10 seconds or more, The manufacturing method of the decarburizing board for a unidirectional electromagnetic steel sheet characterized by the above-mentioned.
[9]
One or more elements of B, Al, Te, Mn, Bi, Si, and Cu on the steel sheet surface as at least any one pretreatment of the hot rolling, the cold rolling, and the decarburizing annealing. Is applied at 0.002 to 0.120 g / m 2, the method for producing a decarburized sheet for a unidirectional magnetic steel sheet according to [8], characterized in that

本発明によれば、低鉄損、高磁束密度、良好なグラス皮膜密着性を有する一方向性電磁鋼板製品板、途中製品として一方向性電磁鋼板用の脱炭焼鈍板及びそれらの製造方法が得られる。   According to the present invention, there is provided a unidirectional steel sheet product sheet having low core loss, high magnetic flux density and good glass film adhesion, a decarburized and annealed sheet for the unidirectional magnetic steel sheet as an intermediate product, and a method of manufacturing them. can get.

グラス皮膜のGDSの結果を示す図である。It is a figure which shows the result of GDS of a glass film.

先ず、本発明鋼板の各元素含有量の限定理由について説明する。これらの元素は、本発明の特徴でもあるグラス皮膜表面での元素分布に強く影響する元素であり、その特定は重要である。なお、成分について%は質量%を意味する。   First, the reasons for limiting the content of each element of the steel sheet of the present invention will be described. These elements are elements that strongly influence the element distribution on the surface of the glass film, which is also a feature of the present invention, and the identification thereof is important. In addition,% means mass% about a component.

Si:3.0〜4.0%
Siは、添加量を多くして固有抵抗を高めて鉄損特性を改善するため3.0%以上とする。しかし、昜酸化元素であり、Mn共存下での酸化挙動をコントロールして本発明の特徴であるSM値を本発明内に制御するため4.0%以下にする必要がある。
Si: 3.0 to 4.0%
In order to increase the specific resistance by increasing the amount of Si and improve the core loss characteristics, the amount is made 3.0% or more. However, in order to control the SM value, which is a feature of the present invention, by controlling the oxidation behavior in the coexistence of Mn, which is a boron oxide element, it is necessary to make it 4.0% or less.

Mn:1.0〜3.0%
Mnは固有抵抗を高め、鉄損特性を改善する。含有量が1.0%以下であればMnの特異な酸化挙動は問題とはならず本発明が解決しようとする課題は生じないため、1.0%以上を本発明の対象とする。3.0%を超えると仕上焼鈍時にγ変態が生じ良好な二次再結晶を阻害するばかりでなく、鋼板表面の酸化挙動と分布状態に強く影響してSM値やAl、S検出強度の形状を好ましく制御することが困難となりグラス皮膜密着性が劣化する。
Mn: 1.0 to 3.0%
Mn increases the resistivity and improves the core loss characteristics. If the content is 1.0% or less, the specific oxidation behavior of Mn does not pose a problem, and the problem to be solved by the present invention does not occur, so 1.0% or more is the subject of the present invention. If it exceeds 3.0%, not only does γ transformation occur during finish annealing to inhibit good secondary recrystallization, but it strongly influences the oxidation behavior and distribution of the steel sheet surface, and the shape of SM value, Al, S detection strength is preferable It becomes difficult to control and the glass film adhesion deteriorates.

C:0.0001〜0.1%
Cは、磁気時効を引き起こし磁気特性を劣化させるので、0.1%以下にする必要がある。存在してなくても本発明効果は失われるものではないが、低減コストの観点から下限を0.0001%とする。
C: 0.0001 to 0.1%
C needs to be 0.1% or less because it causes magnetic aging and degrades the magnetic properties. Although the effect of the present invention is not lost even if it is not present, the lower limit is made 0.0001% from the viewpoint of reduction cost.

S:0.0001〜0.01%
Sは、0.01%を超えて含有すると、本発明の特徴でもあるS検出強度の形状を2ピーク以上にすることが困難になり、良好なグラス皮膜密着性が得られなくなる。磁気特性の観点では全く含有しなくても良い元素であるが、不純物として微量に含まれてしまう元素であるため、完全にゼロにすることは困難であり、実用的には0.0001%以上である。
S: 0.0001 to 0.01%
When the content of S exceeds 0.01%, it becomes difficult to make the shape of the S detection intensity which is also a feature of the present invention have two or more peaks, and good glass film adhesion can not be obtained. It is an element that does not have to be contained at all in terms of magnetic properties, but because it is an element that is contained as a trace amount as an impurity, it is difficult to completely eliminate it, and it is practically 0.0001% or more .

酸可溶性Al:0.003〜0.030%
酸可溶性Alは、不純物として微量に含まれてしまう元素であるが、完全にゼロにすることは困難である。実用的には0.003%以上である。0.030%以上含有すると、本発明の特徴でもあるAl検出強度の形状を3ピーク以上にすることが困難になり、良好なグラス皮膜密着性が得られなくなる。
Acid soluble Al: 0.003 to 0.030%
Acid-soluble Al is an element that is contained as a trace amount as an impurity, but it is difficult to completely eliminate it. Practically, it is 0.003% or more. When the content is 0.030% or more, it becomes difficult to make the shape of the Al detection intensity which is a feature of the present invention have three or more peaks, and good glass film adhesion can not be obtained.

N:0.0030〜0.050%
Nは、不純物として微量に含まれてしまう元素であるため、完全にゼロにすることは困難である。実用的には0.0030%以上である。0.030%以上含有すると、本発明の特徴でもあるAl検出強度の形状を3ピーク以上にすることが困難になり、良好なグラス皮膜密着性が得られなくなる。
N: 0.0030 to 0.050%
Since N is an element which is contained as a trace amount as an impurity, it is difficult to make it completely zero. Practically, it is 0.0030% or more. When the content is 0.030% or more, it becomes difficult to make the shape of the Al detection intensity which is a feature of the present invention have three or more peaks, and good glass film adhesion can not be obtained.

残部はFe及び不可避不純物からなるが、本発明では、上記元素に加えて、必要に応じて、Cr、Cu、P、Sn、B、Bi、Ni、Seを含有させても良い。Crは0.3%以下、Cuは0.4%以下、Pは0.5%以下、Snは0.3%以下、Niは1%以下、B、Bi及びSeは、B+Bi+Se+S+Teの合計で0.015%以下の範囲で含有できる。   The balance consists of Fe and unavoidable impurities, but in the present invention, Cr, Cu, P, Sn, B, Bi, Ni, and Se may be added if necessary, in addition to the above elements. The content of Cr may be 0.3% or less, Cu may be 0.4% or less, P may be 0.5% or less, Sn may be 0.3% or less, Ni may be 1% or less, B, Bi and Se may be contained in a range of 0.015% or less in total of B + Bi + Se + S + Te.

Crは、脱炭焼鈍の酸化膜を改善し、グラス皮膜形成に有効な元素であり、0.3%以下の範囲で添加する。0.3%を超えると皮膜の密着性に悪影響をきたす。   Cr improves the oxide film of decarburization annealing, is an element effective for glass film formation, and is added in 0.3% or less. If it exceeds 0.3%, the adhesion of the film is adversely affected.

Cuは、固有抵抗を高めて鉄損を低減させることに有効な元素である。添加量が0.4%を超えると鉄損低減効果が飽和するとともに、熱延時に「カッパーヘゲ」なる表面疵の原因になる。   Cu is an element effective in increasing core resistance and reducing iron loss. When the amount of addition exceeds 0.4%, the iron loss reducing effect is saturated, and it causes the surface flaw which becomes "kappahage" at the time of hot rolling.

Pは粒界偏析元素で、添加量が0.5%を超えると圧延性に問題を生じる。   P is a grain boundary segregating element, and if the addition amount exceeds 0.5%, a problem occurs in the rollability.

Snは粒界偏析元素である。仕上焼鈍の条件によっては焼鈍分離剤から放出される水分によりAlが酸化されてインヒビター強度が変化する。そのため磁気特性がコイル位置の違いにより変動する場合がある。この対策の一つとして、これらの粒界偏析元素の添加により酸化を防止する方法があり、そのためにSnは0.3%以下の範囲で添加できる。一方0.3%を超えると脱炭焼鈍時に酸化されにくく、グラス皮膜の形成が不十分となると共に、脱炭焼鈍性を著しく阻害する。   Sn is a grain boundary segregation element. Depending on the conditions of the finish annealing, Al is oxidized by the moisture released from the annealing separator to change the inhibitor strength. Therefore, the magnetic characteristics may fluctuate due to the difference in the coil position. As one of measures against this, there is a method of preventing oxidation by addition of these grain boundary segregation elements, and therefore, Sn can be added in the range of 0.3% or less. On the other hand, if it exceeds 0.3%, it is difficult to be oxidized during decarburization annealing, the formation of a glass film becomes insufficient, and the decarburization annealing property is significantly inhibited.

Niは固有抵抗を高めて鉄損を低減させることに有効な元素で、熱延板の金属組織を制御して磁気特性を向上させる上で有効な元素である。しかしながら、添加量が1%を超えると二次再結晶が不安定になる。   Ni is an element effective in increasing the specific resistance and reducing the core loss, and is an element effective in controlling the metal structure of the hot-rolled sheet to improve the magnetic properties. However, if the addition amount exceeds 1%, secondary recrystallization becomes unstable.

B、Bi、Te及びSeは、磁気特性に悪影響を及ぼすのでB+Bi+Se+S+Teの合計で0.015%以下とすることが望ましく、添加量が1%を超えると、製品の磁束密度が低下してしまう。また、熱間圧延における割れの発生を防止する目的のために、S及びSeの総量との関係でMn/(S+Se+B+Bi+Te)≧4添加することが望ましい。   B, Bi, Te and Se adversely affect the magnetic properties, so the sum of B + Bi + Se + S + Te is preferably 0.015% or less. If the addition amount exceeds 1%, the magnetic flux density of the product is lowered. Further, for the purpose of preventing the occurrence of cracking in hot rolling, it is desirable to add Mn / (S + Se + B + Bi + Te) ≧ 4 in relation to the total amount of S and Se.

次に本発明の特徴である元素分布について説明する。本発明の一方向性電磁鋼板は、下記で規定されるSM値が7以上50未満であり、下記で規定されるAl検出強度のピークを3以上を有し、下記で規定されるS検出強度のピークを2以上を有し、GDSで測定されるNの最高検出強度が0.05以上0.1未満であることにより、Mnを比較的高濃度で含有する一方向性電磁鋼板において、良好な磁気特性とグラス皮膜密着性を両立できる。また本発明の一方向性電磁鋼板は、下記で規定されるSM値が4以上30未満である脱炭板(中間製品)を仕上焼鈍することによって製造することが可能である。   Next, the element distribution which is the feature of the present invention will be described. The unidirectional electrical steel sheet of the present invention has an SM value defined in the following of 7 or more and less than 50, has 3 or more peaks of Al detection intensity defined below, and an S detection intensity defined below In a grain-oriented electrical steel sheet containing Mn at a relatively high concentration by having a peak of at least 2 and the highest detection strength of N measured by GDS being 0.05 or more and less than 0.1, It is compatible with glass film adhesion. In addition, the grain-oriented electrical steel sheet of the present invention can be manufactured by finish annealing a decarburized sheet (intermediate product) having an SM value defined in the following of 4 or more and less than 30.

まず本発明の各規定に関する分析事例として、従来鋼と発明鋼における製造途中の鋼板表面での元素分布の一例を図1に示す。図1は、張力皮膜を塗布する前の一方向性電磁鋼板の鋼板表面のGDS分析の結果である。母鋼板表面に形成されたグラス皮膜を含めて表面層を分析したものになる。なお、図1において、上の図はMn:1%(高マンガン:本発明例)、下の図はMn:0.1%(低マンガン:比較例)、左の図は、右の図の縦軸(分析強度)を拡大したものである。左の図では、Siの強度は縦軸範囲を超えているため現れない。また、GDS測定での測定初期では、放電が不安定になる異常放電による強度変動が生じる。例えば表層域(スパッタ時間0の付近)では、一時的にSiの強いピークが現れるが、実際の濃度変化は存在せず、一定値である。そのため、測定初期の範囲での強度は、本発明とは無関係なピークとする。なお図1では、一方向性電磁鋼板の鋼板表面のGDS分析の結果を示したが、脱炭板でも一方向性電磁鋼板と同様の挙動を示す。   First, as an analysis example regarding each definition of the present invention, an example of element distribution on the surface of a steel sheet in the process of manufacture in conventional steel and invention steel is shown in FIG. FIG. 1 shows the results of GDS analysis of the steel sheet surface of a grain-oriented electrical steel sheet before applying a tension film. The surface layer is analyzed including the glass coating formed on the surface of the base steel sheet. In FIG. 1, the upper diagram shows Mn: 1% (high manganese: present invention example), the lower diagram shows Mn: 0.1% (low manganese: comparative example), the left diagram shows the right diagram. It is what expanded the vertical axis (analysis strength). In the left figure, the strength of Si does not appear because it exceeds the range of the vertical axis. In addition, at the initial stage of measurement in GDS measurement, intensity fluctuations occur due to abnormal discharge where the discharge becomes unstable. For example, in the surface layer region (near sputtering time 0), a strong peak of Si appears temporarily, but there is no actual concentration change, and it is a constant value. Therefore, the intensity in the initial range of measurement is a peak unrelated to the present invention. In addition, in FIG. 1, although the result of GDS analysis of the steel plate surface of a grain-oriented electrical steel sheet was shown, the decarburizing board also shows the behavior similar to a grain-oriented electrical steel sheet.

Si、Mnは鋼板に相当量含有されている元素としては、比較的酸化されやすい元素である。仕上焼鈍される鋼板にはMgを含有する焼鈍分離剤が塗布され、仕上焼鈍中に分離剤と鋼板の反応が起きグラス皮膜が形成されるが、特にSiについては、分離剤中のMg、Oや雰囲気中のOと反応しフォルステライトの形成に寄与する。この過程において、SiおよびMnの挙動を制御することが本発明のポイントであり、その分布は特徴的なものとなっている。   Si and Mn are elements which are relatively easily oxidized as an element contained in a considerable amount in a steel sheet. An annealing separator containing Mg is applied to the steel sheet to be finish-annealed, and the reaction between the separator and the steel sheet takes place during finish annealing to form a glass film, but in particular for Si, Mg and O in the separator It reacts with O in the atmosphere and contributes to the formation of forsterite. It is the point of the present invention to control the behavior of Si and Mn in this process, and the distribution is characteristic.

仕上焼鈍前の脱炭板および仕上焼鈍後のグラス皮膜においては、図1のように、鋼板表層部(スパッタ時間20〜30の付近)にSi検出強度のピークが観察される。同時にこのピーク位置において、従来鋼(低Mn鋼)においてはMn検出強度の変化はそれほど大きくないものの、発明鋼(高Mn鋼)においてはMn濃度の顕著な低下が見られる。このようなMn挙動の違いは、フォルステライト形成中のMnの拡散および皮膜からの排出挙動の結果によるものと思われるが、結果的にこのようなSiおよびMnの分布挙動は、本発明での熱処理条件や前処理条件とも相まってグラス皮膜と鋼板の界面の凹凸の深さに影響してその密着性を向上させるものと考えられ、本発明で規定するSM値が7以上50未満であれば、良好なグラス皮膜密着性が得られるようになる。本発明ではこのような挙動の差をSM値にて定義するものである。   In the decarburized plate before finish annealing and the glass coating after finish annealing, as shown in FIG. 1, a peak of Si detection strength is observed in the surface layer portion of the steel plate (near sputtering time 20 to 30). At the same time, at this peak position, in the conventional steel (low Mn steel), the change in Mn detection strength is not so large, but in the invention steel (high Mn steel), a significant decrease in the Mn concentration is observed. Such differences in the behavior of Mn are believed to be due to the diffusion of Mn during forsterite formation and the behavior of discharge from the film, but as a result, the distribution behavior of such Si and Mn is considered in the present invention. Together with heat treatment conditions and pretreatment conditions, it is thought to affect the depth of the unevenness of the interface between the glass coating and the steel plate to improve the adhesion, and if the SM value specified in the present invention is 7 or more and less than 50, Good glass film adhesion can be obtained. In the present invention, such a difference in behavior is defined by the SM value.

また、Alの分布にも明確な差が確認できる。一般的に張力皮膜塗布前の一方向性電磁鋼板の表面のAl分布は、グラス皮膜に起因するピークと、母材に起因するピークの2つのピークを示すことが知られている。しかし、発明鋼においては、このピークは3つ以上の複雑なものとなっており、従来鋼とは明らかに異なるものとなっている。理由は不明であるが、SについてもAlと同様に、従来鋼は単純な分布になっているが発明鋼では複雑なものになっている。   Also, a clear difference can be confirmed in the distribution of Al. Generally, it is known that the Al distribution on the surface of a grain-oriented electrical steel sheet before application of a tension film shows two peaks: a peak attributed to a glass coating and a peak attributed to a base material. However, in the invention steel, this peak is more than three complex and is clearly different from conventional steels. Although the reason is unclear, the conventional steel has a simple distribution but the invention steel is complicated, as with Al for S.

AlおよびSの検出強度のピーク数と密着性との関連は、理由は明確ではないが、本発明での熱処理条件や前処理条件とも相まってピーク数の増大は酸化物形態の複雑化を促進し、酸化物からなるグラス皮膜と鋼板界面の凹凸形状を微細にするものと考えられ、本発明で規定するAl検出強度のピークが3以上、S検出強度のピークが2以上であれば、良好なグラス皮膜密着性が得られるようになる。本発明ではこのような挙動の差をAlおよびSのピーク数にて定義するものである。これらの結果、グラス皮膜と鋼板の界面の立体的な凹凸は、深く微細で複雑な形態となり、いわゆるアンカー効果による密着性向上に効果を発揮するものと考えられる。   Although the relation between the number of peaks of detected strength of Al and S and the adhesion is not clear, the increase of the number of peaks in combination with the heat treatment condition and the pre-treatment condition in the present invention promotes the complication of oxide form. It is considered that the unevenness of the interface between the glass coating made of oxide and the steel sheet is considered to be fine, and the peak of Al detection intensity specified in the present invention is 3 or more and the peak of S detection intensity is 2 or more. Glass film adhesion can be obtained. In the present invention, such a difference in behavior is defined by the number of Al and S peaks. As a result of these, three-dimensional unevenness at the interface between the glass coating and the steel plate is in a deep, fine and complicated form, and is considered to be effective in improving the adhesion by the so-called anchor effect.

さらに図示はしないが、表面近傍でのNの検出強度の最高値について、従来材と発明材では明瞭な差が観察された。なお、Nの検出強度の最高値とグラス皮膜の密着性の関係については、後述する実施例において立証する。   Further, although not shown, a clear difference was observed between the conventional material and the invention material as to the maximum value of the detection strength of N near the surface. In addition, about the relationship between the maximum value of the detection intensity of N, and the adhesiveness of a glass film, it proves in the Example mentioned later.

次に本発明で規定する各パラメータについて説明する。
(SM値)
本発明で規定するSM値は、以下のように決定される。
グラス皮膜表面のSM値については、張力皮膜を剥離した一方向性電磁鋼板または張力皮膜を塗布する前の一方向性電磁鋼板について、グラス皮膜から地鉄(母鋼板)にわたりGDSで板厚方向の元素強度分布を測定する。また、脱炭板表面のSM値については、一方向性電磁鋼板の製造過程で脱炭直後の表面酸化膜がついたままの脱炭板について、鋼板表面から鋼板内部にわたりGDSで板厚方向の元素強度分布を測定する。この強度分布で、Siは表面に濃化が観察され、その最高強度をSi(S)とする。その深さでのMn強度をMn(S)とする。さらに母鋼板内部でSi強度およびMn強度が安定した領域での強度をそれぞれSi(B)、Mn(B)とする。これらの値から、次式(1)でをSM値を計算する。
SM値=Si(S)/Si(B)*Mn(B)/Mn(S) ・・・式(1)
Next, each parameter defined in the present invention will be described.
(SM value)
The SM value defined in the present invention is determined as follows.
As for the SM value of the glass coating surface, for the unidirectional electromagnetic steel sheet from which the tensile coating has been peeled or the unidirectional electromagnetic steel sheet before applying the tensile coating, the GDS covers the glass coating to the base steel (base steel sheet) Measure the elemental intensity distribution. In addition, with regard to the SM value of the surface of the decarburized sheet, the decarburized sheet with the surface oxide film just after decarburization in the production process of the grain-oriented electrical steel sheet extends from the steel sheet surface to the inside of the steel sheet in the thickness direction Measure the elemental intensity distribution. In this intensity distribution, Si is observed to be concentrated on the surface, and its maximum intensity is taken as Si (S). Let Mn strength at that depth be Mn (S). Further, the strength in the region where the Si strength and the Mn strength are stable inside the base steel sheet is taken as Si (B) and Mn (B), respectively. From these values, the SM value is calculated by the following equation (1).
SM value = Si (S) / Si (B) * Mn (B) / Mn (S) formula (1)

(Al検出強度のピーク)
本発明での「Al検出強度のピーク」は以下のように決定する。
まず上記のようにグラス皮膜表面から鋼板内部への板厚方向の元素強度分布を測定した結果に基づき、板厚方向のAlの強度分布において、Al検出強度の極大値および極小値を求める。得られた極大値の内、表面側または内部側に隣接する極小値との強度差が極小値の10%以上である極大値をAl検出強度のピークと規定する。出現したピーク数により、Al検出強度のピーク数を求める。これにより測定ばらつきによる強度変化による影響を除外し、本発明の特徴を表す妥当なピーク数を決定できる。
(Peak of Al detection intensity)
The “peak of detected Al intensity” in the present invention is determined as follows.
First, based on the result of measuring the element strength distribution in the thickness direction from the surface of the glass coating to the inside of the steel sheet as described above, the maximum value and the minimum value of the Al detection strength are determined in the strength distribution of Al in the thickness direction. Among the obtained maximum values, the maximum value of which the intensity difference with the minimum value adjacent to the surface side or the inner side is 10% or more of the minimum value is defined as the peak of the Al detection intensity. The number of peaks of Al detection intensity is determined from the number of peaks that have appeared. Thereby, the influence of the intensity change due to the measurement variation can be excluded, and the appropriate number of peaks representing the feature of the present invention can be determined.

(S検出強度のピーク)
本発明での「S検出強度のピーク」は以下のように決定する。
まず上記のようにグラス皮膜表面から鋼板内部への板厚方向の元素強度分布を測定した結果に基づき、板厚方向のSの強度分布において、S検出強度の極大値および極小値を求める。得られた極大値の内、表面側または内部側に隣接する極小値との強度差が極小値の10%以上である極大値をS検出強度のピークと規定する。出現したピーク数により、S検出強度のピーク数を求める。これにより測定ばらつきによる強度変化による影響を除外し、本発明の特徴を表す妥当なピーク数を決定できる。
(S peak of detected intensity)
The "S detection intensity peak" in the present invention is determined as follows.
First, based on the result of measuring the element strength distribution in the thickness direction from the glass coating surface to the inside of the steel sheet as described above, the maximum value and the minimum value of the S detection strength are determined in the strength distribution of S in the thickness direction. Among the obtained local maximums, the local maximum at which the intensity difference between the local minimum adjacent to the surface side or the inner side is 10% or more of the local minimum is defined as the peak of the S detection intensity. The number of peaks of S detection intensity is determined from the number of peaks that have appeared. Thereby, the influence of the intensity change due to the measurement variation can be excluded, and the appropriate number of peaks representing the feature of the present invention can be determined.

以下に本発明での各パラメータの条件について詳細に説明する。
グラス皮膜または脱炭板表面のSM値は、鋼板のSi、Mn含有量だけに単純に依存するように思われるが、前述のように表面でのMn分布挙動やSi分布挙動の制御が本発明の本質であるため、必ずしも添加量とは一致する傾向ではない。むしろ、後述する熱処理履歴、工程途中での水溶液の塗布や酸化膜除去などにより大きく変化し、これらにより制御されるものである。本発明では、一方向性電磁鋼板についてはグラス皮膜表面のSM値を7以上50未満とし、脱炭板表面でのSM値を4以上30未満とする。一方向性電磁鋼板ではグラス皮膜表面のSM値この範囲内にないと良好なグラス皮膜密着性を実現することが困難となる。また脱炭板表面でのSM値がこの範囲内にないと、グラス皮膜表面のSM値が7以上50未満である一方向性電磁鋼板を製造することが困難になる。
The conditions of each parameter in the present invention will be described in detail below.
The SM value on the surface of the glass coating or decarburized sheet seems to simply depend only on the Si and Mn contents of the steel sheet, but as described above, the control of the Mn distribution behavior and the Si distribution behavior on the surface is the present invention It does not necessarily tend to coincide with the amount added. Rather, it changes greatly due to the heat treatment history described later, application of an aqueous solution in the middle of the process, removal of an oxide film, and the like, and the control is performed by these. In the present invention, the SM value on the surface of the glass coating is set to 7 or more and less than 50, and the SM value on the surface of the decarburized plate is set to 4 or more and less than 30. In the case of a unidirectional electromagnetic steel sheet, if the SM value of the surface of the glass film is not within this range, it becomes difficult to realize good glass film adhesion. In addition, when the SM value on the surface of the decarburized plate is not within this range, it becomes difficult to manufacture a unidirectional electromagnetic steel sheet having an SM value of 7 to less than 50 on the surface of the glass film.

Al検出強度のピーク数は3以上とした。2ピーク以下では本発明特有の特徴・効果が発揮されない。ピーク数上限は限定しないが、ピークとして認識できる程度の強度変化を有する分布状態であることが必要である。   The peak number of Al detection intensity was 3 or more. Below 2 peaks, the features and effects unique to the present invention are not exhibited. Although the upper limit of the number of peaks is not limited, it is necessary that the distribution state has an intensity change that can be recognized as a peak.

S検出強度のピーク数は2以上とした。単一ピークでは本発明特有の特徴・効果が発揮されない。ピーク数上限は限定しないが、ピークとして認識できる程度の強度変化を有する分布状態であることが必要である。   The number of peaks of S detection intensity was 2 or more. The single peak does not exhibit the features and effects unique to the present invention. Although the upper limit of the number of peaks is not limited, it is necessary that the distribution state has an intensity change that can be recognized as a peak.

Nの検出最高強度は0.05以上0.1未満とする。Nの検出最高強度については、0.05以下では本発明の効果が発揮されず、0.1以上の場合は後述のようにインヒビター強度が大きくなりすぎる為、二次再結晶が困難となる。   The detection maximum intensity of N is 0.05 or more and less than 0.1. With respect to the maximum detection strength of N, the effect of the present invention is not exhibited when it is 0.05 or less, and when it is 0.1 or more, the inhibitor strength becomes too large as described later, so that secondary recrystallization becomes difficult.

また本発明においてAl、S、Nに関しては、鋼板表面での分布を制御することになる。これらの元素の分布が高くなると、その領域では二次再結晶に影響を及ぼすインヒビターが変化するため、磁気特性に想定外の悪影響を及ぼすことが考えられる。規定の最高強度の特に上限近くなる場合には、この影響にも配慮すべきである。   In the present invention, the distribution of Al, S and N on the surface of the steel plate is controlled. If the distribution of these elements is high, the inhibitor that affects secondary recrystallization changes in that region, which may have an unexpected adverse effect on the magnetic properties. This effect should also be taken into account when the upper limit of the specified limit is reached, in particular.

次に本発明の製造条件について説明する。以下に限定されるものでないが、代表的な条件を記述する。   Next, manufacturing conditions of the present invention will be described. Although not limited to the following, representative conditions are described.

本発明の一方向性電磁鋼板は、一般的に知られている一方向性電磁鋼板の製造法である、溶解、熱延、熱延板焼鈍、酸洗、冷延、脱炭焼鈍、必要に応じた窒化焼鈍、焼鈍分離剤塗布、仕上焼鈍の工程により製造できる。また一方向性電磁鋼板を製造する中間製品となる本発明の脱炭板は、溶解、熱延、熱延板焼鈍、酸洗、冷延、脱炭焼鈍の工程により製造できる。電磁鋼スラブは、転炉または電気炉等により鋼を溶製し、必要に応じて溶鋼を真空脱ガス処理し、ついで連続鋳造もしくは造塊後分塊圧延することによって得られる。注意を要するのは、一般的な一方向性電磁鋼板の製法においてはスラブ組成と最終製品の組成は異なることである。特に、C,S、N、Alは脱炭工程や仕上焼鈍での純化により含有量が低下する。また、Mgなど焼鈍分離剤などで塗布することにより含有量が増加する元素もある。   The unidirectional magnetic steel sheet of the present invention is a generally known method for producing a unidirectional magnetic steel sheet: melting, hot rolling, hot rolled sheet annealing, pickling, cold rolling, decarburizing annealing, It can manufacture according to the process of nitriding annealing according to, annealing separator application, and finish annealing. Moreover, the decarburized board of this invention used as the intermediate product which manufactures a grain-oriented electrical steel sheet can be manufactured by the process of melt | dissolution, hot rolling, hot-rolled board annealing, pickling, cold rolling, and decarburizing annealing. The electromagnetic steel slab is obtained by melting steel by a converter or an electric furnace or the like, vacuum degassing the molten steel if necessary, and then performing continuous casting or ingot-post-rolling. It should be noted that the slab composition and the composition of the final product are different in a general method of producing a grain-oriented electrical steel sheet. In particular, the contents of C, S, N, and Al are reduced by purification in a decarburization step or finish annealing. There is also an element such as Mg whose content is increased by coating with an annealing separator or the like.

本発明鋼程度の成分の最終製品を製造するのであれば、一般的にスラブ組成は、質量%でC:0.01〜0.08%、Si:3.0〜4.0%、Mn:1.0〜3.0%、S:0.0030〜0.01%、酸可溶性Al:0.003〜0.030%、N:0.0030〜0.050%を含有し、残部はFe及び不可避不純物からなるものである。目的とする組成および磁気特性を有する最終製品を得るために、磁気特性を制御する製造条件やその製造工程での組成変化を考慮してスラブ組成を決定することは当業者であれば困難なことではない。   In the case of producing a final product having the components of the invention steel grade, in general, the slab composition is, by mass%, C: 0.01 to 0.08%, Si: 3.0 to 4.0%, Mn: 1.0 to 3.0%, S: 0.0030 -0.01%, acid-soluble Al: 0.003 to 0.030%, N: 0.0030 to 0.050%, the balance being composed of Fe and unavoidable impurities. It is difficult for a person skilled in the art to determine the slab composition in consideration of the manufacturing conditions for controlling the magnetic characteristics and the composition change in the manufacturing process in order to obtain the final product having the target composition and the magnetic characteristics. is not.

熱間圧延に先だってスラブ加熱がなされる。本発明においては、一般的な熱延条件を適応する。上述した温度にて加熱されたスラブは引続き熱間圧延され、所要板厚の熱延板となる。その後の工程については、以下に説明する工程以外については通常の製造条件を適用すればよい。   Slab heating is performed prior to hot rolling. In the present invention, general hot rolling conditions are applied. The slab heated at the above-mentioned temperature is subsequently hot-rolled into a hot-rolled sheet of the required thickness. With respect to the subsequent steps, normal manufacturing conditions may be applied except for the steps described below.

本発明では、前述のようにグラス皮膜形成までの母鋼材表面での酸化挙動を制御することで良好なグラス皮膜を形成させる。特に脱炭焼鈍後の時点での酸素量は、本発明効果の一つの指標となる。本発明では0.1〜2.3g/m2の場合に発明効果が現れやすい。この酸化挙動を制御するのに脱炭焼鈍は重要な工程である。本発明の効果を発揮するために、脱炭焼鈍での温度履歴として、冷間圧延後の最高到達温度をY℃として、Y:700〜900℃、Y−30℃超での滞在時間:4秒以下、その後のY−30℃以下、Y−85℃以上の温度域での滞留時間:10秒以上とすることで発明効果を十分に得ることができる。焼鈍雰囲気は特に限定されるものではないが、酸化度(PH2O/PH2)を0.15超1.1以下とすることが好ましい。理由は明確ではないが、上記のような熱履歴と雰囲気で酸化を行うと、脱炭板での酸化膜と鋼板の界面にTi、Bが濃化しやすくなり、結果としてその後形成されるグラス皮膜の密着性が向上する。また、理由は不明であるが脱炭焼鈍の加熱速度を75〜125℃/秒とした場合は本発明の効果は顕著になる。   In the present invention, as described above, a good glass film is formed by controlling the oxidation behavior on the surface of the base steel material until the formation of the glass film. In particular, the amount of oxygen at the time after decarburization annealing is one indicator of the effect of the present invention. In the present invention, the effects of the present invention are likely to appear in the case of 0.1 to 2.3 g / m 2. Decarburization annealing is an important step in controlling this oxidation behavior. In order to exert the effects of the present invention, Y: 700 to 900 ° C., residence time at Y-30 ° C. or more, where Y ° C. is the maximum temperature reached after cold rolling, as a temperature history in decarburizing annealing. The invention effect can be sufficiently obtained by setting the residence time in a temperature range of Y-30 ° C. or less and Y-85 ° C. or more after 10 seconds or more. The annealing atmosphere is not particularly limited, but it is preferable to set the degree of oxidation (PH2O / PH2) to more than 0.15 and 1.1 or less. Although the reason is not clear, when oxidation is performed in the above heat history and atmosphere, Ti and B are easily concentrated at the interface between the oxide film and the steel plate in the decarburized plate, and as a result, the glass film formed later Adhesion is improved. Moreover, although the reason is unclear, the effect of the present invention becomes remarkable when the heating rate of decarburizing annealing is set to 75 to 125 ° C./sec.

さらに本発明では、熱延、冷延、脱炭焼鈍、仕上焼鈍を経て製造される一方向性電磁鋼板の製造工程において、または熱延、冷延、脱炭焼鈍を経て製造される一方向性電磁鋼板用の脱炭板の製造工程において、熱延、冷延、脱炭焼鈍もしくは仕上焼鈍のうちの、1工程もしくは2工程以上の前処理において、B、Al、Te、Mn 、Bi、Si、Cuのうち1種もしくは2種以上の元素を0.002〜0.120g/m2塗布することで、各元素の表面濃度を高め、鋼板を熱処理した際の酸化挙動を変化させ、グラス皮膜や脱炭板での元素分布状態を好ましく制御できる。塗布の方法は特に問わない。イオンプレーティング、めっきの他、硫化物、酸化物、水酸化物の溶液、ゲル状・ゾル状・コロイド状の懸濁液などでの塗布など、一般的に用いられる方法の適用が可能である。例えば、B2O3、Al2O3、TeCl4、KMnO4、Bi2O3、SiO2、CuSなどの化合物を、水、アセトン、メタノールなどを溶媒とし、酸化力のある酸可溶などの性質を利用して、水溶液や懸濁液として塗布できる。鋼板のハンドリング等を考慮し、特に湿式の塗布法を適用した場合は乾燥させることが好ましい。また現状の実用製法でも鋼板の表面に特殊な物質を塗布する工程としては、焼鈍分離剤塗布があるが、上記元素または元素を含有する化合物を焼鈍分離剤に混合して塗布することも可能である。   Furthermore, in the present invention, in the production process of a grain-oriented electrical steel sheet manufactured through hot rolling, cold rolling, decarburizing annealing, and finish annealing, or unidirectionality manufactured through hot rolling, cold rolling, and decarburizing annealing. In the process of producing a decarburized sheet for a magnetic steel sheet, B, Al, Te, Mn, Bi, Si in the pretreatment of one or more steps of hot rolling, cold rolling, decarburizing annealing or finish annealing. The surface concentration of each element is increased by applying 0.002 to 0.120 g / m 2 of one or two or more elements of Cu to change the oxidation behavior when the steel sheet is heat-treated, and a glass film or a decarburized sheet It is possible to preferably control the element distribution state at The method of application is not particularly limited. In addition to ion plating and plating, it is possible to apply commonly used methods such as application in sulfide, oxide, hydroxide solutions, gel-like, sol-like, and colloidal suspensions. . For example, a compound such as B 2 O 3, Al 2 O 3, TeCl 4, KMnO 4, Bi 2 O 3, SiO 2, CuS, etc. is used as a solvent in water, acetone, methanol etc. to make an aqueous solution or suspension using properties such as oxidative acid solubility. It can be applied as In consideration of handling of the steel sheet, etc., it is preferable to dry particularly when a wet coating method is applied. In the present practical manufacturing method, there is an annealing separator application as a step of applying a special substance to the surface of a steel sheet, but it is possible to mix the above-mentioned element or a compound containing an element to the annealing separator and apply it. is there.

さらに、脱炭焼鈍後から仕上焼鈍前の間で、酸洗、機械研磨または化学研磨の1つ又は2つ以上の工程により鋼板表面の酸化膜の一部を除去することで本発明効果が好ましく得ることができる。つまり、酸化膜の一部を残して、酸化膜の最表面を除去することが有効である。
酸洗溶液としては、塩酸、硫酸、硝酸等の無機酸が有効である。酸洗条件は特に規定しないが、酸化膜除去の程度に応じて本発明効果が現れるため、温度、時間と濃度を考慮して条件を決定することが必要である。この条件は通常の工程でも酸洗を実施している当業者であれば適切に設定することは容易である。ただし本発明での酸洗は軽酸洗であるため無機酸のみでは均一な酸洗とならないことがあり、無機酸に0.1〜5%のフッ酸を混合すると均一な酸洗が可能となる。実用的な範囲も考慮した好ましい条件は、40℃以下、濃度5%以下のH2SO4の水溶液に10秒以下の浸漬である。このような条件により1〜10g/m2の酸洗減量が得られる。なお、酸化膜除去の工程として、酸洗とブラシ研磨等の機械研磨等の物理的な方法を組み合わせてもよい。なお、脱炭焼鈍と仕上焼鈍の間に窒化焼鈍を挟む場合も想定される。かかる場合、脱炭焼鈍後と窒化焼鈍後のそれぞれで酸化膜を除去することもできる。
Furthermore, the effect of the present invention is preferable by removing a part of the oxide film on the surface of the steel sheet by one or more steps of pickling, mechanical polishing or chemical polishing between decarburizing annealing and before finish annealing. You can get it. That is, it is effective to remove the outermost surface of the oxide film while leaving a part of the oxide film.
As the pickling solution, inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid are effective. Although the pickling conditions are not particularly defined, the effects of the present invention appear depending on the degree of oxide film removal, so it is necessary to determine the conditions in consideration of temperature, time and concentration. It is easy for those skilled in the art who carry out the pickling even in ordinary steps to set these conditions appropriately. However, since pickling in the present invention is light pickling, it may not be uniform pickling with inorganic acid alone, and it is possible that uniform pickling is possible by mixing 0.1 to 5% of hydrofluoric acid with inorganic acid. Become. A preferable condition in consideration of the practical range is immersion in an aqueous solution of H 2 SO 4 at 40 ° C. or less and at a concentration of 5% or less for 10 seconds or less. Under these conditions, a pickling weight loss of 1 to 10 g / m 2 can be obtained. In addition, you may combine physical methods, such as mechanical polishing, such as pickling and brush grinding, as a process of oxide film removal. In addition, the case where nitriding annealing is inserted between decarburization annealing and finish annealing is also assumed. In such a case, the oxide film can be removed after decarburization annealing and after nitriding annealing.

上記のような処理を実施した鋼板には、最終的に張力被膜が塗布され最終製品として出荷、使用される。   Finally, a tension film is applied to the steel sheet subjected to the above-mentioned treatment, and is shipped and used as a final product.

以下、本発明の実施例を説明する。実施例で採用した条件は、本発明の実施可能性及び効果を確認するための一例であり、これに限定されるものではない。本発明を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Hereinafter, examples of the present invention will be described. The conditions adopted in the examples are an example for confirming the practicability and effects of the present invention, and are not limited thereto. Various conditions can be adopted without departing from the present invention as long as the object of the present invention is achieved.

C:0.004%、Si:3.8%、S:0.002%、Al:0.007%、N:0.0080%、残りはFeの溶鋼に対して、Mn:0.77〜3.16%と変化させたA〜Hの8鋼種の材料を2.6mm厚の熱延板とした。この熱延板から、冷間圧延、脱炭焼鈍、仕上焼鈍を経て一方向性電磁鋼板を製造した。電磁鋼板では、溶解時と製品までの工程中に成分変化するため、スラブ組成(表1)と製品板組成(表2)を記述した。アンダーラインは発明範囲外を示す。   C: 0.004%, Si: 3.8%, S: 0.002%, Al: 0.007%, N: 0.0080%, and the balance to molten iron of Fe: Mn: 0.77 to 3.16% and the eight steel grades of A to H changed. Was used as a 2.6 mm thick hot-rolled sheet. From the hot-rolled sheet, cold rolling, decarburizing annealing and finish annealing were performed to produce a grain-oriented electrical steel sheet. In the electromagnetic steel sheet, the composition of the slab (Table 1) and the composition of the product plate (Table 2) are described because the components change during melting and in the process up to the product. Underlines indicate outside the scope of the invention.

Figure 0006519006
Figure 0006519006

Figure 0006519006
Figure 0006519006

熱延板には、Si3N4を主成分に含有した化合物の5%希薄水溶液を、素材表面に均一に8g/cm3塗布した。1000℃x30秒の熱延板焼鈍を行い、その後0.23mmまで冷間圧延した。その後、脱炭焼鈍して脱炭板を製造し、さらに仕上焼鈍を経て一方向性電磁鋼板を製造した。なお、脱炭工程後、緩やかな酸洗により酸化膜の除去を施した。MnS及びAlTeを含有した化合物の9%希薄水溶液を、素材表面に均一に塗布して乾燥させた後、MgOを主とした焼鈍分離剤を塗布した材料に、窒化可能なガスを吹き込みながら、除加熱で1200℃x20時間の焼鈍を施した。脱炭焼鈍の条件、脱炭焼鈍後の酸洗の条件、仕上焼鈍時の水溶液の塗布条件を表3〜8に示す。   For the hot-rolled sheet, 8 g / cm 3 of a 5% dilute aqueous solution of a compound containing Si 3 N 4 as a main component was uniformly applied to the surface of the material. Hot rolled sheet annealing was performed at 1000 ° C. × 30 seconds, and then cold rolled to 0.23 mm. Thereafter, decarburization annealing was performed to produce a decarburized plate, and further, through finish annealing, a grain-oriented electrical steel sheet was manufactured. After the decarburization step, the oxide film was removed by gentle pickling. A 9% dilute aqueous solution of a compound containing MnS and AlTe is uniformly applied to the surface of the material and dried, and then a material capable of applying an annealing separating agent mainly made of MgO is blown away with a gas capable of nitriding. Annealing was performed at 1200 ° C. for 20 hours by heating. The conditions of decarburization annealing, the conditions of pickling after decarburization annealing, and the coating conditions of the aqueous solution at the time of finish annealing are shown in Tables 3-8.

途中工程で得られたグラス板と脱炭板をGDSによって分析した。脱炭昇温時の最高到達温度、(最高到達温度-30)℃超え滞在時間、(最高到達温度-30)℃以下(最高到達温度-85)℃以上の温度域での滞在時間、酸洗処理回数、仕上焼鈍前までのいずれかの時点で実施した希薄水溶液の含有元素組み合わせ及び塗布量と二次再結晶の可否の関係について、実績をサンプルn=80弱で整理した結果を表3〜8に示す。二次再結晶の可否の目安として、SST測定から得られた磁束密度B8を飽和磁束密度Bsで除した一般的な指標B8/Bsを参考に用いた。0.85以上を◎○(良好)、二次再結晶するもののB8/Bsが規定に到達しなかったものは△、二次再結晶しなかったものは×、と4種類で判定した。またグラス皮膜密着性評価として、φ10曲げを実施し、曲げ部が全面剥離したものを×、3〜5cm2剥離したものを△、1〜3cm2内を○、1cm2以下を◎と4種類で判定した。良好の判定を満たすものは、脱炭昇温時の最高到達温度700〜900℃、(最高到達温度-30)℃超え滞在時間4s以下、(最高到達温度-30)℃以下(最高到達温度-85)℃以上の温度域での滞在時間10s以上、酸洗処理回数1回以上、仕上焼鈍前までのいずれかの時点でB、Al、Te、Mn 、Bi、Si、Cuのうち1種もしくは2種以上の元素を0.002〜0.120g/m2塗布した場合であった。
The glass plate and the decarburized plate obtained in the middle process were analyzed by GDS. Maximum reaching temperature at decarburization temperature, (Maximum reaching temperature -30) ° C Staying time, (Maximum reaching temperature -30) ° C or less (Maximum reach temperature -85) Staying time in temperature range or higher, Pickling Regarding the relationship between the number of times of processing, the combination of elements contained in the dilute aqueous solution and the amount of application and the possibility of secondary recrystallization performed at any time before final annealing, the results are shown in Table 3 Shown in 8. A general index B8 / Bs obtained by dividing the magnetic flux density B8 obtained from the SST measurement by the saturation magnetic flux density Bs was used as a reference as a measure of the presence or absence of secondary recrystallization. Four types of evaluations were made, ○ (good) of 0.85 or more, 二 for which B8 / Bs did not reach the definition, △ for secondary recrystallization, and x for those not for secondary recrystallization. In addition, for evaluation of adhesion to glass film, φ10 bending was carried out, and the one in which the bent portion was peeled entirely was judged by ×, peeled by 3 to 5 cm 2 by Δ, 1 to 3 cm 2 by ○, and 1 cm 2 or less by ◎. . The ones that meet the good judgment are the maximum reaching temperature 700-900 ° C at decarburization temperature rising, (maximum reaching temperature -30) ° C over 4s or less, (maximum reaching temperature -30) ° C or less (maximum reaching temperature- 85) Staying time in a temperature range of 10 ° C. or higher, 1 time or more of pickling treatment times before the final annealing, 1 time or more of B, Al, Te, Mn, Bi, Si, or Cu at any time It was a case where 0.002-0.120 g / m <2> of 2 or more types of elements were apply | coated.

Figure 0006519006
Figure 0006519006
Figure 0006519006
Figure 0006519006
Figure 0006519006
Figure 0006519006
Figure 0006519006
Figure 0006519006
Figure 0006519006
Figure 0006519006
Figure 0006519006
Figure 0006519006

Claims (9)

母鋼板の表面にグラス皮膜が形成された一方向性電磁鋼板であって、
前記母鋼板は、質量%でSi:3.0〜4.0%、Mn:1.0〜3.0%、C:0.0001〜0.1%、S:0.0001〜0.01%、酸可溶性Al:0.003〜0.030%、N:0.0030〜0.050%を含有し、残部はFe及び不可避不純物からなり、下記で規定されるSM値が7以上50未満であり、下記で規定されるAl検出強度のピークを3以上を有し、下記で規定されるS検出強度のピークを2以上を有し、GDSで測定されるNの最高検出強度が0.05以上0.1未満であることを特徴とする一方向性電磁鋼板。
SM値:
グラス皮膜の表面から内部にわたりGDSで元素強度分布を測定し、板厚方向のSiおよびMnの強度分布において、表面に濃化しているSiの最高強度をSi(S)とし、その最高強度をSi(S)を検出した深さでのMn強度をMn(S)とする。さらに母鋼板内部でSi強度およびMn強度が安定した領域での強度をそれぞれSi(B)、Mn(B)とする。これらの値から、次式(1)でをSM値を計算する。
SM値=Si(S)/Si(B)*Mn(B)/Mn(S) ・・・式(1)
Al検出強度のピーク:
グラス皮膜の表面から内部にわたりGDSで元素強度分布を測定し、板厚方向のAlの強度分布において、Al検出強度の極大値および極小値を求める。得られた極大値の内、表面側または内部側に隣接する極小値との強度差が極小値の10%以上である極大値をAl検出強度のピークと規定する。
S検出強度のピーク:
グラス皮膜の表面から内部にわたりGDSで元素強度分布を測定し、板厚方向のSの強度分布において、S検出強度の極大値および極小値を求める。得られた極大値の内、表面側または内部側に隣接する極小値との強度差が極小値の10%以上である極大値をS検出強度のピークと規定する。
A unidirectional electromagnetic steel sheet having a glass coating formed on the surface of a base steel sheet,
The base steel sheet is, by mass%, Si: 3.0 to 4.0%, Mn: 1.0 to 3.0%, C: 0.0001 to 0.1%, S: 0.0001 to 0.01%, acid soluble Al: 0.003 to 0.030%, N: 0.0030 to 0.050 %, The balance being composed of Fe and unavoidable impurities, the SM value defined below is 7 or more and less than 50, has 3 or more peaks of Al detection intensity defined below, and is specified below A unidirectional electromagnetic steel sheet having two or more peaks of detected S intensity and having a maximum detected intensity of N measured by GDS of 0.05 or more and less than 0.1.
SM value:
The element strength distribution is measured by GDS from the surface to the inside of the glass film, and in the strength distribution of Si and Mn in the thickness direction, the highest strength of Si concentrated on the surface is Si (S), and the highest strength is Si Let the Mn intensity at the depth at which (S) is detected be Mn (S). Further, the strength in the region where the Si strength and the Mn strength are stable inside the base steel sheet is taken as Si (B) and Mn (B), respectively. From these values, the SM value is calculated by the following equation (1).
SM value = Si (S) / Si (B) * Mn (B) / Mn (S) formula (1)
Peak of Al detection intensity:
The element strength distribution is measured by GDS from the surface to the inside of the glass film, and the maximum value and the minimum value of the Al detection strength are determined in the strength distribution of Al in the plate thickness direction. Among the obtained maximum values, the maximum value of which the intensity difference with the minimum value adjacent to the surface side or the inner side is 10% or more of the minimum value is defined as the peak of the Al detection intensity.
Peak of S detected intensity:
Elemental intensity distribution is measured by GDS from the surface to the inside of the glass film, and the maximum value and the minimum value of the S detection intensity are determined in the intensity distribution of S in the plate thickness direction. Among the obtained local maximums, the local maximum at which the intensity difference between the local minimum adjacent to the surface side or the inner side is 10% or more of the local minimum is defined as the peak of the S detection intensity.
前記母鋼板は、質量%でさらにCr:0.3%以下、Cu:0.4%以下、P:0.5%以下、Sn:0.3%以下、Ni:1%以下、B、Bi、Te及びSe:B+Bi+Se+S+Teの合計で0.015%以下のうち1種もしくは2種以上の元素を含有することを特徴とする請求項1に記載の一方向性電磁鋼板。 The base steel sheet further contains, in mass%, Cr: 0.3% or less, Cu: 0.4% or less, P: 0.5% or less, Sn: 0.3% or less, Ni: 1% or less, B, Bi , Te and Se: B + Bi + Se + S + Te total The grain-oriented electrical steel sheet according to claim 1, characterized in that it contains one or more elements of 0.015% or less. 一方向性電磁鋼板の中間製品となる脱炭板であって、
質量%でSi:3.0〜4.0%、Mn:1.0〜3.0%、C:0.0001〜0.1%、S:0.0001〜0.01%、酸可溶性Al:0.003〜0.030%、N:0.0030〜0.050%を含有し、残部はFe及び不可避不純物からなり、下記で規定されるSM値が4以上30未満であることを特徴とする一方向性電磁鋼板用の脱炭板。
SM値:
酸化膜で皮膜された表面から内部にわたりGDSで板厚方向のSiおよびMnの強度分布を測定し、表面に濃化しているSiの最高強度をSi(S)とし、その最高強度をSi(S)を検出した深さでのMn強度をMn(S)とする。さらに母鋼板内部でSi強度およびMn強度が安定した領域での強度をそれぞれSi(B)、Mn(B)とする。これらの値から、次式(1)でをSM値を計算する。
SM値=Si(S)/Si(B)*Mn(B)/Mn(S) ・・・式(1)
It is a decarburized plate that is an intermediate product of unidirectional magnetic steel plates,
Si: 3.0 to 4.0%, Mn: 1.0 to 3.0%, C: 0.0001 to 0.1%, S: 0.0001 to 0.01%, acid soluble Al: 0.003 to 0.030%, N: 0.0030 to 0.050% in mass%, A decarburizing plate for a unidirectional electromagnetic steel sheet, characterized in that the balance is made of Fe and unavoidable impurities, and the SM value defined below is 4 or more and less than 30.
SM value:
The strength distribution of Si and Mn in the thickness direction is measured by GDS from the surface coated with the oxide film to the inside, and the highest strength of Si concentrated on the surface is Si (S), and the highest strength is Si (S (S) The Mn intensity at the depth at which) is detected is taken as Mn (S). Further, the strength in the region where the Si strength and the Mn strength are stable inside the base steel sheet is taken as Si (B) and Mn (B), respectively. From these values, the SM value is calculated by the following equation (1).
SM value = Si (S) / Si (B) * Mn (B) / Mn (S) formula (1)
質量%でさらにCr:0.3%以下、Cu:0.4%以下、P:0.5%以下、Sn:0.3%以下、Ni:1%以下、B、Bi、Te及びSe:B+Bi+Se+S+Teの合計で0.015%以下のうち1種もしくは2種以上の元素を含有することを特徴とする請求項3に記載の一方向性電磁鋼板用の脱炭板。 Cr: 0.3% or less, Cu: 0.4% or less, P: 0.5% or less, Sn: 0.3% or less, Ni: 1% or less, B, Bi , Te, and Se: B + Bi + Se + S + Te in total of 0.015% or less The decarburizing plate for a grain-oriented electrical steel sheet according to claim 3, which contains one or more elements among them. 熱間圧延、冷間圧延、脱炭焼鈍、仕上焼鈍を経て請求項1または2のいずれか1項に記載の一方向性電磁鋼板を製造する方法であって、
前記脱炭焼鈍の最高到達温度をY:700〜900℃とし、Y−30℃超での滞在時間:4秒以下、その後のY−30℃以下、Y−85℃以上の温度域での滞留時間:10秒以上とすることを特徴とする、一方向性電磁鋼板の製造方法。
A method of manufacturing the grain-oriented electrical steel sheet according to any one of claims 1 or 2 through hot rolling, cold rolling, decarburizing annealing, and finish annealing,
The maximum reaching temperature of the decarburization annealing is Y: 700 to 900 ° C., residence time at Y-30 ° C. or higher: 4 seconds or less, and thereafter residence at a temperature range of Y-30 ° C. or less, Y-85 ° C. or higher Time: 10 seconds or more, The manufacturing method of a unidirectional electromagnetic steel sheet characterized by the above-mentioned.
前記脱炭焼鈍後から仕上焼鈍前の間で、酸洗、機械研磨または化学研磨の1つ又は2つ以上の工程により鋼板表面の酸化膜を除去することを特徴とする、請求項5に記載の一方向性電磁鋼板の製造方法。   The method according to claim 5, wherein the oxide film on the surface of the steel sheet is removed by one or more steps of pickling, mechanical polishing or chemical polishing between the decarburizing annealing and the finish annealing. Manufacturing method of one-way electrical steel sheet. 熱間圧延、冷間圧延、脱炭焼鈍、仕上焼鈍を経て請求項1または2のいずれか1項に記載の一方向性電磁鋼板を製造する方法であって、
前記熱間圧延、前記冷間圧延、前記脱炭焼鈍、前記仕上焼鈍の少なくともいずれか一つの前処理として、鋼板表面にB、Al、Te、Mn、Bi、Si、Cuのうち1種もしくは2種以上の元素を0.002〜0.120g/m2塗布することを特徴とする、一方向性電磁鋼板の製造方法。
A method of manufacturing the grain-oriented electrical steel sheet according to any one of claims 1 or 2 through hot rolling, cold rolling, decarburizing annealing, and finish annealing,
One or two of B, Al, Te, Mn, Bi, Si, and Cu on the steel sheet surface as at least any one pretreatment of the hot rolling, the cold rolling, the decarburizing annealing, and the finish annealing. The manufacturing method of the unidirectional electromagnetic steel sheet characterized by apply | coating 0.002-0.120 g / m <2> of elements more than seed | species.
熱間圧延、冷間圧延、脱炭焼鈍を経て請求項3または4のいずれか1項に記載の脱炭板を製造する方法であって、
前記脱炭焼鈍の最高到達温度をY:700〜900℃とし、Y−30℃超での滞在時間:4秒以下、その後のY−30℃以下、Y−85℃以上の温度域での滞留時間:10秒以上とすることを特徴とする、一方向性電磁鋼板用の脱炭板の製造方法。
A method for producing a decarburized sheet according to any one of claims 3 or 4 through hot rolling, cold rolling and decarburizing annealing,
The maximum reaching temperature of the decarburization annealing is Y: 700 to 900 ° C., residence time at Y-30 ° C. or higher: 4 seconds or less, and thereafter residence at a temperature range of Y-30 ° C. or less, Y-85 ° C. or higher Time: 10 seconds or more, The manufacturing method of the decarburizing board for a unidirectional electromagnetic steel sheet characterized by the above-mentioned.
前記熱間圧延、前記冷間圧延、前記脱炭焼鈍の少なくともいずれか一つの前処理として、鋼板表面にB、Al、Te、Mn、Bi、Si、Cuのうち1種もしくは2種以上の元素を0.002〜0.120g/m2塗布することを特徴とする、請求項8に記載の一方向性電磁鋼板用の脱炭板の製造方法。   One or more elements of B, Al, Te, Mn, Bi, Si, and Cu on the steel sheet surface as at least any one pretreatment of the hot rolling, the cold rolling, and the decarburizing annealing. The method of manufacturing a decarburized sheet for a unidirectional magnetic steel sheet according to claim 8, wherein 0.002 to 0.120 g / m 2 of the metal is applied.
JP2015075740A 2015-04-02 2015-04-02 Unidirectional electrical steel sheet, decarburizing plate for unidirectional electrical steel sheet, and method for producing them Active JP6519006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015075740A JP6519006B2 (en) 2015-04-02 2015-04-02 Unidirectional electrical steel sheet, decarburizing plate for unidirectional electrical steel sheet, and method for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015075740A JP6519006B2 (en) 2015-04-02 2015-04-02 Unidirectional electrical steel sheet, decarburizing plate for unidirectional electrical steel sheet, and method for producing them

Publications (2)

Publication Number Publication Date
JP2016196669A JP2016196669A (en) 2016-11-24
JP6519006B2 true JP6519006B2 (en) 2019-05-29

Family

ID=57357582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015075740A Active JP6519006B2 (en) 2015-04-02 2015-04-02 Unidirectional electrical steel sheet, decarburizing plate for unidirectional electrical steel sheet, and method for producing them

Country Status (1)

Country Link
JP (1) JP6519006B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6870381B2 (en) * 2017-02-28 2021-05-12 日本製鉄株式会社 Electrical steel sheet and its manufacturing method
JP6958738B2 (en) * 2018-07-13 2021-11-02 日本製鉄株式会社 Directional electrical steel sheet and its manufacturing method
EP3854892B1 (en) * 2018-09-27 2024-06-05 JFE Steel Corporation Grain-oriented electrical steel sheet and method for producing same
EP3910081A4 (en) * 2019-01-08 2022-10-05 Nippon Steel Corporation Grain-oriented electromagnetic steel sheet, method for manufacturing same, and annealing separator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832928B2 (en) * 1987-10-30 1996-03-29 新日本製鐵株式会社 Method for producing unidirectional electrical steel sheet with excellent magnetic properties and glass film properties
JPH07188759A (en) * 1993-12-28 1995-07-25 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3081118B2 (en) * 1994-11-02 2000-08-28 新日本製鐵株式会社 Grain-oriented electrical steel sheet with extremely low iron loss
US5643370A (en) * 1995-05-16 1997-07-01 Armco Inc. Grain oriented electrical steel having high volume resistivity and method for producing same
JP3562433B2 (en) * 2000-04-12 2004-09-08 Jfeスチール株式会社 Grain-oriented silicon steel sheet with excellent magnetic and coating properties

Also Published As

Publication number Publication date
JP2016196669A (en) 2016-11-24

Similar Documents

Publication Publication Date Title
CN107849656B (en) Method for producing grain-oriented electromagnetic steel sheet
RU2595190C1 (en) Method of making sheet of textured electrical steel
KR101498404B1 (en) Method for manufacturing grain oriented electrical steel sheet
KR101921401B1 (en) Method for producing grain-oriented electrical steel sheet
JP5423909B1 (en) Method for producing grain-oriented electrical steel sheet
JP5668767B2 (en) Hot rolled steel sheet for manufacturing non-oriented electrical steel sheet and method for manufacturing the same
JP5610084B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6485554B2 (en) Directional electrical steel sheet and method for producing the same, and method for producing decarburized steel sheet for directionally oriented electrical steel sheet
KR101698381B1 (en) Method for producing grain-oriented electrical steel sheet
JP6938886B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6103281B2 (en) Method for producing grain-oriented electrical steel sheet
JP2017222898A (en) Production method of grain oriented magnetic steel sheet
US10643770B2 (en) Grain-oriented electrical steel sheet
JP6519006B2 (en) Unidirectional electrical steel sheet, decarburizing plate for unidirectional electrical steel sheet, and method for producing them
JP6825681B2 (en) Electrical steel sheet and its manufacturing method
WO2019181952A1 (en) Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
JP6844110B2 (en) Manufacturing method of grain-oriented electrical steel sheet and manufacturing method of original sheet for grain-oriented electrical steel sheet
JP6341382B2 (en) Oriented electrical steel sheet and manufacturing method thereof
CN113302317B (en) Method for producing grain-oriented electrical steel sheet
JP7295394B2 (en) Non-oriented electrical steel sheet
KR20230006645A (en) Manufacturing method of electrical steel sheet
KR20210110865A (en) Method for manufacturing grain-oriented electrical steel sheet
JP3921807B2 (en) Method for producing grain-oriented silicon steel sheet
JP7119474B2 (en) Manufacturing method of grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R151 Written notification of patent or utility model registration

Ref document number: 6519006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151