JP2022022481A - Method for manufacturing grain-oriented electromagnetic steel sheet - Google Patents

Method for manufacturing grain-oriented electromagnetic steel sheet Download PDF

Info

Publication number
JP2022022481A
JP2022022481A JP2020108319A JP2020108319A JP2022022481A JP 2022022481 A JP2022022481 A JP 2022022481A JP 2020108319 A JP2020108319 A JP 2020108319A JP 2020108319 A JP2020108319 A JP 2020108319A JP 2022022481 A JP2022022481 A JP 2022022481A
Authority
JP
Japan
Prior art keywords
less
steel sheet
mass
pickling
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020108319A
Other languages
Japanese (ja)
Other versions
JP7529978B2 (en
Inventor
春彦 渥美
Haruhiko Atsumi
隆史 片岡
Takashi Kataoka
龍太郎 山縣
Ryutaro Yamagata
宣郷 森重
Norisato Morishige
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020108319A priority Critical patent/JP7529978B2/en
Publication of JP2022022481A publication Critical patent/JP2022022481A/en
Application granted granted Critical
Publication of JP7529978B2 publication Critical patent/JP7529978B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

To provide a method for manufacturing grain-oriented electromagnetic steel sheet in which cracking during cold rolling can be suppressed even when a high Si concentration slab is used.SOLUTION: Provided is a method for manufacturing grain-oriented electromagnetic steel sheet that comprises a hot rolling step, an arbitrary hot rolling sheet annealing step, a pickling step, a cold rolling step, a primary recrystallization annealing step, a finish annealing step, and a flattening annealing step. In the pickling step, a pickling solution that contains one or more metals selected from the group consisting of Cu, Hg, Ag, Pb, Cd, Ni, Zn and Co by 0.001 mass% or more and 0.100 mass% or less, and hydrochloric acid in an amount of 5 mass% or more and 20 mass% or less based on hydrogen chloride is used.SELECTED DRAWING: None

Description

本発明は、方向性電磁鋼板の製造方法に関する。 The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet.

方向性電磁鋼板は、Siを0.5質量%~7質量%程度含有し、鋼板の結晶粒の方位をGoss方位と呼ばれる{110}<001>方位に高度に集積させた鋼板である。方向性電磁鋼板は、磁気特性に優れることから、例えば、変圧器等の静止誘導器の鉄心材料等として利用されている。従来、電磁鋼板の磁気特性を向上させるために種々の開発がなされている。特に、近年の省エネルギー化の要請に伴って、方向性電磁鋼板では、さらなる低鉄損化が求められている。方向性電磁鋼板の低鉄損化には、鋼板の結晶粒の方位について、Goss方位への集積度を高めて磁束密度を向上させて、ヒステリシス損失を低減することが有効である。方向性電磁鋼板の製造において、結晶方位の制御は、二次再結晶と呼ばれるカタストロフィックな粒成長現象を利用することで行われる。二次再結晶による結晶方位の制御には、インヒビターと呼ばれる鋼中微細析出物を、二次再結晶の所望の時点まで均一かつ安定に存在させておくことが重要である。 The grain-oriented electrical steel sheet is a steel sheet containing about 0.5% by mass to 7% by mass of Si, and the orientation of the crystal grains of the steel sheet is highly integrated in the {110} <001> orientation called the Goss orientation. Since the grain-oriented electrical steel sheet has excellent magnetic characteristics, it is used, for example, as an iron core material for a static induction device such as a transformer. Conventionally, various developments have been made to improve the magnetic properties of electrical steel sheets. In particular, with the recent demand for energy saving, further reduction of iron loss is required for grain-oriented electrical steel sheets. In order to reduce the iron loss of the grain-oriented electrical steel sheet, it is effective to increase the degree of integration in the Goss direction with respect to the orientation of the crystal grains of the steel sheet to improve the magnetic flux density and reduce the hysteresis loss. In the production of grain-oriented electrical steel sheets, the crystal orientation is controlled by utilizing a catastrophic grain growth phenomenon called secondary recrystallization. In order to control the crystal orientation by secondary recrystallization, it is important to allow fine precipitates in steel called inhibitors to be uniformly and stably present up to a desired time point of secondary recrystallization.

鉄損を低減する手法としては、固有抵抗を高めるSiの鋼中濃度を高くすることによって渦電流損失を低減する方法が代表的である。しかし、Si濃度を高くすると、スラブが硬く脆くなり、加工性が低下することが知られている。高Si濃度の方向性電磁鋼板の製造時の加工性を改善する技術としては、熱間圧延工程又は熱延板焼鈍工程の条件を適正化することによって鋼板表面の性状を制御する技術が提案されている。例えば、特許文献1は、Si:2.0~4.5wt%を含有するけい素鋼スラブを高温加熱して熱間粗圧延を施した後、熱間仕上圧延を施すけい素鋼熱延板の製造方法において、熱間粗圧延の際、第1スタンドでの圧延を、該スタンドの入側板厚、出側板厚、かみ込み時における鋼板の表面温度及びかみ込み時における鋼板表面から所定深さでの温度の関係を規定の範囲内とすることで、熱間圧延での表面割れを抑制する方法を記載する。 A typical method for reducing iron loss is to reduce the eddy current loss by increasing the concentration of Si in the steel, which increases the intrinsic resistance. However, it is known that when the Si concentration is increased, the slab becomes hard and brittle, and the workability is lowered. As a technique for improving the workability of grain-oriented electrical steel sheets having a high Si concentration, a technique for controlling the properties of the steel sheet surface by optimizing the conditions of the hot rolling process or the hot-rolled sheet annealing process has been proposed. ing. For example, in Patent Document 1, a silicon steel slab containing Si: 2.0 to 4.5 wt% is heated at a high temperature to perform hot rough rolling, and then hot finish rolling is performed. In the manufacturing method of, in the case of hot rough rolling, rolling at the first stand is performed by rolling on the inlet side plate thickness, the exit side plate thickness, the surface temperature of the steel plate at the time of biting, and the predetermined depth from the surface of the steel plate at the time of biting. A method of suppressing surface cracking in hot rolling by keeping the relationship between the temperatures in the above range within the specified range will be described.

国際公開第94/014549号International Publication No. 94/014549

特許文献1に記載される技術は熱間圧延での表面割れの抑制に関するものであるが、高Si濃度のスラブを用いた方向性電磁鋼板においては、冷間圧延時の割れの発生も問題となっている。例えば冷間圧延において鋼帯をリールに巻き付ける際、巻き付き割れが生じ、この割れが起点となって破断が発生する場合がある。 The technique described in Patent Document 1 relates to suppressing surface cracking in hot rolling, but in a grain-oriented electrical steel sheet using a slab having a high Si concentration, the occurrence of cracking during cold rolling is also a problem. It has become. For example, when a steel strip is wound around a reel in cold rolling, winding cracks may occur, and the cracks may be the starting point to cause fracture.

本発明は上記の課題を解決し、高Si濃度のスラブを用いた場合にも冷間圧延時の割れを抑制できる、方向性電磁鋼板の製造方法の提供を目的とする。 An object of the present invention is to solve the above-mentioned problems and to provide a method for manufacturing grain-oriented electrical steel sheets, which can suppress cracking during cold rolling even when a slab having a high Si concentration is used.

本開示は、以下の態様を包含する。
[1] 質量%で、C:0.02%以上0.10%以下、Si:2.5%以上4.5%以下、Mn:0.01%以上0.30%以下、S及びSeのうち1種又は2種の合計:0.001%以上0.050%以下、酸可溶性Al:0.01%以上0.05%以下、N:0.002%以上0.020%以下を含有し、残部Fe及び不純物からなるスラブ組成を有するスラブを加熱し、熱間圧延を施すことで熱延鋼板を得る熱間圧延工程と、
前記熱延鋼板を酸洗溶液に浸漬することで、又は前記熱延鋼板に熱延板焼鈍を施して熱延焼鈍板を得た後に前記熱延焼鈍板を酸洗溶液に浸漬することで、酸洗板を得る酸洗工程と、
前記酸洗板に冷間圧延を施すことで冷延鋼板を得る冷間圧延工程と、
前記冷延鋼板に一次再結晶焼鈍を施して一次再結晶焼鈍板を得る一次再結晶焼鈍工程と、
前記一次再結晶焼鈍板の表面に、MgOを含む焼鈍分離剤を塗布した後、仕上焼鈍を施して仕上焼鈍板を得る仕上焼鈍工程と、
前記仕上焼鈍板に絶縁被膜を塗布した後、平坦化焼鈍を施す平坦化焼鈍工程と、を含み、
前記酸洗溶液が、Cu、Hg、Ag、Pb、Cd、Ni、Zn及びCoからなる群から選択される1種以上の金属を0.001質量%以上0.100質量%以下、及び塩酸を塩化水素基準で5質量%以上20質量%以下の量で含む、方向性電磁鋼板の製造方法。
[2] 前記酸洗工程において、前記酸洗溶液のpHが-1.5以上7.0未満、液温が15℃以上100℃以下であり、前記浸漬を5秒以上200秒以下行う、上記[1]に記載の方向性電磁鋼板の製造方法。
[3] 前記スラブの前記加熱を1280℃以上で行う、上記[1]又は[2]に記載の方向性電磁鋼板の製造方法。
[4] 前記スラブ組成が、前記Feの一部に代えて、質量%で、
Cu:0.5000%以下、
Cr:0.50%以下、
Bi:0.0200%以下、
Sb:0.500%以下、
Mo:0.500%以下、
Sn:0.500%以下、及び
Ni:0.500%以下、
からなる群から選択される1種又は2種以上を含有する、上記[1]~[3]のいずれかに記載の方向性電磁鋼板の製造方法。
The present disclosure includes the following aspects.
[1] In terms of mass%, C: 0.02% or more and 0.10% or less, Si: 2.5% or more and 4.5% or less, Mn: 0.01% or more and 0.30% or less, S and Se. The total of one or two of them: 0.001% or more and 0.050% or less, acid-soluble Al: 0.01% or more and 0.05% or less, N: 0.002% or more and 0.020% or less. A hot rolling step of heating a slab having a slab composition consisting of the balance Fe and impurities and hot rolling to obtain a hot-rolled steel sheet.
By immersing the hot-rolled steel plate in a pickling solution, or by immersing the hot-rolled steel plate in a pickling solution after obtaining a hot-rolled annealed plate. The pickling process to obtain a pickling plate and
A cold rolling step of obtaining a cold-rolled steel sheet by cold-rolling the pickling plate, and
A primary recrystallization annealing step of subjecting the cold-rolled steel sheet to primary recrystallization annealing to obtain a primary recrystallization annealed sheet,
A finish annealing step of applying an annealing separator containing MgO to the surface of the primary recrystallization annealed plate and then performing finish annealing to obtain a finish annealed plate.
Including a flattening annealing step of applying an insulating film to the finish annealing plate and then performing flattening annealing.
The pickling solution contains 0.001% by mass or more and 0.100% by mass or less of one or more metals selected from the group consisting of Cu, Hg, Ag, Pb, Cd, Ni, Zn and Co, and hydrochloric acid. A method for manufacturing a directional electromagnetic steel plate, which comprises an amount of 5% by mass or more and 20% by mass or less based on hydrogen chloride.
[2] In the pickling step, the pH of the pickling solution is −1.5 or more and less than 7.0, the liquid temperature is 15 ° C. or more and 100 ° C. or less, and the immersion is performed for 5 seconds or more and 200 seconds or less. The method for manufacturing a directional electromagnetic steel plate according to [1].
[3] The method for manufacturing a grain-oriented electrical steel sheet according to the above [1] or [2], wherein the heating of the slab is performed at 1280 ° C. or higher.
[4] The slab composition is, instead of a part of the Fe, by mass%.
Cu: 0.5000% or less,
Cr: 0.50% or less,
Bi: 0.0200% or less,
Sb: 0.500% or less,
Mo: 0.500% or less,
Sn: 0.500% or less, and Ni: 0.500% or less,
The method for manufacturing a grain-oriented electrical steel sheet according to any one of the above [1] to [3], which contains one kind or two or more kinds selected from the group consisting of.

本発明の一態様によれば、高Si濃度のスラブを用いた場合にも冷間圧延時の割れを抑制できる、方向性電磁鋼板の製造方法が提供され得る。 According to one aspect of the present invention, there can be provided a method for manufacturing a grain-oriented electrical steel sheet that can suppress cracking during cold rolling even when a slab having a high Si concentration is used.

以下、本発明の例示の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。なお、特に断らない限り、数値A及びBについて「A~B」という表記は「A以上B以下」を意味するものとする。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following embodiments. Unless otherwise specified, the notation "A to B" for the numerical values A and B means "A or more and B or less".

本発明の一態様は、
質量%で、C:0.02%以上0.10%以下、Si:2.5%以上4.5%以下、Mn:0.01%以上0.30%以下、S及びSeのうち1種又は2種の合計:0.001%以上0.050%以下、酸可溶性Al:0.01%以上0.05%以下、N:0.002%以上0.020%以下を含有し、残部Fe及び不純物からなるスラブ組成を有するスラブを加熱し、熱間圧延を施すことで熱延鋼板を得る熱間圧延工程と、
前記熱延鋼板を酸洗溶液に浸漬することで、又は前記熱延鋼板に熱延板焼鈍を施して熱延焼鈍板を得た後に前記熱延焼鈍板を酸洗溶液に浸漬することで、酸洗板を得る酸洗工程と、
前記酸洗板に冷間圧延を施すことで冷延鋼板を得る冷間圧延工程と、
前記冷延鋼板に一次再結晶焼鈍を施して一次再結晶焼鈍板を得る一次再結晶焼鈍工程と、
前記一次再結晶焼鈍板の表面に、MgOを含む焼鈍分離剤を塗布した後、仕上焼鈍を施して仕上焼鈍板を得る仕上焼鈍工程と、
前記仕上焼鈍板に絶縁被膜を塗布した後、平坦化焼鈍を施す平坦化焼鈍工程と、を含む、方向性電磁鋼板の製造方法を提供する。
One aspect of the present invention is
By mass%, C: 0.02% or more and 0.10% or less, Si: 2.5% or more and 4.5% or less, Mn: 0.01% or more and 0.30% or less, one of S and Se Or the total of the two types: 0.001% or more and 0.050% or less, acid-soluble Al: 0.01% or more and 0.05% or less, N: 0.002% or more and 0.020% or less, and the balance Fe A hot rolling step of heating a slab having a slab composition composed of impurities and hot rolling to obtain a hot-rolled steel sheet.
By immersing the hot-rolled steel plate in a pickling solution, or by immersing the hot-rolled steel plate in a pickling solution after obtaining a hot-rolled annealed plate. The pickling process to obtain a pickling plate and
A cold rolling step of obtaining a cold-rolled steel sheet by cold-rolling the pickling plate, and
A primary recrystallization annealing step of subjecting the cold-rolled steel sheet to primary recrystallization annealing to obtain a primary recrystallization annealed sheet,
A finish annealing step of applying an annealing separator containing MgO to the surface of the primary recrystallization annealed plate and then performing finish annealing to obtain a finish annealed plate.
Provided is a method for manufacturing a grain-oriented electrical steel sheet, which comprises a flattening annealing step of applying an insulating film to the finished annealed plate and then performing flattening annealing.

一態様において、酸洗溶液は、Cu、Hg、Ag、Pb、Cd、Ni、Zn及びCoからなる群から選択される1種以上の金属である金属成分を含む。 In one embodiment, the pickling solution comprises a metal component that is one or more metals selected from the group consisting of Cu, Hg, Ag, Pb, Cd, Ni, Zn and Co.

仕上焼鈍時にインヒビターとして機能する成分(代表的にはMnS、MnSe及びAlN)を鋼中に存在させる場合には、熱間圧延後の鋼板においてインヒビターが微細に析出しており、その一部は鋼板表面に露出している。本発明者らは、高Si濃度のスラブを用いた方向性電磁鋼板の製造において、冷間圧延時に割れが生じ易いことに着目し、その発生原因を検討したところ、熱間圧延後の酸洗時に、鋼板表面のインヒビターとその周囲の母材との界面において腐食が生じ、この腐食が割れの一因になることを見出した。具体的には、酸洗によって鋼板表面のスケールを除去する際、鋼板表面に露出したインヒビターが上記の腐食によって脱落することで、鋼板表面に微細な凹部が形成され、冷間圧延工程において当該凹部に応力が集中することによって割れが生じると考えられる。 When components (typically MnS, MnSe and AlN) that function as inhibitors during finish annealing are present in the steel, the inhibitors are finely deposited on the steel sheet after hot rolling, and some of them are finely deposited on the steel sheet. It is exposed on the surface. The present inventors focused on the fact that cracks are likely to occur during cold rolling in the production of directional electromagnetic steel sheets using slabs with a high Si concentration, and investigated the cause of the cracks. Occasionally, it was found that corrosion occurs at the interface between the inhibitor on the surface of the steel sheet and the base metal around it, and this corrosion contributes to the cracking. Specifically, when the scale on the surface of the steel sheet is removed by pickling, the inhibitor exposed on the surface of the steel sheet falls off due to the above corrosion, so that fine recesses are formed on the surface of the steel sheet, and the recesses are formed in the cold rolling process. It is considered that cracks occur due to the concentration of stress on the steel sheet.

インヒビターとその周囲の母材(主成分はFeである)との界面における腐食は、インヒビターと母材との電位差に起因すると考えられる。本発明者らは、この腐食を抑制する手段を鋭意検討した結果、特定の金属種を酸洗溶液中に含有させることが有効であることを見出した。一態様において、酸洗溶液は、Cu、Hg、Ag、Pb、Cd、Ni、Zn及びCoからなる群から選択される1種以上の金属である金属成分(本開示で、単に金属成分ということもある。)を含有する。インヒビターを構成するMnはいずれも標準電極電位(標準酸化還元電位)が比較的低く電子を放出する傾向が比較的高いが、本実施形態の金属成分を構成し得る金属はいずれもMnと比べて標準電極電位が高く、Mnと置換されて硫化物又はセレン化物を形成し得る。このような置換は、インヒビター析出物のうち酸洗溶液と接する部位である表面近傍で生じ易く、中でも、鋼板表面に露出しているインヒビター析出物の表面近傍で特に生じ易い。インヒビター析出物の表面近傍のMnが本実施形態の金属成分と置換されて当該金属成分の硫化物又はセレン化物が形成されると、当該硫化物又はセレン化物が障壁となってインヒビター析出物の内部のMnのイオン化が抑制されるため、インヒビターと母材との界面の腐食が低減される。なおインヒビター析出物の表面近傍に付着した金属成分もまた母材のFeに対して卑又は貴である電位差を有するが、界面の腐食の程度は、金属成分が付着していない場合と比べれば軽微である。このように、本実施形態の金属成分は、インヒビターと母材との界面における腐食抑制、したがってインヒビターの脱落抑制に有利に寄与する。加えて、インヒビター析出物の表面に金属成分が付着することによる体積増加は、インヒビターと母材との界面における隙間を低減することでも腐食抑制に有利に寄与する。 Corrosion at the interface between the inhibitor and the base material around it (main component is Fe) is considered to be due to the potential difference between the inhibitor and the base material. As a result of diligent studies on means for suppressing this corrosion, the present inventors have found that it is effective to include a specific metal species in the pickling solution. In one embodiment, the pickling solution is a metal component that is one or more metals selected from the group consisting of Cu, Hg, Ag, Pb, Cd, Ni, Zn and Co (in the present disclosure, it is simply referred to as a metal component). There is also.). All of the Mns constituting the inhibitor have a relatively low standard electrode potential (standard oxidation-reduction potential) and have a relatively high tendency to emit electrons, but all the metals that can form the metal component of the present embodiment are compared with Mn. The standard electrode potential is high and can be replaced with Mn to form a sulfide or selenium. Such substitution is likely to occur in the vicinity of the surface of the inhibitor precipitate which is in contact with the pickling solution, and in particular, is likely to occur in the vicinity of the surface of the inhibitor precipitate exposed on the surface of the steel sheet. When Mn near the surface of the inhibitor precipitate is replaced with the metal component of the present embodiment to form a sulfide or selenium of the metal component, the sulfide or selenium becomes a barrier and the inside of the inhibitor precipitate. Since the ionization of Mn is suppressed, corrosion at the interface between the inhibitor and the base metal is reduced. The metal component adhering to the vicinity of the surface of the inhibitor precipitate also has a potential difference that is base or noble with respect to Fe of the base material, but the degree of corrosion at the interface is slight compared to the case where the metal component is not adhered. Is. As described above, the metal component of the present embodiment advantageously contributes to the suppression of corrosion at the interface between the inhibitor and the base material, and thus the suppression of the inhibitor from falling off. In addition, the increase in volume due to the adhesion of the metal component to the surface of the inhibitor precipitate also contributes to corrosion suppression by reducing the gap at the interface between the inhibitor and the base material.

金属成分として使用され得る金属の中でも、鋼板表面に析出させ易くかつ低コスト、環境への負荷が少ない観点から、CuやNiが好ましい。 Among the metals that can be used as metal components, Cu and Ni are preferable from the viewpoints that they are easily deposited on the surface of the steel sheet, the cost is low, and the load on the environment is small.

一態様において、酸洗溶液中の金属成分の含有量は、0.001質量%以上0.100質量%以下である。当該含有量は、インヒビターのイオン化抑制効果を良好に得る観点から、一態様において0.001質量%以上、好ましくは、0.002質量%以上、又は0.003質量%以上、又は0.004質量%以上であり、金属成分の過度な析出による一次再結晶時の不都合(脱炭不足、酸化膜形成不足等)を防止する観点から、一態様において0.100質量%以下であり、好ましくは、0.080質量%以下、又は0.060質量%以下である。酸洗溶液中の金属成分の量は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定できる。 In one embodiment, the content of the metal component in the pickling solution is 0.001% by mass or more and 0.100% by mass or less. The content thereof is 0.001% by mass or more, preferably 0.002% by mass or more, or 0.003% by mass or more, or 0.004% by mass in one embodiment from the viewpoint of satisfactorily obtaining the ionization inhibitory effect of the inhibitor. % Or more, preferably 0.100% by mass or less in one embodiment, from the viewpoint of preventing inconveniences during primary recrystallization (insufficient decarburization, insufficient formation of oxide film, etc.) due to excessive precipitation of metal components. It is 0.080% by mass or less, or 0.060% by mass or less. The amount of the metal component in the pickling solution can be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometery).

一態様において、酸洗溶液は、塩酸を含む。塩酸は、鋼板表面からのスケール除去効果を十分有する一方、鋼板表面を腐食させ難い点で有利である。酸洗溶液中の塩酸の量は、塩化水素基準で、一態様において5質量%以上20質量%以下であり、好ましくは、6質量%以上、又は7質量%以上であってよく、好ましくは、19質量%以下、又は18質量%以下であってよい。 In one embodiment, the pickling solution comprises hydrochloric acid. Hydrochloric acid has a sufficient effect of removing scale from the surface of the steel sheet, but is advantageous in that it does not easily corrode the surface of the steel sheet. The amount of hydrochloric acid in the pickling solution may be 5% by mass or more and 20% by mass or less, preferably 6% by mass or more, or 7% by mass or more, preferably 7% by mass or more, based on hydrogen chloride. It may be 19% by mass or less, or 18% by mass or less.

以下、本実施形態に係る方向性電磁鋼板の製造方法について具体的に説明する。 Hereinafter, the method for manufacturing the grain-oriented electrical steel sheet according to the present embodiment will be specifically described.

[スラブの成分組成]
まず、本実施形態に係る方向性電磁鋼板に用いられるスラブの成分組成について説明する。なお、以下では特に断りのない限り、「%」との表記は「質量%」を表わすものとする。また、以下で説明する元素以外のスラブの残部は、Fe及び不純物である。
[Slab component composition]
First, the component composition of the slab used for the grain-oriented electrical steel sheet according to the present embodiment will be described. In the following, unless otherwise specified, the notation "%" means "mass%". Further, the rest of the slab other than the elements described below is Fe and impurities.

C(炭素)の含有量は、0.02%以上0.10%以下である。Cには、種々の役割があるが、Cの含有量が0.02%未満である場合、スラブの加熱時に結晶粒径が過度に大きくなることで、最終的な方向性電磁鋼板の鉄損値を増大させるため好ましくない。Cの含有量が0.10%超である場合、冷間圧延後の脱炭時に、脱炭時間が長時間になり、製造コストが増加するため好ましくない。また、Cの含有量が0.10%超である場合、脱炭が不完全になり易く、最終的な方向性電磁鋼板において磁気時効を起こす可能性があるため好ましくない。したがって、Cの含有量は、0.02%以上0.10%以下であり、好ましくは、0.03%以上0.09%以下、より好ましくは、0.04%以上0.08%以下である。 The content of C (carbon) is 0.02% or more and 0.10% or less. C has various roles, but when the C content is less than 0.02%, the crystal grain size becomes excessively large when the slab is heated, resulting in iron loss of the final grain-oriented electrical steel sheet. It is not preferable because it increases the value. When the C content is more than 0.10%, the decarburization time becomes long and the manufacturing cost increases during decarburization after cold rolling, which is not preferable. Further, when the C content is more than 0.10%, decarburization tends to be incomplete, which may cause magnetic aging in the final grain-oriented electrical steel sheet, which is not preferable. Therefore, the content of C is 0.02% or more and 0.10% or less, preferably 0.03% or more and 0.09% or less, and more preferably 0.04% or more and 0.08% or less. be.

Si(ケイ素)の含有量は、2.5%以上4.5%以下である。Siは、鋼板の電気抵抗を高めることで、鉄損の原因の一つである渦電流損失を低減する。Siの含有量が2.5%未満である場合、最終的な方向性電磁鋼板の渦電流損失を十分に抑制することが困難になるため好ましくない。Siの含有量が4.5%超である場合、方向性電磁鋼板の加工性が低下するため好ましくない。したがって、Siの含有量は、2.5%以上4.5%以下であり、好ましくは、2.7%以上4.0%以下、より好ましくは、2.9%以上3.7%以下である。 The content of Si (silicon) is 2.5% or more and 4.5% or less. Si reduces the eddy current loss, which is one of the causes of iron loss, by increasing the electric resistance of the steel sheet. When the Si content is less than 2.5%, it becomes difficult to sufficiently suppress the eddy current loss of the final grain-oriented electrical steel sheet, which is not preferable. When the Si content is more than 4.5%, the workability of the grain-oriented electrical steel sheet is deteriorated, which is not preferable. Therefore, the Si content is 2.5% or more and 4.5% or less, preferably 2.7% or more and 4.0% or less, and more preferably 2.9% or more and 3.7% or less. be.

Mn(マンガン)の含有量は、0.01%以上0.30%以下である。Mnは、二次再結晶を左右するインヒビターであるMnS及びMnSe等を形成する。Mnの含有量が0.01%未満である場合、二次再結晶を生じさせるMnS及びMnSeの絶対量が不足するため好ましくない。Mnの含有量が0.30%超である場合、スラブ加熱時にMnの固溶が困難になるため好ましくない。また、Mnの含有量が0.30%超である場合、インヒビターであるMnS及びMnSeの析出サイズが粗大化し易く、インヒビターとしての最適サイズ分布が損なわれるため好ましくない。したがって、Mnの含有量は、0.01%以上0.30%以下であり、好ましくは、0.02%以上0.15%以下、より好ましくは、0.03%以上0.13%以下、より好ましくは、0.05%以上0.10%以下である。 The content of Mn (manganese) is 0.01% or more and 0.30% or less. Mn forms MnS, MnSe and the like, which are inhibitors that influence secondary recrystallization. If the Mn content is less than 0.01%, the absolute amounts of MnS and MnSe that cause secondary recrystallization are insufficient, which is not preferable. When the Mn content is more than 0.30%, it is not preferable because it becomes difficult to dissolve Mn during slab heating. Further, when the Mn content is more than 0.30%, the precipitation sizes of the inhibitors MnS and MnSe tend to be coarse, and the optimum size distribution as an inhibitor is impaired, which is not preferable. Therefore, the Mn content is 0.01% or more and 0.30% or less, preferably 0.02% or more and 0.15% or less, and more preferably 0.03% or more and 0.13% or less. More preferably, it is 0.05% or more and 0.10% or less.

S(硫黄)及びSe(セレン)の含有量は、合計で0.001%以上0.050%以下である。S及びSeは、上述したMnと共にインヒビターを形成する。S及びSeは、2種ともスラブに含有されていてもよいが、少なくともいずれか1種がスラブに含有されていればよい。S及びSeの含有量の合計が上記範囲を外れる場合、十分なインヒビター効果が得られないため好ましくない。したがって、S及びSeの含有量は、合計で0.001%以上0.050%以下であり、好ましくは、0.001%以上0.040%以下、より好ましくは、0.005%以上0.040%以下である。 The total content of S (sulfur) and Se (selenium) is 0.001% or more and 0.050% or less. S and Se form an inhibitor together with Mn described above. Both S and Se may be contained in the slab, but at least one of them may be contained in the slab. If the total content of S and Se is out of the above range, a sufficient inhibitory effect cannot be obtained, which is not preferable. Therefore, the total content of S and Se is 0.001% or more and 0.050% or less, preferably 0.001% or more and 0.040% or less, and more preferably 0.005% or more and 0. It is 040% or less.

酸可溶性Al(酸可溶性アルミニウム)の含有量は、0.01%以上0.05%以下である。酸可溶性Alは、高磁束密度の方向性電磁鋼板を製造するために必要なインヒビターを構成する。酸可溶性Alの含有量が0.05%超である場合、インヒビターとして析出するAlNが粗大化し、インヒビター強度を低下させるため好ましくない。なお、酸可溶性Alの含有量が0.01%未満である場合、インヒビター強度が低く好ましくない。したがって、酸可溶性Alの含有量は、0.01%以上0.05%以下であり、好ましくは、0.01%以上0.04%以下である。 The content of acid-soluble Al (acid-soluble aluminum) is 0.01% or more and 0.05% or less. The acid-soluble Al constitutes an inhibitor necessary for producing a grain-oriented electrical steel sheet having a high magnetic flux density. When the content of the acid-soluble Al is more than 0.05%, AlN precipitated as an inhibitor becomes coarse and the inhibitor strength is lowered, which is not preferable. When the content of acid-soluble Al is less than 0.01%, the inhibitor strength is low, which is not preferable. Therefore, the content of acid-soluble Al is 0.01% or more and 0.05% or less, preferably 0.01% or more and 0.04% or less.

N(窒素)の含有量は、0.002%以上0.020%以下である。Nは、上述した酸可溶性Alと共にインヒビターであるAlNを形成する。Nの含有量が上記範囲を外れる場合、十分なインヒビター効果が得られないため好ましくない。したがって、Nの含有量は、0.002%以上0.020%以下であり、好ましくは、0.002%以上0.015%以下、より好ましくは、0.002%以上0.012%以下、より好ましくは、0.005%以上0.012%以下である。 The content of N (nitrogen) is 0.002% or more and 0.020% or less. N forms the inhibitor AlN together with the acid-soluble Al described above. If the content of N is out of the above range, a sufficient inhibitory effect cannot be obtained, which is not preferable. Therefore, the content of N is 0.002% or more and 0.020% or less, preferably 0.002% or more and 0.015% or less, and more preferably 0.002% or more and 0.012% or less. More preferably, it is 0.005% or more and 0.012% or less.

また、本実施形態に係る方向性電磁鋼板の製造に用いられるスラブは、上述した元素の他に、磁気特性向上のために、残部Feの一部に代えて、質量%で、Cu:0.5000%以下、Cr:0.50%以下、Bi:0.0200%以下、Sb:0.500%以下、Mo:0.500%以下、Sn:0.500%以下、及びNi:0.500%以下、からなる群から選択される1種又は2種以上を含有してもよい。一態様に係るスラブにおいては、質量%で、Cuの含有量が0.0005%以上であってよく、Crの含有量が0.02%以上であってよく、Biの含有量が0.0005%以上であってよく、Sbの含有量が0.005%以上であってよく、Moの含有量が0.005%以上であってよく、Snの含有量が0.005%以上であってよく、Niの含有量が0.005%以上であってよい。 Further, in addition to the above-mentioned elements, the slab used for producing the directional electromagnetic steel plate according to the present embodiment has Cu: 0. 5000% or less, Cr: 0.50% or less, Bi: 0.0200% or less, Sb: 0.500% or less, Mo: 0.500% or less, Sn: 0.500% or less, and Ni: 0.500 It may contain one kind or two or more kinds selected from the group consisting of% or less. In the slab according to one embodiment, the Cu content may be 0.0005% or more, the Cr content may be 0.02% or more, and the Bi content may be 0.0005 in mass%. % Or more, Sb content may be 0.005% or more, Mo content may be 0.005% or more, and Sn content may be 0.005% or more. Often, the Ni content may be 0.005% or more.

上記で説明した成分組成に調整された溶鋼を鋳造することで、スラブが形成される。なお、スラブの鋳造方法は、特に限定されない。また、研究開発において、真空溶解炉等で鋼塊が形成されても、上記成分について、スラブが形成された場合と同様の効果が確認できる。以下、スラブから方向性電磁鋼板を製造するための各工程の好適態様について更に説明する。 A slab is formed by casting molten steel adjusted to the composition of the components described above. The method of casting the slab is not particularly limited. Further, in research and development, even if a steel ingot is formed in a vacuum melting furnace or the like, the same effect as when a slab is formed can be confirmed for the above components. Hereinafter, preferred embodiments of each step for manufacturing grain-oriented electrical steel sheets from slabs will be further described.

[熱間圧延工程]
本工程では、スラブを加熱して熱間圧延を施すことで熱延鋼板を得る。スラブの加熱温度は、一態様において、スラブ中のインヒビター成分(例えば、MnS、MnSe、AlN等)を固溶させてインヒビターの効果を良好に得る観点から、好ましくは、1280℃以上、又は1300℃以上であってよく、この場合のスラブの加熱温度の上限値は、特に定めないが、設備保護の観点から1450℃が好ましい。又は、スラブの加熱温度は、一態様において、熱延時の、加熱炉負担軽減、スケール生成量低減、インヒビター制御の下工程化等の観点から、好ましくは、1280℃未満、又は1250℃以下であってよい。
[Hot rolling process]
In this step, a hot-rolled steel sheet is obtained by heating the slab and performing hot rolling. In one embodiment, the heating temperature of the slab is preferably 1280 ° C. or higher, or 1300 ° C. from the viewpoint of solidly dissolving the inhibitor component (for example, MnS, MnSe, AlN, etc.) in the slab to obtain a good inhibitor effect. The above may be sufficient, and the upper limit of the heating temperature of the slab in this case is not particularly determined, but is preferably 1450 ° C. from the viewpoint of equipment protection. Alternatively, the heating temperature of the slab is preferably less than 1280 ° C or 1250 ° C or less from the viewpoints of reducing the load on the heating furnace, reducing the amount of scale generated, and lowering the process of inhibitor control during hot spreading. It's okay.

加熱されたスラブは熱間圧延されて熱延鋼板に加工される。加工後の熱延鋼板の板厚は、鋼板温度が低下し難いことで鋼中のインヒビターの析出等を安定的に制御できる点で、例えば1mm以上が好ましく、冷間圧延工程での圧延負荷を低くできる点で、例えば10mm以下が好ましい。 The heated slab is hot-rolled and processed into a hot-rolled steel sheet. The thickness of the hot-rolled steel sheet after processing is preferably 1 mm or more, for example, because the temperature of the steel sheet does not easily decrease and the precipitation of inhibitors in the steel can be stably controlled. For example, 10 mm or less is preferable in that it can be lowered.

[酸洗工程]
本工程では、熱延鋼板を酸洗溶液に浸漬することで、又は熱延鋼板に熱延板焼鈍を施して熱延焼鈍板を得た後に熱延焼鈍板を酸洗溶液に浸漬することで、酸洗板を得る。本実施形態の方法では、特定の金属種である金属成分を含む酸洗溶液を用いた酸洗を冷間圧延前に行うことで、鋼板表面におけるインヒビターと母材との界面の腐食によるインヒビターの脱落を抑制でき、冷間圧延時の割れを低減できる。酸洗は、熱間圧延の後、一次再結晶焼鈍の前に、少なくとも一回施される。一態様においては、冷間圧延におけるロール摩耗を軽減する観点から、冷間圧延工程の前に酸洗が施される。
[Pickling process]
In this step, the hot-rolled steel plate is immersed in a pickling solution, or the hot-rolled steel sheet is annealed to obtain a hot-rolled annealed plate and then the hot-rolled annealed plate is immersed in a pickling solution. , Get a pickling plate. In the method of the present embodiment, pickling using a pickling solution containing a metal component which is a specific metal species is performed before cold rolling to obtain an inhibitor due to corrosion of the interface between the inhibitor and the base metal on the surface of the steel sheet. It is possible to suppress falling off and reduce cracking during cold rolling. Pickling is performed at least once after hot rolling and before primary recrystallization annealing. In one aspect, pickling is performed before the cold rolling step from the viewpoint of reducing roll wear in cold rolling.

酸洗溶液は、前述した金属成分及び酸を含む。酸洗溶液のpHは、一態様において-1.5以上7.0未満である。現実に調製できる溶液はpHが-1.5以上である。酸洗溶液のpHが7.0以上である場合、酸洗によるスケール除去効果が不十分となり好ましくない。酸洗溶液のpHが-1.5以上7.0未満であることは、金属成分を鋼板表面に所望の程度析出させる観点から有利である。pHは、好ましくは2.0未満、より好ましくは1.0未満である。 The pickling solution contains the above-mentioned metal components and acids. The pH of the pickling solution is -1.5 or more and less than 7.0 in one embodiment. The solution that can be prepared in reality has a pH of -1.5 or higher. When the pH of the pickling solution is 7.0 or more, the scale removing effect by pickling is insufficient, which is not preferable. It is advantageous that the pH of the pickling solution is −1.5 or more and less than 7.0 from the viewpoint of precipitating the metal component on the surface of the steel sheet to a desired degree. The pH is preferably less than 2.0, more preferably less than 1.0.

酸洗溶液の液温は、一態様において15℃以上100℃以下である。酸洗溶液の液温が15℃未満である場合、酸洗によるスケール除去効果が不十分となり好ましくない。酸洗溶液の液温が100℃超である場合、酸洗溶液の取扱いが困難となるので好ましくない。酸洗溶液の液温が15℃以上100℃以下であることは、金属成分を鋼板表面に所望の程度析出させる観点からも有利である。液温は、好ましくは、22℃以上、又は24℃以上、又は26℃以上であってよく、好ましくは、98℃以下、又は96℃以下、又は94℃以下であってよい。 The liquid temperature of the pickling solution is 15 ° C. or higher and 100 ° C. or lower in one embodiment. When the temperature of the pickling solution is less than 15 ° C., the scale removing effect by pickling is insufficient, which is not preferable. If the temperature of the pickling solution exceeds 100 ° C., it becomes difficult to handle the pickling solution, which is not preferable. The fact that the temperature of the pickling solution is 15 ° C. or higher and 100 ° C. or lower is also advantageous from the viewpoint of precipitating the metal component on the surface of the steel sheet to a desired degree. The liquid temperature may be preferably 22 ° C. or higher, 24 ° C. or higher, or 26 ° C. or higher, and preferably 98 ° C. or lower, 96 ° C. or lower, or 94 ° C. or lower.

鋼板が酸洗溶液に浸漬される時間は、一態様において5秒以上200秒以下である。鋼板が酸洗溶液に浸漬される時間が5秒未満である場合、酸洗によるスケール除去効果が不十分となり好ましくない。鋼板が酸洗溶液に浸漬される時間が200秒超である場合、設備が長大となるので好ましくない。浸漬時間は、好ましくは、10秒以上、又は20秒以上、又は30秒以上であってよく、好ましくは、150秒以下、又は100秒以下であってよい。 The time for the steel sheet to be immersed in the pickling solution is 5 seconds or more and 200 seconds or less in one embodiment. When the steel sheet is immersed in the pickling solution for less than 5 seconds, the scale removing effect by pickling becomes insufficient, which is not preferable. If the time for the steel sheet to be immersed in the pickling solution is more than 200 seconds, the equipment becomes long, which is not preferable. The immersion time may be preferably 10 seconds or longer, 20 seconds or longer, or 30 seconds or longer, and preferably 150 seconds or shorter, or 100 seconds or shorter.

[冷間圧延工程]
本工程では、酸洗板を、1回の冷間圧延、又は中間焼鈍を挟んだ複数回の冷間圧延にて圧延して冷延鋼板を得る。冷間圧延は、中間焼鈍及び/又は酸洗を挟んで複数回行ってもよい。
[Cold rolling process]
In this step, the pickled sheet is rolled by one cold rolling or a plurality of cold rolling with intermediate annealing sandwiched between them to obtain a cold-rolled steel sheet. Cold rolling may be performed a plurality of times with intermediate annealing and / or pickling in between.

冷間圧延のパス間、圧延ロールスタンド間、又は圧延中に、鋼板は、300℃程度以下で加熱処理されてもよい。このような加熱は、最終的な方向性電磁鋼板の磁気特性を向上できる点で好ましい。なお、熱延鋼板は、例えば3回以上の冷間圧延によって圧延されてもよいが、多数回の冷間圧延は製造コストを増大させるため、冷間圧延は、1回又は2回行うことが好ましい。例えば、冷間圧延をゼンジミアミル等のリバース圧延で行う場合、それぞれの冷間圧延におけるパス回数は、特に限定されないが、製造コストの観点から、9回以下が好ましい。冷間圧延工程における鋼板の圧下率は、所望厚みの冷延鋼板が得られるように適宜設計してよく、例えば80%~95%であってよい。 The steel sheet may be heat-treated at about 300 ° C. or lower between cold rolling passes, between rolling roll stands, or during rolling. Such heating is preferable in that the magnetic properties of the final grain-oriented electrical steel sheet can be improved. The hot-rolled steel sheet may be rolled by, for example, three or more cold rollings, but the cold rolling may be performed once or twice in order to increase the manufacturing cost. preferable. For example, when cold rolling is performed by reverse rolling such as Z-Mill mill, the number of passes in each cold rolling is not particularly limited, but 9 times or less is preferable from the viewpoint of manufacturing cost. The rolling reduction of the steel sheet in the cold rolling step may be appropriately designed so as to obtain a cold-rolled steel sheet having a desired thickness, and may be, for example, 80% to 95%.

[一次再結晶焼鈍工程]
次に、本工程において冷延鋼板に一次再結晶焼鈍を施す。典型的な態様において、一次再結晶焼鈍工程は、昇温工程と脱炭焼鈍工程とを含む。冷延鋼板は、昇温工程を経た後、脱炭焼鈍工程において脱炭焼鈍される。昇温工程から脱炭焼鈍工程まで連続して行われることが好ましい。
[Primary recrystallization annealing process]
Next, in this step, the cold-rolled steel sheet is subjected to primary recrystallization annealing. In a typical embodiment, the primary recrystallization annealing step includes a heating step and a decarburization annealing step. The cold-rolled steel sheet is decarburized and annealed in the decarburization annealing step after undergoing the temperature raising step. It is preferable that the steps from the temperature raising step to the decarburization annealing step are continuously performed.

(昇温工程)
昇温工程では、冷延鋼板を所望の脱炭焼鈍温度まで昇温する。昇温速度は温度域に応じて適切に制御されることが望ましい。一態様において、30℃~400℃の温度域の平均昇温速度は、鋼板表面に析出させた金属成分の酸化抑制の観点から、50℃/秒以上であってよく、通板の容易性の観点から、600℃/秒以下であってよい。400℃~500℃の間の平均昇温速度は、特段の制御を要しないが、例えば30℃~400℃の間の平均昇温速度として上記で例示したのと同様であってよい。一態様において、500℃~750℃の間の平均昇温速度は、冷延鋼板の仕上焼鈍前のGoss方位粒の量を増加させる観点から、100℃/秒以上であってよく、設備コスト及び製造コストの観点から、3000℃/秒以下であってよい。一態様において、750℃~800℃の間の平均昇温速度は、脱炭焼鈍時の脱炭を阻害するSiO2の生成を抑制する観点から、500℃/秒以上であってよく、設備コスト及び製造コストの観点から、2000℃/秒以下であってよい。このような急速昇温は、例えば、通電加熱方法又は誘導加熱方法を用いることで、実施することが可能である。昇温工程は、複数の装置によって実施されてもよい。昇温速度は、放射温度計等を用いて鋼板温度を測定することによって計測できるが、鋼板温度の測定が困難である場合は、昇温及び冷却の各々のヒートパターンを類推することで、これらの温度を推定してもよい。また、昇温工程における昇温装置への鋼板の入側温度及び出側温度を、昇温開始点及び昇温終了点としてもよい。
(Heating process)
In the temperature raising step, the temperature of the cold-rolled steel sheet is raised to a desired decarburization annealing temperature. It is desirable that the rate of temperature rise is appropriately controlled according to the temperature range. In one embodiment, the average temperature rise rate in the temperature range of 30 ° C. to 400 ° C. may be 50 ° C./sec or more from the viewpoint of suppressing the oxidation of the metal component deposited on the surface of the steel sheet, and the ease of passing the sheet is improved. From the viewpoint, it may be 600 ° C./sec or less. The average heating rate between 400 ° C. and 500 ° C. does not require any special control, but may be the same as that exemplified above as the average heating rate between 30 ° C. and 400 ° C., for example. In one embodiment, the average heating rate between 500 ° C. and 750 ° C. may be 100 ° C./sec or more from the viewpoint of increasing the amount of Goss directional grains before finish annealing of the cold-rolled steel sheet, and the equipment cost and From the viewpoint of manufacturing cost, it may be 3000 ° C./sec or less. In one embodiment, the average heating rate between 750 ° C. and 800 ° C. may be 500 ° C./sec or more from the viewpoint of suppressing the formation of SiO 2 that inhibits decarburization during decarburization and quenching, and the equipment cost. And from the viewpoint of manufacturing cost, it may be 2000 ° C./sec or less. Such rapid temperature rise can be carried out, for example, by using an energization heating method or an induction heating method. The temperature raising step may be carried out by a plurality of devices. The temperature rise rate can be measured by measuring the steel plate temperature using a radiation thermometer or the like, but if it is difficult to measure the steel plate temperature, these can be estimated by inferring each heat pattern of temperature rise and cooling. You may estimate the temperature of. Further, the temperature on the entrance side and the temperature on the exit side of the steel sheet to the temperature riser in the temperature rise step may be set as a temperature rise start point and a temperature rise end point.

(脱炭焼鈍工程)
昇温工程の後には、脱炭焼鈍工程を行う。通常の態様において、脱炭焼鈍工程は均熱処理を含む。均熱処理は、水素及び/又は窒素を含有する湿潤雰囲気中、900℃以下、例えば750℃~900℃で実施されてよい。脱炭焼鈍温度は、前述の昇温工程の昇温終了温度と同じ、又はこれよりも高温若しくは低温であってよい。均熱処理は1回又は2回以上行ってよい。例えば、均熱処理を第一均熱処理及び第二均熱処理の2回行う場合には、第一均熱処理の終了後、鋼板を一旦冷却(例えば室温まで冷却)した後再加熱することにより、又は冷却せずに、第二均熱処理を行ってよい。一態様において、脱炭焼鈍工程は、800℃~900℃で行う第一均熱処理と、900℃~1000℃で行う第二均熱処理とを含んでよい。
(Decarburization annealing process)
After the temperature raising step, a decarburization annealing step is performed. In a normal embodiment, the decarburization annealing step comprises a leveling heat treatment. The soaking heat treatment may be carried out at 900 ° C. or lower, for example, 750 ° C. to 900 ° C. in a moist atmosphere containing hydrogen and / or nitrogen. The decarburization annealing temperature may be the same as or lower than the temperature rise completion temperature of the above-mentioned temperature rise step. The soaking heat treatment may be performed once or twice or more. For example, when the leveling heat treatment is performed twice, the first leveling heat treatment and the second leveling heat treatment, the steel sheet is once cooled (for example, cooled to room temperature) and then reheated after the completion of the first leveling heat treatment, or cooled. The second leveling heat treatment may be performed without this. In one embodiment, the decarburization annealing step may include a first leveling heat treatment performed at 800 ° C. to 900 ° C. and a second leveling heat treatment performed at 900 ° C. to 1000 ° C.

均熱処理の雰囲気の酸素ポテンシャル、すなわち雰囲気中の水蒸気分圧PH2Oと水素分圧PH2との比(PH2O/PH2比)は、内部酸化を良好に進行させて鋼板表面に均一な酸化膜を形成する観点から、0.2以上であってよく、良好な磁気特性を得る観点から、0.8以下であってよい。また、例えば、第一均熱処理と第二均熱処理とを行う場合には、第一均熱処理のPH2O/PH2比を上記範囲とし、第二均熱処理のPH2O/PH2比を0.2未満、例えば0.01以上0.2未満としてよい。 The oxygen potential of the atmosphere of soaking heat, that is, the ratio of the partial pressure of water vapor PH2O and the partial pressure of hydrogen PH2 (P H2O / PH2 ratio) in the atmosphere, promotes internal oxidation well and uniformly oxidizes the surface of the steel plate. From the viewpoint of forming a film, it may be 0.2 or more, and from the viewpoint of obtaining good magnetic properties, it may be 0.8 or less. Further, for example, when the first leveling heat treatment and the second leveling heat treatment are performed, the PH2O / PH2 ratio of the first leveling heat treatment is within the above range, and the PH2O / PH2 ratio of the second leveling heat treatment is 0. It may be less than 2, for example, 0.01 or more and less than 0.2.

一次再結晶焼鈍工程において、30℃~800℃の間の雰囲気の露点温度は、鋼板中の金属の酸化を抑制するとともに、外部酸化によるSiO2生成を抑制して脱炭を良好に進行させる観点から、0℃以下であってよく、内部酸化を良好に進行させる観点から、-50℃以上であってよい。 In the primary recrystallization annealing step, the dew point temperature of the atmosphere between 30 ° C and 800 ° C suppresses the oxidation of the metal in the steel sheet and suppresses the formation of SiO 2 due to external oxidation to promote decarburization satisfactorily. Therefore, the temperature may be 0 ° C. or lower, and may be −50 ° C. or higher from the viewpoint of promoting internal oxidation satisfactorily.

[窒化処理]
冷間圧延工程の後、仕上焼鈍の前には、インヒビター強化の目的で窒化処理を更に行ってもよい。一態様において、窒化処理は、均熱処理の後、仕上焼鈍の前に実施してよく、例えば、均熱処理-窒化処理-仕上焼鈍の順、第一均熱処理-第二均熱処理-窒化処理-仕上焼鈍の順、又は第一均熱処理-窒化処理-第二均熱処理-仕上焼鈍の順であってよい。
[Nitriding treatment]
After the cold rolling step and before finish annealing, further nitriding may be performed for the purpose of strengthening the inhibitor. In one embodiment, the nitriding treatment may be carried out after the leveling heat treatment and before the finish annealing, for example, in the order of leveling heat treatment-nitriding treatment-finishing annealing, first leveling heat treatment-second leveling heat treatment-nitriding treatment-finishing. The order may be the order of annealing, or the order of first leveling heat treatment-nitriding treatment-second leveling heat treatment-finish baking.

[仕上焼鈍工程]
続いて、一次被膜形成及び二次再結晶を目的として、一次再結晶焼鈍工程後の鋼板(一次再結晶焼鈍板)に仕上焼鈍を施す。典型的な態様において、仕上焼鈍前の一次再結晶焼鈍板には、鋼板間の焼き付き防止、一次被膜形成、二次再結晶挙動制御等を目的として、MgOを主成分とする焼鈍分離剤が塗布される。仕上焼鈍においては、鋼板の熱処理後、純化処理が施されてもよい。
[Finishing annealing process]
Subsequently, for the purpose of forming a primary film and secondary recrystallization, the steel sheet (primary recrystallization annealed sheet) after the primary recrystallization annealing step is subjected to finish annealing. In a typical embodiment, the primary recrystallization annealed plate before finish annealing is coated with an annealing separator containing MgO as a main component for the purpose of preventing seizure between steel sheets, forming a primary film, controlling secondary recrystallization behavior, and the like. Will be done. In the finish annealing, a purification treatment may be performed after the heat treatment of the steel sheet.

[平坦化焼鈍工程]
仕上焼鈍の後、鋼板への絶縁性及び張力の付与を目的として、鋼板表面に絶縁被膜(例えば、リン酸アルミニウム又はコロイダルシリカを主成分とした絶縁被膜)を塗布してよい。次いで、絶縁被膜の焼付、及び仕上焼鈍による鋼板形状の平坦化を目的として、平坦化焼鈍を施してよい。
[Flatration annealing process]
After finish annealing, an insulating film (for example, an insulating film containing aluminum phosphate or colloidal silica as a main component) may be applied to the surface of the steel sheet for the purpose of imparting insulation and tension to the steel sheet. Next, flattening annealing may be performed for the purpose of baking the insulating film and flattening the shape of the steel sheet by finish annealing.

得られる方向性電磁鋼板の用途等に応じ、磁区制御処理を更に行ってもよい。 Further magnetic domain control processing may be performed depending on the use of the obtained grain-oriented electrical steel sheet.

以上例示した工程により、磁気特性に優れた方向性電磁鋼板を製造することができる。本実施形態の方法で製造できる方向性電磁鋼板は、変圧器製造に際して巻鉄心又は積鉄心に加工され、所望の用途に適用され得る。 By the steps exemplified above, a grain-oriented electrical steel sheet having excellent magnetic characteristics can be manufactured. The grain-oriented electrical steel sheet that can be manufactured by the method of the present embodiment is processed into a wound steel core or a product core during the production of a transformer, and can be applied to a desired application.

本実施形態の方法による方向性電磁鋼板の製造において、破断頻度は、好ましくは、0.9回/1000トン以下、又は0.8回/1000トン以下である。破断頻度は小さい程望ましい。 In the production of grain-oriented electrical steel sheets by the method of the present embodiment, the breaking frequency is preferably 0.9 times / 1000 tons or less, or 0.8 times / 1000 tons or less. The smaller the breaking frequency, the more desirable.

以下、本発明の例示の態様を実施例を挙げて更に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, embodiments of the present invention will be further described with reference to examples, but the present invention is not limited to the following examples.

<方向性電磁鋼板の製造>
[実施例1]
表1に示すスラブ組成を有するスラブを得た。スラブを1350℃で加熱した後、熱間圧延を行って、厚さが2.3mmの熱間圧延鋼帯を得た。次いで、熱間圧延鋼帯を1120℃まで加熱して再結晶させた後、これよりも低温である900℃で焼鈍して、熱延板焼鈍鋼帯を得た。熱延板焼鈍鋼帯を、表2に示す酸洗条件にて酸洗した後、冷間圧延で最終製品板厚である0.220mmまで圧延した。その際に、2パス目に生じる1000トン当たりの破断頻度を表2に記載した。
破断頻度は、表1に記載のスラブ組成を有する複数コイルを少なくとも200トン以上通板した結果、通板量に対して2パス目に生じた破断回数の割合である。
結果を表2に示す。
<Manufacturing of grain-oriented electrical steel sheets>
[Example 1]
A slab having the slab composition shown in Table 1 was obtained. After heating the slab at 1350 ° C., hot rolling was performed to obtain a hot rolled steel strip having a thickness of 2.3 mm. Next, the hot-rolled steel strip was heated to 1120 ° C. and recrystallized, and then annealed at 900 ° C., which is a lower temperature than this, to obtain a hot-rolled plate annealed steel strip. The hot-rolled annealed steel strip was pickled under the pickling conditions shown in Table 2, and then cold-rolled to a final product plate thickness of 0.220 mm. At that time, the breaking frequency per 1000 tons generated in the second pass is shown in Table 2.
The breaking frequency is the ratio of the number of breakings occurring in the second pass to the amount of passing through a plurality of coils having the slab composition shown in Table 1 as a result of passing at least 200 tons.
The results are shown in Table 2.

Figure 2022022481000001
Figure 2022022481000001

Figure 2022022481000002
Figure 2022022481000002

表2に示すとおり、適切な酸洗条件への制御によって、Si量が3.30~3.65%と高いスラブを用いた場合にも、冷間圧延2パス目の巻き付け割れ破断頻度が1回/1000トン以下という良好な結果が得られた。 As shown in Table 2, even when a slab with a high Si content of 3.30 to 3.65% is used by controlling to appropriate pickling conditions, the frequency of wrapping crack breakage in the second pass of cold rolling is 1. Good results were obtained at times / 1000 tons or less.

本開示の方法で得られる方向性電磁鋼板は、良好な磁気特性が求められる種々の用途に好適に適用され得る。 The grain-oriented electrical steel sheet obtained by the method of the present disclosure can be suitably applied to various applications requiring good magnetic properties.

Claims (4)

質量%で、C:0.02%以上0.10%以下、Si:2.5%以上4.5%以下、Mn:0.01%以上0.30%以下、S及びSeのうち1種又は2種の合計:0.001%以上0.050%以下、酸可溶性Al:0.01%以上0.05%以下、N:0.002%以上0.020%以下を含有し、残部Fe及び不純物からなるスラブ組成を有するスラブを加熱し、熱間圧延を施すことで熱延鋼板を得る熱間圧延工程と、
前記熱延鋼板を酸洗溶液に浸漬することで、又は前記熱延鋼板に熱延板焼鈍を施して熱延焼鈍板を得た後に前記熱延焼鈍板を酸洗溶液に浸漬することで、酸洗板を得る酸洗工程と、
前記酸洗板に冷間圧延を施すことで冷延鋼板を得る冷間圧延工程と、
前記冷延鋼板に一次再結晶焼鈍を施して一次再結晶焼鈍板を得る一次再結晶焼鈍工程と、
前記一次再結晶焼鈍板の表面に、MgOを含む焼鈍分離剤を塗布した後、仕上焼鈍を施して仕上焼鈍板を得る仕上焼鈍工程と、
前記仕上焼鈍板に絶縁被膜を塗布した後、平坦化焼鈍を施す平坦化焼鈍工程と、を含み、
前記酸洗溶液が、Cu、Hg、Ag、Pb、Cd、Ni、Zn及びCoからなる群から選択される1種以上の金属を0.001質量%以上0.100質量%以下、及び塩酸を塩化水素基準で5質量%以上20質量%以下の量で含む、方向性電磁鋼板の製造方法。
By mass%, C: 0.02% or more and 0.10% or less, Si: 2.5% or more and 4.5% or less, Mn: 0.01% or more and 0.30% or less, one of S and Se Or the total of the two types: 0.001% or more and 0.050% or less, acid-soluble Al: 0.01% or more and 0.05% or less, N: 0.002% or more and 0.020% or less, and the balance Fe A hot rolling step of heating a slab having a slab composition composed of impurities and hot rolling to obtain a hot-rolled steel sheet.
By immersing the hot-rolled steel plate in a pickling solution, or by immersing the hot-rolled steel plate in a pickling solution after obtaining a hot-rolled annealed plate. The pickling process to obtain a pickling plate and
A cold rolling step of obtaining a cold-rolled steel sheet by cold-rolling the pickling plate, and
A primary recrystallization annealing step of subjecting the cold-rolled steel sheet to primary recrystallization annealing to obtain a primary recrystallization annealed sheet,
A finish annealing step of applying an annealing separator containing MgO to the surface of the primary recrystallization annealed plate and then performing finish annealing to obtain a finish annealed plate.
Including a flattening annealing step of applying an insulating film to the finish annealing plate and then performing flattening annealing.
The pickling solution contains 0.001% by mass or more and 0.100% by mass or less of one or more metals selected from the group consisting of Cu, Hg, Ag, Pb, Cd, Ni, Zn and Co, and hydrochloric acid. A method for manufacturing a directional electromagnetic steel plate, which comprises an amount of 5% by mass or more and 20% by mass or less based on hydrogen chloride.
前記酸洗工程において、前記酸洗溶液のpHが-1.5以上7.0未満、液温が15℃以上100℃以下であり、前記浸漬を5秒以上200秒以下行う、請求項1に記載の方向性電磁鋼板の製造方法。 In the pickling step, the pH of the pickling solution is −1.5 or more and less than 7.0, the liquid temperature is 15 ° C. or more and 100 ° C. or less, and the immersion is performed for 5 seconds or more and 200 seconds or less. The method for manufacturing a directional electromagnetic steel plate according to the description. 前記スラブの前記加熱を1280℃以上で行う、請求項1又は2に記載の方向性電磁鋼板の製造方法。 The method for manufacturing a grain-oriented electrical steel sheet according to claim 1 or 2, wherein the heating of the slab is performed at 1280 ° C. or higher. 前記スラブ組成が、前記Feの一部に代えて、質量%で、
Cu:0.5000%以下、
Cr:0.50%以下、
Bi:0.0200%以下、
Sb:0.500%以下、
Mo:0.500%以下、
Sn:0.500%以下、及び
Ni:0.500%以下、
からなる群から選択される1種又は2種以上を含有する、請求項1~3のいずれか一項に記載の方向性電磁鋼板の製造方法。
The slab composition is, in mass%, instead of a portion of the Fe.
Cu: 0.5000% or less,
Cr: 0.50% or less,
Bi: 0.0200% or less,
Sb: 0.500% or less,
Mo: 0.500% or less,
Sn: 0.500% or less, and Ni: 0.500% or less,
The method for manufacturing a grain-oriented electrical steel sheet according to any one of claims 1 to 3, which contains one kind or two or more kinds selected from the group consisting of.
JP2020108319A 2020-06-24 2020-06-24 Manufacturing method of grain-oriented electrical steel sheet Active JP7529978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020108319A JP7529978B2 (en) 2020-06-24 2020-06-24 Manufacturing method of grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020108319A JP7529978B2 (en) 2020-06-24 2020-06-24 Manufacturing method of grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2022022481A true JP2022022481A (en) 2022-02-07
JP7529978B2 JP7529978B2 (en) 2024-08-07

Family

ID=80224841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020108319A Active JP7529978B2 (en) 2020-06-24 2020-06-24 Manufacturing method of grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP7529978B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282271A (en) 1999-03-30 2000-10-10 Kawasaki Steel Corp Scale adhesion suppression method for continuous pickling equipment for metallic material
JP4258349B2 (en) 2002-10-29 2009-04-30 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP4283533B2 (en) 2002-12-26 2009-06-24 新日本製鐵株式会社 Manufacturing method of unidirectional electrical steel sheet
JP6485554B2 (en) 2015-10-26 2019-03-20 新日鐵住金株式会社 Directional electrical steel sheet and method for producing the same, and method for producing decarburized steel sheet for directionally oriented electrical steel sheet
KR101944899B1 (en) 2016-12-22 2019-02-01 주식회사 포스코 Method for refining magnetic domains of grain oriented electrical steel sheet
JP7119475B2 (en) 2018-03-22 2022-08-17 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
CN108546814B (en) 2018-04-11 2020-05-12 北京科技大学 Method for producing high-magnetic-induction oriented silicon steel based on ESP (electronic stability program) endless rolling technology
JP7192378B2 (en) 2018-10-11 2022-12-20 日本製鉄株式会社 Rolling equipment and steel plate rolling method

Also Published As

Publication number Publication date
JP7529978B2 (en) 2024-08-07

Similar Documents

Publication Publication Date Title
RU2537628C1 (en) Production of texture sheets from electrical steel
JP6801740B2 (en) Hot-rolled steel sheet for grain-oriented electrical steel sheet and its manufacturing method
CN108699621B (en) Method for producing grain-oriented electromagnetic steel sheet
KR102579758B1 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2011102456A1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
JP6825681B2 (en) Electrical steel sheet and its manufacturing method
JP5757693B2 (en) Low iron loss unidirectional electrical steel sheet manufacturing method
WO2020149351A1 (en) Method for manufacturing grain-oriented electrical steel sheet
CN111868272B (en) Method for producing grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
JP4608562B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
EP4353848A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JP7364966B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6844110B2 (en) Manufacturing method of grain-oriented electrical steel sheet and manufacturing method of original sheet for grain-oriented electrical steel sheet
WO2020149327A1 (en) Method for manufacturing grain-oriented electrical steel sheet
WO2020149326A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP7529978B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7106910B2 (en) Manufacturing method of grain-oriented electrical steel sheet
CN115066508B (en) Method for producing grain-oriented electrical steel sheet
RU2805838C1 (en) Method for producing anisotropic electrical steel sheet
JP7510078B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7214974B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7159594B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7264322B1 (en) Manufacturing method of grain-oriented electrical steel sheet
EP4335939A1 (en) Method for manufacturing oriented electrical steel sheet
JP2022022486A (en) Method for manufacturing grain-oriented electromagnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240708

R150 Certificate of patent or registration of utility model

Ref document number: 7529978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150