JPH11106827A - Production of mirror finished grain oriented silicon steel sheet excellent in magnetic property - Google Patents

Production of mirror finished grain oriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH11106827A
JPH11106827A JP9287609A JP28760997A JPH11106827A JP H11106827 A JPH11106827 A JP H11106827A JP 9287609 A JP9287609 A JP 9287609A JP 28760997 A JP28760997 A JP 28760997A JP H11106827 A JPH11106827 A JP H11106827A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
sheet
cold
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9287609A
Other languages
Japanese (ja)
Other versions
JP3337958B2 (en
Inventor
Nobunori Fujii
宣憲 藤井
Yoshiyuki Ushigami
義行 牛神
Ikuo Miyamoto
郁雄 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28760997A priority Critical patent/JP3337958B2/en
Publication of JPH11106827A publication Critical patent/JPH11106827A/en
Application granted granted Critical
Publication of JP3337958B2 publication Critical patent/JP3337958B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide an industrially and inexpensively producing a mirror finished grain oriented silicon steel sheet excellent in magnetic properties. SOLUTION: In the method for producing a mirror finished grain oriented silicon steel sheet in which the final cold rolled sheet of a grain-oriented silicon steel sheet contg., by weight, 0.03 to 0.10% C and 3.0 to 4.0% Si is subjected to decarburizing annealing in an atmospheric gas in which the oxidizing degree (PH2 -O/PH2 ) is regulated to 0.01 to 0.15, is coated with a separation agent for annealing essentially consisting of alumina and is subjected to finish annealing, the content of Si in a depth to 2 μm from the steel sheet surface of the cold rolled sheet is regulated to <3.0%, by which the effective reduction of the content of C is made possible even by decarburizing annealing in an atmosphere with a low oxidizing degree, and, by a low oxidized layer on the decarburized and annealed surface and the organic effect of the separation agent for annealing of alumina, the mirror finished grain oriented silicon steel sheet extremely excellent in magnetic properties can be obtd. at a low cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は主として変圧器その
他の電気機器等の鉄心として利用される一方向性電磁鋼
板製造に関するものである。特に、鋼板表面の鏡面化と
磁区細分化手段を効果的に導入することにより良好な鉄
損特性を低コストで達成する鏡面一方向性電磁鋼板製造
に関し、脱炭性が良好な冷間圧延鋼板およびその製造方
法について開示するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of a grain-oriented electrical steel sheet mainly used as an iron core for transformers and other electric equipment. In particular, concerning the production of mirror-oriented unidirectional electrical steel sheet which achieves good iron loss characteristics at low cost by effectively introducing mirror finishing of the steel sheet surface and magnetic domain refining means, cold rolled steel sheet with good decarburization property And a method for producing the same.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、軟磁性材料として
主にトランスその他の電気機器の鉄心材料に使用されて
いるもので、磁気特性としては励磁特性と鉄損特性が良
好でなくてはならない。この励磁特性を表す指標とし
て、通常は磁束密度B8(磁場の強さ800A/mにお
ける磁束密度)が用いられ、鉄損特性を表す指標とし
て、W17/50(50Hzで1.7Tまで磁化させた
ときの単位重量あたりの鉄損)が用いられる。
2. Description of the Related Art A grain-oriented electrical steel sheet is mainly used as a soft magnetic material for core materials of transformers and other electric equipment, and must have good magnetic properties such as excitation properties and iron loss properties. No. The magnetic flux density B8 (magnetic flux density at a magnetic field strength of 800 A / m) is usually used as an index indicating the excitation characteristics, and W17 / 50 (magnetized to 1.7 T at 50 Hz) as an index indicating the iron loss characteristics. (Iron loss per unit weight at the time).

【0003】一方向性電磁鋼板は、Siを0.8〜4.
8%含有し、製造工程の最終段階の900℃以上の温度
での仕上焼鈍工程で2次再結晶を起こさせ、鋼板面に
{110}面、圧延方向に〈001〉軸をもったいわゆ
るゴス組織を発達させることによって得られる。そのな
かでも、磁束密度B8が1.88T以上の優れた励磁特
性をもつものは高磁束密度一方向性電磁鋼板とよばれて
いる。高磁束密度電磁鋼板の代表的製造方法としては、
特公昭40−15644号公報、特公昭51−1346
9号公報等に記載された技術があげられる。現在世界的
規模で生産されている高磁束密度一方向性電磁鋼板は、
上記2特許を基本として生産されているといえる。そし
て、近年省エネルギー、省資源への社会的要求は益々厳
しくなり、一方向性電磁鋼板の鉄損低減、磁化特性改善
への要求も熾烈になってきている。
[0003] The grain-oriented electrical steel sheet contains 0.8 to 4.
8%, secondary recrystallization occurs in the final annealing step at a temperature of 900 ° C. or more in the final stage of the manufacturing process. Obtained by developing tissue. Among them, those having a magnetic flux density B8 of 1.88 T or more and having excellent excitation characteristics are called high magnetic flux density unidirectional magnetic steel sheets. As a typical manufacturing method of high magnetic flux density electromagnetic steel sheet,
JP-B-40-15644, JP-B-51-1346
No. 9 and the like. High magnetic flux density unidirectional electrical steel sheets currently being produced on a worldwide scale are:
It can be said that it is produced based on the above two patents. In recent years, social demands for energy savings and resource savings have become increasingly severe, and demands for reduction of iron loss and improvement of magnetic properties of the grain-oriented electrical steel sheets have also become fierce.

【0004】ところで、一般に磁束密度B8が高くなる
とともにゴス組織の結晶粒が大きくなる傾向があり、高
磁束密度化によりB8を高くしても180゜磁区巾が大
きくなるために渦電流損が増大し、冶金学的にはこれ以
上の鉄損改善の期待が望まれない。この観点から技術的
な鉄損低減化の手法としてレーザー照射等の磁区制御技
術が特公昭57−2252号公報、特公昭58−596
8号公報、特開昭58−26405号公報等に開示され
た技術により確立された。また、前述の方法による鉄損
の低減はレーザー照射によって導入された歪に起因する
ので、トランスに成形したのちに歪取り焼鈍を必要とす
る巻鉄心トランス用としては使用することができない。
そこで、例えば特公昭62−53579号公報、特公昭
63−44804号公報、特公平04−48847号公
報等において、仕上焼鈍後に例えば歯車型ロールにより
溝を導入すると共に、加工歪を加え微細粒を形成させて
磁区細分化する方法が開示されている。しかし、歯車型
ロール等の機械加工によって鋼板表面に溝を形成する方
法は、方向性電磁鋼板の一次皮膜(グラス皮膜)と呼ば
れる表面セラミックス層を破砕する必要があるために歯
車ロール等の摩耗が大きく、製造コストに問題を生じ
る。
In general, as the magnetic flux density B8 increases, the crystal grains of the Goss structure tend to increase. Even if B8 is increased by increasing the magnetic flux density, the 180 ° magnetic domain width increases, so that the eddy current loss increases. However, in metallurgy, expectations for further improvement in iron loss are not desired. From this viewpoint, a magnetic domain control technique such as laser irradiation is a technical technique for reducing iron loss, which is disclosed in JP-B-57-2252 and JP-B-58-596.
No. 8, JP-A-58-26405, and the like. Further, since the reduction in iron loss by the above-described method is caused by distortion introduced by laser irradiation, it cannot be used for a wound iron core transformer which requires strain relief annealing after forming into a transformer.
Thus, for example, in Japanese Patent Publication No. Sho 62-53579, Japanese Patent Publication No. Sho 63-44804, and Japanese Patent Publication No. Sho 04-48847, grooves are introduced by, for example, a gear-type roll after finish annealing, and fine grains are added by adding processing strain. A method of forming and subdividing magnetic domains is disclosed. However, the method of forming grooves on the surface of a steel sheet by machining a gear-type roll, etc., requires grinding the surface ceramic layer called the primary film (glass film) of the grain-oriented electrical steel sheet. Large, causing a problem in manufacturing cost.

【0005】一方、これら磁区細分化処理を施した鋼板
の磁壁の動きを詳細に観察すると、静的には細分化した
磁区のなかには動かない磁壁も存在していることが分か
った。方向性電磁鋼板の鉄損値を更に低減させるために
は、上記方法による磁区細分化技術と合わせて磁壁の動
きを阻害する要因を排除する技術(磁壁の活性化技術)
を導入する必要がある。すなわち、磁壁の動きを阻害す
る大きな要因である鋼板表面のグラス被膜等を除去し、
表面を鏡面化する方法が有効である。その手段として、
仕上げ焼鈍後にグラス被膜を酸洗等により除去した後に
化学研磨或いは電解研磨を行い表面を鏡面化させる方法
が、例えば特開昭64−83620号公報に開示されて
いる。しかしながら、化学研磨・電解研磨等の方法は、
研究室レベルでの小試料の材料を加工することは可能で
あるが、工業的規模で行うには薬液の濃度管理,温度管
理,公害設備の付与等の点で大きな問題があり、更にこ
のような工程を付加することにより製造コストが高くな
ってしまうために、未だ実用化されるに至っていない。
On the other hand, when the movement of the domain wall of the steel sheet subjected to the domain refining treatment was observed in detail, it was found that some domain walls which did not move exist statically in the domain refined. In order to further reduce the iron loss value of grain-oriented electrical steel sheets, together with the domain refining technique according to the above method, a technique for eliminating factors that hinder the motion of the domain wall (technology for activating the domain wall)
Need to be introduced. In other words, removing the glass coating on the steel plate surface, which is a major factor that hinders the motion of the domain wall,
A method of mirroring the surface is effective. As a means,
Japanese Patent Application Laid-Open No. 64-83620 discloses a method in which a glass film is removed by acid washing or the like after finish annealing and then the surface is mirror-finished by chemical polishing or electrolytic polishing. However, methods such as chemical polishing and electrolytic polishing,
Although it is possible to process small sample materials at the laboratory level, there are significant problems in the industrial scale, such as the control of chemical solution concentration, temperature control, and the provision of pollution equipment. Since the production cost is increased due to the addition of the various steps, it has not yet been put to practical use.

【0006】これに対して本出願人は、例えば特開平5
−033052号公報、特開平6−093335号公報
に示されるような、工業的規模で安価に鋼板表面を鏡面
化する方法を開発した。これらは、脱炭焼鈍の雰囲気制
御により酸素量を規制したのち、焼鈍分離剤としてアル
ミナを鋼板表面に塗布し仕上焼鈍を行うことにより、鋼
板表面の鏡面化と高磁束密度の2次再結晶形成を両立さ
せるものである。これらの技術は、磁区細分化処理のた
めに鋼板表面に機械加工を加える際に歯車ロール等の磨
耗が少ないため、主に巻鉄心トランス用の磁区制御材製
造の低コスト化に適している。例えば、特願平6−07
2718号公報には、仕上焼鈍後の鋼板表面に従来のよ
うにグラス被膜が存在しない場合、歯車ロールの寿命が
5倍以上のびることが開示されている。
On the other hand, the applicant of the present invention has disclosed, for example,
JP-A-03-0352 and JP-A-6-093335 have developed a method for producing a mirror-finished steel sheet surface on an industrial scale at low cost. After controlling the amount of oxygen by controlling the atmosphere of decarburizing annealing, apply alumina as an annealing separating agent to the surface of the steel sheet and perform finish annealing to make the surface of the steel sheet mirror-finished and form a secondary recrystallization with high magnetic flux density. Is to be compatible. These techniques are suitable mainly for reducing the cost of manufacturing a magnetic domain control material for a wound iron core transformer because abrasion of a gear roll or the like is small when machining is performed on a steel sheet surface for magnetic domain subdivision processing. For example, Japanese Patent Application No. 6-07
Japanese Patent No. 2718 discloses that the life of a gear roll is increased five times or more when a glass coating is not present on the steel sheet surface after finish annealing as in the related art.

【0007】[0007]

【発明が解決しようとする課題】一方向性電磁鋼板の鏡
面化に関し、本発明者らは特開平7−118750号公
報により脱炭焼鈍の焼鈍雰囲気をFe系酸化物の形成し
ない酸化度に制御し、焼鈍分離剤としてアルミナを用い
ることにより鋼板表面の鏡面化を低コストで達成する方
法を開示した。しかし、酸化度を下げると脱炭が困難と
なるため、脱炭焼鈍における酸化層と脱炭を同時に制御
する方策として、脱炭焼鈍の昇温速度、焼鈍温度、雰囲
気ガス成分を限定する方法を特開平7ー278668号
公報で開示した。しかし、冷延板厚が例えば0.23m
mを超える場合など、条件によっては脱炭が困難である
という問題に直面した。
As regards the mirror finishing of a grain-oriented electrical steel sheet, the present inventors disclosed in Japanese Patent Application Laid-Open No. Hei 7-118750 that the annealing atmosphere of decarburizing annealing was controlled to a degree of oxidation that does not form Fe-based oxides. Then, disclosed is a method of achieving mirror finishing of the steel sheet surface at low cost by using alumina as an annealing separator. However, if the degree of oxidation is lowered, decarburization becomes difficult.Therefore, as a measure to simultaneously control the oxidized layer and decarburization in decarburization annealing, a method of limiting the temperature rise rate of decarburization annealing, annealing temperature, and atmosphere gas components is considered. This is disclosed in Japanese Patent Application Laid-Open No. 7-278668. However, the cold rolled sheet thickness is, for example, 0.23 m
For example, when it exceeds m, it is difficult to decarburize depending on conditions.

【0008】そこで本発明者らは、脱炭焼鈍の雰囲気と
してFe系酸化物が形成しない低酸化度領域において、
脱炭性に及ぼす冷延工程以前の冶金的変動の影響を確認
するため以下の実験を実施した。出鋼成分および冷延工
程までの製造条件が変動した板厚0.23mmの工場で
製造された冷延板を採取し、実験室で脱炭焼鈍を行っ
た。冷延板の成分はC量が0.048〜0.054%、
Si量が3.15〜3.24%で変動していた。冷延板
を所定のサイズに剪断後、代替フロンにて油の洗浄を行
い脱炭焼鈍をおこなった。脱炭焼鈍の条件は、加熱速度
を28℃/秒、均熱温度を840℃、均熱時間を90秒
とし、焼鈍雰囲気はN2 :25%+H2 :75%の混合
加湿ガスとし、加湿露点を30〜75℃の範囲で5℃間
隔で変更した。焼鈍ガスの酸化度(PH2 O/PH2
と脱炭焼鈍後のC量およびO量の分析結果を図1および
図2に示す。図1より、酸化度が0.15以上では全サ
ンプルともC量が10ppm程度で脱炭良好であるが、
図2より、酸化度が0.15以上ではO量が200pp
mを大きく超えてしまうことがわかる。このような材料
では特開平6−93335号公報に記載されるように製
品板の鏡面平滑性が損なわれ、磁気特性が劣化するた
め、脱炭焼鈍の酸化度は0.15以下が必須となる。そ
こで、本発明者らは焼鈍ガスの酸化度を0.15以下と
したときの脱炭焼鈍後C量のバラツキに着目した。第1
図において、例えば酸化度0.105の場合、C量が1
0〜200ppm程度まで変動している。実験は油洗浄
以降は同一条件で処理したことを考慮すると、このC量
のバラツキは冷延板の冶金的変動を反映したものと考え
られる。そこで、この冶金的変動の要因を調査した。
Accordingly, the present inventors have developed a decarburizing annealing atmosphere in a low oxidation region where no Fe-based oxide is formed.
The following experiment was performed to confirm the effect of metallurgical fluctuations before the cold rolling process on the decarburization property. A cold rolled sheet manufactured at a factory with a sheet thickness of 0.23 mm in which the tapping component and the manufacturing conditions up to the cold rolling step fluctuated was sampled and decarburized and annealed in a laboratory. The component of the cold rolled sheet has a C content of 0.048 to 0.054%,
The amount of Si varied from 3.15 to 3.24%. After the cold-rolled sheet was sheared to a predetermined size, the oil was washed with alternative Freon and decarburized and annealed. The conditions of the decarburizing annealing were as follows: a heating rate of 28 ° C./second, a soaking temperature of 840 ° C., a soaking time of 90 seconds, and an annealing atmosphere of N 2 : 25% + H 2 : 75% mixed humidified gas. The dew point was changed in the range of 30-75C at 5C intervals. Oxidation degree of annealing gas (PH 2 O / PH 2 )
FIG. 1 and FIG. 2 show the analysis results of the C content and the O content after decarburizing annealing. As shown in FIG. 1, when the degree of oxidation is 0.15 or more, all of the samples have a C content of about 10 ppm, which is good for decarburization.
As shown in FIG. 2, when the oxidation degree is 0.15 or more, the O content is 200 pp.
It can be seen that it greatly exceeds m. As described in JP-A-6-93335, such a material impairs the mirror smoothness of the product plate and deteriorates the magnetic properties. Therefore, the oxidation degree of the decarburizing annealing must be 0.15 or less. . Therefore, the present inventors have paid attention to the variation in the C content after decarburization annealing when the degree of oxidation of the annealing gas is 0.15 or less. First
In the figure, for example, when the oxidation degree is 0.105, the C amount is 1
It fluctuates to about 0 to 200 ppm. Considering that the experiment was performed under the same conditions after the oil washing, it is considered that this variation in the amount of C reflects the metallurgical variation of the cold rolled sheet. Therefore, the factors of this metallurgical change were investigated.

【0009】まず、鋼中成分含有量の変動の脱炭性への
影響を考え、C、Si、Mn、P、S、Al、N、S
n、Cr、Ti、Oの成分を選び、鋼中含有量と脱炭後
のC量(酸化度0.105のC量)との相関を調査し
た。各成分含有量とC量を最小自乗法で直線近似し相関
係数(R2 )を求めた。結果を表1に示す。
First, considering the effect of fluctuations in the content of components in steel on decarburization, C, Si, Mn, P, S, Al, N, S
The components of n, Cr, Ti, and O were selected, and the correlation between the steel content and the C content after decarburization (C content with an oxidation degree of 0.105) was investigated. The content of each component and the amount of C were linearly approximated by the method of least squares to obtain a correlation coefficient (R 2 ). Table 1 shows the results.

【0010】[0010]

【表1】 [Table 1]

【0011】Sとの相関係数が0.61とやや高いが、
その他の元素の含有量との相関は小さかった。即ち、鋼
中の元素含有量の変動と脱炭量の間に高い相関は認めら
れなかった。次に、脱炭性に及ぼす最終冷延板最表面の
成分含有量の影響を調査するため、冷延板表面の螢光X
線分析を行った。X線管球はロジウムターゲットを用
い。印加電圧は50kV(50mA)とした。20mm
φのZrマスクを用い、測定時間は20秒×2回とし
た。第1表と同様に、各成分の螢光X線強度と脱炭焼鈍
後のC量(酸化度0.105のC量)との相関係数を求
めた。分析は冷延板の表裏両面で行い、低い値を採用し
た。結果を表2に示す。
Although the correlation coefficient with S is as high as 0.61,
The correlation with the content of other elements was small. That is, a high correlation was not recognized between the fluctuation of the element content in the steel and the decarburization amount. Next, in order to investigate the effect of the component content of the outermost surface of the final cold-rolled sheet on the decarburization property, the fluorescent X
Line analysis was performed. The X-ray tube uses a rhodium target. The applied voltage was 50 kV (50 mA). 20mm
The measurement time was 20 seconds × 2 times using a φ Zr mask. In the same manner as in Table 1, the correlation coefficient between the fluorescent X-ray intensity of each component and the C content after decarburization annealing (C content at an oxidation degree of 0.105) was determined. The analysis was performed on both front and back sides of the cold rolled sheet, and a low value was adopted. Table 2 shows the results.

【0012】[0012]

【表2】 [Table 2]

【0013】各元素とも正の相関を示し、元素強度が低
い方が脱炭しやすい傾向を示した。なかでも最も相関が
強い元素がSiで、R2 は0.95であった。Si強度
とC量の関係を図3に示す。従って、低酸化度雰囲気領
域の脱炭焼鈍における脱炭性に影響する因子は、冷延板
最表面のSi含有量であり、脱炭性を改善するために
は、冷延鋼板最表面のSi含有量を下げる必要があるこ
とが判明した。
Each element showed a positive correlation, and the lower the element strength, the easier the decarburization. Among them, the element having the strongest correlation was Si, and R 2 was 0.95. FIG. 3 shows the relationship between the Si intensity and the C content. Therefore, a factor that affects the decarburizing property in the decarburizing annealing in the low-oxidation atmosphere region is the Si content of the outermost surface of the cold-rolled steel sheet. It was found that the content had to be reduced.

【0014】冷延鋼板最表面のSi濃度変動の原因を調
査するため、脱炭良好材(螢光X線Si強度が低い)と
脱炭不良材(螢光X線強度が高い)のGDS分析を行っ
た。深さ方向のSiプロフィルをみると鋼板表面から
1.5〜2μmの深さでSi欠乏層が観察され、脱炭良
好材は脱炭不良材に比較して鋼板最表面のSiが低かっ
た。更に、Si欠乏層が冷延工程前に存在していたかど
うかを確認するため、冷延工程直前の鋼板について表層
断面をCMAにて分析した。これらの鋼板はいずれも熱
延板焼鈍に引き続き酸洗による脱スケール処理を行った
板厚2.3mmの鋼板である。CMAのSi濃度マッピ
ングを図4、および表面から深さ方向へのSi線分析プ
ロフィルを図5に示す。いずれも鋼板最表面から深さ1
5〜20μmのSi欠乏層が観察されたが、脱炭不良材
はSi欠乏層が浅く、最表面のSi濃度が3.1%と高
いのに比較し、脱炭良好材はSi欠乏層が深く、最表面
のSi濃度が2.8%と低かった。従って、冷延鋼板最
表面のSi濃度変動は冷延工程前における鋼板最表面の
Si欠乏層(脱Si層)の変動によるものと考えられ
る。本発明は、冷延板の鋼板最表面のSi含有量に着目
し、脱炭焼鈍の雰囲気ガス酸化度が低い場合でも脱炭が
極めて良好な冷延板を用いる鏡面一方向性電磁鋼板の製
造方法を開示するものである。
In order to investigate the cause of the Si concentration fluctuation on the outermost surface of the cold-rolled steel sheet, GDS analysis of a decarburized material (low fluorescent X-ray intensity) and a poor decarburized material (high fluorescent X-ray intensity) was conducted. Was done. Looking at the Si profile in the depth direction, a Si-deficient layer was observed at a depth of 1.5 to 2 μm from the steel sheet surface, and the decarburized good material had lower Si on the outermost surface of the steel sheet than the poorly decarbonized material. Further, in order to confirm whether the Si-deficient layer was present before the cold rolling step, the surface section of the steel sheet immediately before the cold rolling step was analyzed by CMA. Each of these steel sheets is a steel sheet having a thickness of 2.3 mm that has been subjected to descaling treatment by pickling subsequent to hot-rolled sheet annealing. FIG. 4 shows the Si concentration mapping of CMA, and FIG. 5 shows the Si line analysis profile from the surface to the depth direction. In each case, the depth from the outermost surface of the steel plate is 1
Although a Si-deficient layer of 5 to 20 μm was observed, the poorly decarbonized material had a shallow Si-deficient layer, and the Si concentration of the outermost surface was as high as 3.1%. It was deep and the Si concentration at the outermost surface was as low as 2.8%. Therefore, it is considered that the fluctuation of the Si concentration on the outermost surface of the cold-rolled steel sheet is caused by the fluctuation of the Si-depleted layer (de-Si layer) on the outermost surface of the steel sheet before the cold-rolling step. The present invention focuses on the Si content of the outermost surface of a steel sheet of a cold-rolled sheet, and manufactures a mirror-oriented unidirectional electrical steel sheet using a cold-rolled sheet with extremely good decarburization even when the atmosphere gas oxidation degree of decarburization annealing is low. It discloses a method.

【0015】[0015]

【課題を解決するための手段】本発明の特徴とするとこ
ろは、以下のとおりである。 (1)重量%で、C:0.03〜0.10%、Si:
3.0〜4.0%を含有する一方向性電磁鋼板の最終冷
延板に、脱炭焼鈍を酸化度(PH2 O/PH2 )が0.
01以上0.15以下の雰囲気ガス中で行ない、アルミ
ナを主成分とする焼鈍分離剤を塗布し、仕上げ焼鈍を施
すことからなる鏡面一方向性電磁鋼板の製造方法におい
て、上記冷延板の鋼板表面から2μmまでの深さにおけ
るSi含有量を3.0%より低くすることを特徴とする
磁気特性が優れた鏡面一方向性電磁鋼板の製造方法。
The features of the present invention are as follows. (1) By weight%, C: 0.03 to 0.10%, Si:
The degree of oxidation (PH 2 O / PH 2 ) of the final cold-rolled sheet of the grain-oriented electrical steel sheet containing 3.0 to 4.0% was set to 0.
A method for producing a mirror-oriented unidirectional magnetic steel sheet, comprising performing the annealing in an atmosphere gas of not less than 01 and not more than 0.15, applying an annealing separator containing alumina as a main component, and performing finish annealing. A method for producing a mirror-oriented unidirectional electrical steel sheet having excellent magnetic properties, characterized in that the Si content at a depth from the surface to 2 μm is lower than 3.0%.

【0016】(2)重量%で、C:0.03〜0.10
%、Si:3.0〜4.0%を含有する一方向性電磁鋼
板の熱延板を、熱延板焼鈍後に1回以上の冷延を行う
か、または熱延板焼鈍を行わずに中間焼鈍を挟む2回以
上の冷延を施して最終板厚とし、引き続き脱炭焼鈍を酸
化度(PH2 O/PH2 )が0.01以上0.15以下
の雰囲気ガス中で行ない、アルミナを主成分とする焼鈍
分離剤を塗布し、仕上げ焼鈍を施す工程からなる磁気特
性が優れた鏡面一方向性電磁鋼板の製造方法において、
熱延から最終冷延までに行う焼鈍の条件として、焼鈍の
均熱温度をT℃、均熱時間をt秒、焼鈍する板厚から最
終冷延板厚までの圧下率をR%とした場合、(0.00
23T−1.9)t(100−R)≧200の範囲と
し、かつ焼鈍雰囲気ガス中の酸化度(PH2 O/P
2 )を0.15以上とすることを特徴とする磁気特性
が優れた鏡面一方向性電磁鋼板の製造方法。
(2) C: 0.03-0.10% by weight
%, Si: 3.0 to 4.0%, a hot-rolled magnetic steel sheet is subjected to one or more cold-rolling steps after the hot-rolling sheet annealing, or without performing the hot-rolling sheet annealing. Cold rolling is performed two or more times with intermediate annealing to obtain a final sheet thickness. Subsequently, decarburizing annealing is performed in an atmosphere gas having an oxidation degree (PH 2 O / PH 2 ) of 0.01 to 0.15, and alumina A method for producing a mirror-oriented unidirectional electrical steel sheet having excellent magnetic properties comprising a step of applying an annealing separating agent containing as a main component and performing a finish annealing,
The conditions of annealing performed from hot rolling to final cold rolling are as follows: the soaking temperature of annealing is T ° C., the soaking time is t seconds, and the rolling reduction from the sheet thickness to be annealed to the final cold-rolled sheet thickness is R%. , (0.00
23T-1.9) t (100-R) ≧ 200 and the degree of oxidation (PH 2 O / P) in the annealing atmosphere gas
A method for producing a mirror-oriented unidirectional electrical steel sheet having excellent magnetic properties, wherein H 2 ) is 0.15 or more.

【0017】(3)仕上焼鈍後に磁区細分化処理を施す
事を特徴とする(1)または(2)記載の磁気特性が優
れた鏡面一方向性電磁鋼板の製造方法。
(3) The method for producing a mirror-oriented unidirectional magnetic steel sheet having excellent magnetic properties according to (1) or (2), wherein a magnetic domain refining treatment is performed after the finish annealing.

【0018】[0018]

【発明の実施の形態】以下、本発明を詳細に説明する。
脱炭性を良好にする冷延鋼板表面のSi欠乏層は、冷延
前の熱処理および酸洗工程で形成されるものと考えられ
る。そこで、Si欠乏層に及ぼす熱延板焼鈍の雰囲気ガ
ス酸化度、及び酸洗条件の影響を調査した。Si:2.
8〜3.4%、C:0.05〜0.07%、その他A
l、N等のインヒビター成分を含む板厚2.3mmの熱
延鋼板を表面スケールの付いた状態で1120℃で30
秒続いて900℃で2分焼鈍した。焼鈍雰囲気はN2
90%+H2 :10%の雰囲気とし、ドライガス(露点
−20℃、酸化度=0.01)、及び露点55℃(酸化
度=1.84)に加湿した2水準とした。焼鈍後、硫酸
20%の液温80℃の酸洗液で0〜300秒の範囲で酸
洗し、板厚をマイクロメータで測定した結果と酸洗前板
厚との差を酸洗板厚減量とした。その後、90%の圧下
率で板厚0.23mmまで冷延し、鋼板最表面のSi濃
度を螢光X線分析にて測定した。また、冷延板は840
℃で90秒の脱炭焼鈍を施し、焼鈍前後のC、O量を分
析した。脱炭焼鈍の酸化度(PH2 O/PH2 )は0.
105とした。図6に鋼中Si含有量が3.2%の場合
の酸洗板厚減量と冷延板最表面のSi濃度(螢光X線S
i強度)との関係を示す。熱延板焼鈍の雰囲気酸化度が
1.84の材料はSi濃度が低く、酸洗板厚の減少に伴
い高くなった。一方、酸化度が0.01の材料はSi濃
度の変化が小さかった。また図7に示すように、脱炭焼
鈍後のC量は、雰囲気酸化度が1.84の材料が最もC
量が低く、酸洗後板厚の減少に伴い高くなった。一方、
酸化度が0.01の材料はC量が高く、酸洗板厚が減少
しても変化が小さかった。即ち、熱延板焼鈍中にSiが
選択酸化されるため、鋼板表面のSiが欠乏し、Siの
表面への拡散により濃度勾配(脱Si層)が形成される
ものと考えられる。さらに、熱延板焼鈍後の酸洗により
地鉄も溶解されるので、脱Si層が消失するものと考え
られる。従って、熱延板焼鈍および酸洗条件により脱S
i層が変動し、鋼板表面のSi濃度が変動するものと考
えられる。また、鋼板表面のSi濃度が低いと、脱炭焼
鈍初期のSiO2 皮膜の形成が抑制され、鋼板へのO2
の供給または脱炭生成物のCOガスの放出がスムーズに
行われ、脱炭性が改善されたものと考えられる。このよ
うな方法により、例えば特開平8−269560号公報
に示されるような特殊な鋳造設備を用いて複層化しなく
とも、通常の電磁鋼板製造設備により、僅かな脱Si層
を活用することで鏡面化が可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
It is considered that the Si-deficient layer on the surface of the cold-rolled steel sheet for improving the decarburization property is formed by a heat treatment and a pickling step before cold rolling. Then, the influence of the atmosphere gas oxidation degree of hot rolled sheet annealing and the pickling conditions on the Si deficiency layer was investigated. Si: 2.
8 to 3.4%, C: 0.05 to 0.07%, other A
A hot-rolled steel sheet having a thickness of 2.3 mm containing an inhibitor component such as l, N, or the like is heated at 1120 ° C. for 30 minutes with a surface scale attached.
Subsequently, annealing was performed at 900 ° C. for 2 minutes. Annealing atmosphere is N 2 :
An atmosphere of 90% + H 2 : 10% was used, and two levels were humidified at a dry gas (dew point −20 ° C., oxidation degree = 0.01) and a dew point 55 ° C. (oxidation degree = 1.84). After annealing, pickling is performed in a range of 0 to 300 seconds with a pickling solution of 80% of sulfuric acid at a liquid temperature of 80 ° C., and the difference between the result of measuring the plate thickness with a micrometer and the plate thickness before pickling is the pickling plate thickness. Weight loss. Thereafter, the sheet was cold-rolled to a sheet thickness of 0.23 mm at a rolling reduction of 90%, and the Si concentration on the outermost surface of the sheet was measured by fluorescent X-ray analysis. The cold rolled sheet is 840
Decarburization annealing was performed at 90 ° C. for 90 seconds, and the amounts of C and O before and after the annealing were analyzed. The degree of oxidation (PH 2 O / PH 2 ) of the decarburizing annealing is 0.
105. FIG. 6 shows that the thickness reduction of the pickled plate and the Si concentration of the outermost surface of the cold-rolled sheet (fluorescent X-ray S
i intensity). The material having an atmospheric oxidation degree of 1.84 in the hot-rolled sheet annealing had a low Si concentration and increased with a decrease in the pickling plate thickness. On the other hand, a material having a degree of oxidation of 0.01 had a small change in Si concentration. As shown in FIG. 7, the C content after the decarburizing annealing is the highest for materials having an atmospheric oxidation degree of 1.84.
The amount was low and increased after the pickling due to the decrease in plate thickness. on the other hand,
The material having an oxidation degree of 0.01 had a high C content, and the change was small even when the thickness of the pickled plate was reduced. That is, it is considered that since Si is selectively oxidized during hot-rolled sheet annealing, Si on the surface of the steel sheet is depleted, and a concentration gradient (de-Si layer) is formed by diffusion of Si to the surface. Further, it is considered that the ground iron is dissolved by the pickling after the hot-rolled sheet annealing, so that the de-Si layer is lost. Therefore, removal of S by hot-rolled sheet annealing and pickling conditions
It is considered that the i-layer fluctuates and the Si concentration on the steel sheet surface fluctuates. Further, when the Si concentration on the surface of the steel sheet is low, the formation of the SiO 2 film in the early stage of the decarburization annealing is suppressed, and the O 2
It is considered that the supply of CO or the release of the CO gas of the decarburized product was performed smoothly, and the decarburization property was improved. According to such a method, even if a multilayer is not formed using a special casting facility as disclosed in Japanese Patent Application Laid-Open No. 8-269560, for example, a slight de-Si layer can be utilized by a normal electromagnetic steel sheet manufacturing facility. Mirroring is possible.

【0019】次に、本発明に必要な構成要素とその限定
理由について述べる。本発明において、素材が含有する
成分は、重量で、C:0.03〜0.10%、Si:
3.0〜4.0%を必須成分としてそれ以外は限定しな
い。Cはγ域開放型元素であり、熱間圧延から脱炭焼鈍
の工程でα→γ変態、または固溶Cの存在により二次再
結晶に有利な再結晶組織および集合組織を形成する重要
な元素である。Cが0.03%以下ではα→γ変態が生
じないので好ましくない。また、0.10を越えても集
合組織の改善効果は得られなくなり、また本願の技術を
用いても脱炭焼鈍時間が長くなり、コストアップとなる
ため好ましくない。
Next, the components necessary for the present invention and the reasons for limiting them will be described. In the present invention, the components contained in the material are, by weight, C: 0.03 to 0.10% and Si:
3.0 to 4.0% is an essential component, and the other components are not limited. C is an open type element in the γ region, and is important for forming a recrystallization structure and texture advantageous for secondary recrystallization due to α → γ transformation or the presence of solid solution C in the steps of hot rolling to decarburizing annealing. Element. If C is 0.03% or less, α → γ transformation does not occur, which is not preferable. Further, even if it exceeds 0.10, the effect of improving the texture cannot be obtained, and even if the technique of the present invention is used, the decarburization annealing time is prolonged and the cost is increased, which is not preferable.

【0020】Siは電気抵抗を高め、鉄損を下げる上で
重要な元素である。含有量が4.0%を超えると、冷間
圧延時に材料が割れ易くなり、圧延不可能となる。一
方、3.0%未満では鉄損の低減が困難となるととも
に、本発明の脱Si層により冷延板最表面のSi含有量
を低下させなくても、脱炭性は良好となる(図8)。基
本的な製造法としては、小松等による(Al,Si)N
を主インヒビタ−として用いる製造法(例えば特公昭6
2−45285)、または田口・坂倉等によるAlNと
MnSを主インヒビタ−として用いる製造法(例えば特
公昭40−15644)を適用すれば良い。 酸可溶性
AlはNと結合してAlNを形成し、高磁束密度一方向
性電磁鋼板製造のための主インヒビター構成元素であ
る。AlとNの量を制御することによりインヒビター強
度を調整し先鋭な2次再結晶を得ることが可能である。
Si is an important element for increasing electric resistance and reducing iron loss. If the content exceeds 4.0%, the material is easily cracked during cold rolling, and cannot be rolled. On the other hand, if the content is less than 3.0%, it becomes difficult to reduce iron loss, and the decarburization property is improved without reducing the Si content on the outermost surface of the cold-rolled sheet by the deSi layer of the present invention (see FIG. 8). As a basic manufacturing method, (Al, Si) N by Komatsu et al.
Manufacturing method using as a main inhibitor (for example,
2-45285) or a production method using AlN and MnS as main inhibitors by Taguchi and Sakakura (for example, Japanese Patent Publication No. 40-15644). Acid-soluble Al combines with N to form AlN and is a main inhibitor constituent element for producing a high magnetic flux density unidirectional magnetic steel sheet. By controlling the amounts of Al and N, it is possible to adjust the inhibitor strength and obtain a sharp secondary recrystallization.

【0021】その他のインヒビター構成元素として、M
n,S,Se,V,N,B,Nb,Sn,Cu,Ti,
Zr,Ta,Mo,Sn、Bi等を複合して添加するこ
とができる。次に、製造プロセス条件について説明す
る。上記のごとく成分を調整した超高磁束密度一方向性
電磁鋼板用素材は通常の如何なる溶解法、造塊法を用い
た場合でも本願発明の素材とすることが出来る。
As other inhibitor constituent elements, M
n, S, Se, V, N, B, Nb, Sn, Cu, Ti,
Zr, Ta, Mo, Sn, Bi and the like can be added in combination. Next, the manufacturing process conditions will be described. The material for an ultra-high magnetic flux density unidirectional electrical steel sheet whose components are adjusted as described above can be used as the material of the present invention regardless of any ordinary melting method or ingot making method.

【0022】次いでこの電磁鋼板用素材は通常の熱間圧
延により熱延コイルに圧延される。小松等による(A
l,Si)Nを主インヒビタ−として用いる製造法(例
えば特公昭62−45285)では、熱間圧延時の温度
確保の観点より1100℃以上、またAlNの完全溶体
化しない1280℃以下の温度で加熱を行った後に熱間
圧延を行う。また、田口・坂倉等によるAlNとMnS
を主インヒビタ−として用いる製造法(例えば特公昭4
0−15644)では完全溶体化する1300℃以上の
温度で加熱した後に熱延を行えば良い。
Next, the magnetic steel sheet material is rolled into a hot-rolled coil by ordinary hot rolling. Komatsu et al. (A
In a production method using (1, Si) N as a main inhibitor (for example, Japanese Patent Publication No. 62-45285), at a temperature of 1100 ° C. or more from the viewpoint of securing the temperature during hot rolling, and a temperature of 1280 ° C. or less at which AlN is not completely dissolved. After the heating, hot rolling is performed. AlN and MnS by Taguchi, Sakakura, etc.
Manufacturing method using as a main inhibitor (for example,
In 0-15644), hot rolling may be performed after heating at a temperature of 1300 ° C. or more at which complete solution is formed.

【0023】引き続いて1回の冷延または中間焼鈍を含
む複数回の冷延によって最終板厚とするが、磁束密度が
高い一方向性電磁鋼板を得ることから最終冷延の圧下率
(1回冷延の場合はその圧下率)は65〜95%の強圧
下が好ましい。最終圧延以外のステージの圧下率は特に
規定しなくてもよい。熱延板または圧下率調整のため冷
延した鋼板はAlN等のインヒビターを制御するため、
最終冷延前に焼鈍を行う。焼鈍は900〜1200℃の
温度域で30秒〜30分間行われ、焼鈍後に20℃/s
ec以上の冷却速度で冷却される。この焼鈍は製品の磁
気特性を高めるために有効である。この焼鈍中に本願の
要件である鋼板表面の脱Si層が形成される。脱Si層
は低酸化度の脱炭焼鈍における脱炭性の良し悪しを左右
するため、脱Si層の制御は最終冷延工程に先だって行
う必要がある。熱延の加熱工程でも数十μm程度の脱S
i層は形成されるが、通常スラブの厚みは200mm以
上であるため、0.2〜0.3mm程度に冷延板した場
合、明瞭な脱Si層は残存し難い。従って通常2〜3m
m程度の熱延板焼鈍または通常1〜2mmの中間焼鈍工
程において脱Si層を制御することが望ましい。上述の
ように脱Si層は焼鈍中のSi選択酸化とSiの表面へ
の拡散により形成されるため、インヒビター制御のため
の冷延前熱処理工程で脱Si層制御を兼ねて行うとコス
ト負担も少ない。このとき、熱処理サイクルと焼鈍雰囲
気の酸化度が重要である。Si選択酸化の観点から、焼
鈍雰囲気の酸化度(PH2 O/PH2 )が0.15未満
ではSiの選択酸化が起こり難いため、酸化度は0.1
5以上、好ましくは0.50以上が望ましい。また冷延
板で最表面から深さ2μmまでの脱Si層を得るために
は、焼鈍する板厚で必要量の距離をSi拡散させる必要
がある。この観点から、Fe中のSi自己拡散係数のデ
ータを用いて計算すると、熱間圧延から最終冷間圧延ま
での工程で電磁鋼板を焼鈍する際に、焼鈍の均熱温度を
T℃、均熱時間をt秒、焼鈍する板厚から最終冷延板厚
までの圧下率をR%とした場合、(0.0023T−
1.9)t(100−R)≧200の範囲で焼鈍する必
要があると結論される。
Subsequently, the final sheet thickness is obtained by a single cold rolling or a plurality of cold rolling including intermediate annealing. However, since a unidirectional magnetic steel sheet having a high magnetic flux density is obtained, the rolling reduction of the final cold rolling (one time) In the case of cold rolling, the rolling reduction is preferably from 65 to 95%. The rolling reduction of stages other than the final rolling need not be particularly defined. The hot-rolled sheet or the cold-rolled steel sheet for adjusting the rolling reduction controls the inhibitor such as AlN.
Anneal before final cold rolling. Annealing is performed in a temperature range of 900 to 1200 ° C. for 30 seconds to 30 minutes, and after annealing, 20 ° C./s.
It is cooled at a cooling rate of ec or more. This annealing is effective to enhance the magnetic properties of the product. During this annealing, a de-Si layer on the surface of the steel sheet, which is a requirement of the present application, is formed. Since the de-Si layer affects the quality of decarburization in low-oxidation decarburization annealing, it is necessary to control the de-Si layer prior to the final cold rolling step. De-S of about tens of μm even in the heating process of hot rolling
Although an i-layer is formed, the thickness of the slab is usually 200 mm or more. Therefore, when cold-rolled to about 0.2 to 0.3 mm, a clear Si-free layer hardly remains. Therefore usually 2-3m
It is desirable to control the Si removal layer in the hot rolled sheet annealing of about m or the intermediate annealing step of usually 1 to 2 mm. As described above, since the de-Si layer is formed by selective oxidation of Si during annealing and diffusion to the surface of Si, if the de-Si layer is also controlled in the heat treatment step before cold rolling for inhibitor control, the cost burden will increase. Few. At this time, the heat treatment cycle and the degree of oxidation of the annealing atmosphere are important. From the viewpoint of the selective oxidation of Si, if the oxidation degree (PH 2 O / PH 2 ) in the annealing atmosphere is less than 0.15, the selective oxidation of Si is unlikely to occur.
5 or more, preferably 0.50 or more is desirable. Further, in order to obtain a de-Si layer from the outermost surface to a depth of 2 μm from the cold rolled sheet, it is necessary to diffuse a necessary amount of Si by the thickness of the sheet to be annealed. From this viewpoint, when the calculation is performed using the data of the Si self-diffusion coefficient in Fe, when the electromagnetic steel sheet is annealed in the process from hot rolling to final cold rolling, the soaking temperature of annealing is T ° C. When the time is t seconds, and the reduction from the sheet thickness to be annealed to the final cold-rolled sheet thickness is R%, (0.0023T-
1.9) It is concluded that it is necessary to anneal in the range of t (100−R) ≧ 200.

【0024】一方、熱延鋼帯等の表面スケール付きで焼
鈍した場合、冷延中にスケールによる表面疵が発生する
ため、酸洗等の化学的方法やショットブラスト等の機械
的方法により脱スケールが必要となる。このとき鋼板表
面に形成された脱Si層も消失するため、脱Si層が無
くならないように板厚の減少や後述の冷延板の螢光X線
分析のSi強度などを管理する必要がある。管理のため
の条件は形成された脱Si層の深さや脱スケールの処理
方法を勘案し決定すればよい。この方法によれば、地鉄
の溶解が最小になるように脱スケール工程を管理するこ
ととなり、歩留まり向上のメリットもある。
On the other hand, when annealed with a surface scale such as a hot-rolled steel strip, since scale flaws are generated during cold rolling, descaling is performed by a chemical method such as pickling or a mechanical method such as shot blasting. Is required. At this time, since the de-Si layer formed on the surface of the steel sheet also disappears, it is necessary to control the reduction of the sheet thickness and the Si intensity in the fluorescent X-ray analysis of the cold-rolled sheet described later so that the de-Si layer is not lost. . Conditions for management may be determined in consideration of the depth of the formed de-Si layer and the method of descaling. According to this method, the descaling process is controlled so that the dissolution of the base iron is minimized, and there is also a merit of improving the yield.

【0025】最終製品厚に圧延した冷延板は、1次再結
晶焼鈍と鋼中に含まれる炭素を除去する目的で湿潤な水
素または水素と窒素の混合雰囲気中で、脱炭焼鈍を行
う。この脱炭焼鈍において、Fe系の酸化物(Fe2
iO4 ,FeO等)を形成させない雰囲気ガス酸化度で
焼鈍を行い、焼鈍分離剤としてアルミナを塗布すること
がポイントである。たとえば、通常脱炭焼鈍が行われる
800℃〜850℃の温度域においては、雰囲気ガスの
酸化度(PH2 O/PH2 )を0.15以下に調整する
ことにより、Fe系酸化物の生成を抑制することができ
る。但し、あまりに酸化度を下げると脱炭速度が遅くな
ってしまい、工業的観点から望ましくない。この両者を
勘案すると、750〜900℃の温度域において、雰囲
気ガスの酸化度(PH2 O/PH2 ):0.01〜0.
15の範囲で焼鈍することが好ましい。焼鈍時間は十分
な脱炭を行うには通常60〜300秒程度必要である。
また焼鈍焼鈍温度は主に最適な1次再結晶粒径を得る観
点から適宜決定される。
The cold rolled sheet rolled to the final product thickness is subjected to primary recrystallization annealing and decarburization annealing in wet hydrogen or a mixed atmosphere of hydrogen and nitrogen for the purpose of removing carbon contained in steel. In this decarburization annealing, Fe-based oxides (Fe 2 S
The point is that annealing is performed at an atmosphere gas oxidation degree that does not form iO 4 , FeO, etc., and alumina is applied as an annealing separator. For example, in a temperature range of 800 ° C. to 850 ° C. in which normal decarburization annealing is performed, the degree of oxidation of the atmospheric gas (PH 2 O / PH 2 ) is adjusted to 0.15 or less to produce Fe-based oxides. Can be suppressed. However, if the degree of oxidation is too low, the decarburization rate will be low, which is not desirable from an industrial viewpoint. Taking these both into consideration, the degree of oxidation of the atmosphere gas (PH 2 O / PH 2 ) in the temperature range of 750-900 ° C .: 0.01-0.
Annealing in the range of 15 is preferred. The annealing time usually requires about 60 to 300 seconds to perform sufficient decarburization.
The annealing temperature is appropriately determined mainly from the viewpoint of obtaining an optimum primary recrystallized grain size.

【0026】本発明の目的は、このような脱炭焼鈍の条
件で脱炭が有利な冷延鋼板を供給するものである。冷延
鋼板の要件を明らかにするため、図7の実験で求めた各
鋼中Si含有量(2.8〜3.4%)における最表面S
i含有量と脱炭焼鈍後のC量の関係を図8に示す。図8
の横軸は冷延板表面の螢光X線分析で得たSi強度を検
量線(標準試料比較法)によりSi含有量に変換したも
のである。図8から判るように、最表面Si含有量が
3.0%より低いと、好ましくは2.8%より低いと、
C量が30ppm以下となる。即ち、最表面Si含有量
が3.0%より低い、好ましくは2.8%より低いこと
が本願の脱炭焼鈍直前の冷延鋼板の要件である。
An object of the present invention is to supply a cold-rolled steel sheet which is advantageous for decarburization under such decarburization annealing conditions. In order to clarify the requirements of the cold-rolled steel sheet, the outermost surface S at the Si content (2.8 to 3.4%) in each steel obtained in the experiment of FIG.
FIG. 8 shows the relationship between the i content and the C content after decarburizing annealing. FIG.
The horizontal axis indicates the Si intensity obtained by X-ray fluorescence analysis of the surface of the cold rolled sheet and converted into the Si content by a calibration curve (standard sample comparison method). As can be seen from FIG. 8, when the outermost surface Si content is lower than 3.0%, preferably lower than 2.8%,
The C amount becomes 30 ppm or less. That is, it is a requirement of the cold-rolled steel sheet immediately before decarburizing annealing that the outermost surface Si content is lower than 3.0%, preferably lower than 2.8%.

【0027】また、二次イオン質量分析を用いてSiの
深さ方向プロフィルと脱炭性の関係を詳細に調査した結
果、表面から深さ2μmの範囲のSi含有量が重要であ
ることがわかった。これは、脱炭焼鈍温度の750〜9
50℃におけるSi拡散距離が0.1μm/秒程度であ
ることから、脱炭性を阻害するSiO2 が形成される加
熱〜焼鈍初期の約20秒(Si拡散距離=0.1×20
=2μm)において地鉄界面のSi濃度が上昇すること
を防止することに意味があるものと推定している。な
お、一般に螢光X線による分析値は、鋼板表面から約2
〜3μmの深さの情報である。本発明で提案した冷延板
最表面から深さ2μmのSi含有量は、ほぼ螢光X線分
析の測定範囲で有効である。
Further, as a result of a detailed investigation of the relationship between the profile in the depth direction of Si and the decarburization property using secondary ion mass spectrometry, it was found that the Si content in the range of 2 μm in depth from the surface is important. Was. This is the decarburization annealing temperature of 750-9
Since the Si diffusion distance at 50 ° C. is about 0.1 μm / sec, about 20 seconds from the heating to the initial stage of annealing where SiO 2 that inhibits decarburization is formed (Si diffusion distance = 0.1 × 20)
= 2 µm), it is estimated that it is meaningful to prevent the Si concentration at the interface of the base iron from increasing. Generally, the analysis value by fluorescent X-ray is about 2
This is information of a depth of 33 μm. The Si content at a depth of 2 μm from the outermost surface of the cold rolled sheet proposed in the present invention is effective almost in the measurement range of the fluorescent X-ray analysis.

【0028】また本発明の一方向性電磁鋼板を工場で生
産するにあたり、冷延板表面の螢光X線分析を行うこと
により、表層Si含有量を管理することは迅速性や測定
精度の観点から非常に有効である。冷延板のSi強度
(または検量線による換算値)の基準を設定し、熱延板
焼鈍条件または冷延前酸洗条件を管理する必要がある。
さらに、Si強度に応じて脱炭焼鈍の雰囲気ガス酸化度
を調整し、C量およびO量を制御することも可能であ
る。但し、冷延前の酸洗板を螢光X線で分析しても、表
面凹凸の外乱が大きく、精度良く管理することは困難で
ある。また、螢光X線分析以外の方法では、GDS分
析、オージェ分光分析、二次イオン質量分析、発光分析
法等でも有効である。
In producing the grain-oriented electrical steel sheet of the present invention in a factory, controlling the Si content in the surface layer by performing fluorescent X-ray analysis on the surface of the cold-rolled sheet is important in terms of speed and measurement accuracy. Very effective from. It is necessary to set a standard for the Si strength of the cold-rolled sheet (or a converted value based on a calibration curve) and control the hot-rolled sheet annealing conditions or the cold-rolling pickling conditions.
Furthermore, it is also possible to adjust the degree of oxidation of the atmosphere gas in the decarburization annealing according to the Si strength to control the amounts of C and O. However, even if the pickled plate before cold rolling is analyzed with fluorescent X-rays, the disturbance of the surface irregularities is large, and it is difficult to control it accurately. In addition to the methods other than the fluorescent X-ray analysis, GDS analysis, Auger spectroscopy, secondary ion mass spectrometry, emission spectroscopy, and the like are also effective.

【0029】この脱炭焼鈍板に(Al,Si)Nインヒ
ビターを強化する必要がある場合、またはN(Al,S
i)Nを主インヒビタ−として用いる製造法(例えば特
公昭62−45285)においては、窒化処理を施す。
この窒化処理の方法は特に限定するものではなく、アン
モニア等の窒化能のある雰囲気ガス中で行う方法等があ
る。
When it is necessary to strengthen the (Al, Si) N inhibitor in the decarburized annealed sheet, or when N (Al, S
i) In a manufacturing method using N as a main inhibitor (for example, Japanese Patent Publication No. 62-45285), a nitriding treatment is performed.
The method of the nitriding treatment is not particularly limited, and there is a method of performing the nitriding treatment in an atmosphere gas having a nitriding ability such as ammonia.

【0030】これらの脱炭焼鈍板をコイルフォームに巻
く際に、焼鈍分離剤を水スラリ−もしくは静電塗布法等
によりドライ・コ−トする。水スラリーで塗布する場合
には例えば、特願平5−211602号公報に開示する
方法を採用することが好ましい。焼鈍分離剤としては、
特開平7−118749号に記載されるようにアルミナ
がコストと表面の磁気的平滑性の観点から工業的に好ま
しい。
When these decarburized annealed sheets are wound around a coil form, the annealing separator is dry-coated by a water slurry or an electrostatic coating method. When applying with a water slurry, for example, it is preferable to adopt the method disclosed in Japanese Patent Application No. 5-212602. As the annealing separator,
As described in JP-A-7-118749, alumina is industrially preferable from the viewpoint of cost and magnetic smoothness of the surface.

【0031】このコイルを仕上げ焼鈍して、二次再結晶
と窒化物の純化を行う。二次再結晶を特開平2−258
929号公報に開示される様に一定の温度で保持する等
の手段により所定の温度域で行うことは磁束密度を向上
させる上で有効である。二次再結晶完了後、窒化物等の
不純物の純化と表面の平滑化をおこなうために100%
水素で1100以上の温度で焼鈍する。
The coil is finish-annealed to perform secondary recrystallization and purification of nitride. Secondary recrystallization is disclosed in
Performing in a predetermined temperature range by means such as holding at a constant temperature as disclosed in Japanese Patent No. 929 is effective in improving the magnetic flux density. After secondary recrystallization, 100% to purify impurities such as nitrides and smoothen the surface
Anneal with hydrogen at a temperature of 1100 or more.

【0032】仕上げ焼鈍後引き続き余分の焼鈍分離剤を
除去後、コイル巻きぐせ等を矯正するための連続張力焼
鈍を行い、同時に絶縁皮膜コーティングを塗布、焼き付
けする。このとき必要に応じて、該鋼板にレーザー照
射、機械的溝形成、張力被膜コーティング等の磁区細分
化処理を施す。鉄損特性を改善する意味から磁区細分化
処理は有効である。磁区細分化の方法は特に限定する必
要はない。
After the final annealing, the excess annealing separating agent is continuously removed, and then continuous tension annealing for correcting coil winding and the like is performed, and at the same time, an insulating film coating is applied and baked. At this time, if necessary, the steel sheet is subjected to magnetic domain refining treatment such as laser irradiation, mechanical groove formation, and tension film coating. The domain refining treatment is effective in improving iron loss characteristics. There is no particular limitation on the method of magnetic domain subdivision.

【0033】局部的な歪みを導入することで磁区細分化
を行う場合、例えば特公昭57−2252公報等に記載
されるレーザー光照射を行う方法や、特開昭62−15
1511公報、特公平6−45824公報等に記載され
るプラズマ炎照射を行う方法等を用いれば良い。局部的
な溝を形成することで磁区細分化を行う場合、歯車ロー
ル法(例えば特公平4−48847公報)や金型プレス
法(例えば特公平6−63037公報)等の機械的な塑
性加工による方法、フォトエッチング法(例えば特公平
5−69284公報)やレジストインキエッチング法
(特公平2ー46673公報、特公平3−69968公
報)等の化学エッチングや電解エッチングを用いる方法
などを採用すればよい。
In the case of performing magnetic domain subdivision by introducing a local distortion, for example, a method of irradiating a laser beam described in Japanese Patent Publication No. 57-2252 or Japanese Patent Application Laid-Open No. Sho 62-15-15
For example, a method of performing plasma flame irradiation described in JP-A-1511 and JP-B-6-45824 may be used. In the case of performing magnetic domain subdivision by forming a local groove, mechanical plastic working such as a gear roll method (for example, Japanese Patent Publication No. 4-48847) and a die pressing method (for example, Japanese Patent Publication No. 6-63037). A method using chemical etching or electrolytic etching such as a photo-etching method (for example, Japanese Patent Publication No. 5-69284) and a resist ink etching method (for example, Japanese Patent Publication No. 2-46673, Japanese Patent Publication No. 3-69968) may be used. .

【0034】張力コーティングとしては、例えば特開昭
48−39338号公報によるコロイド状シリカとリン
酸アルミニウムを主体とするコ−テイング液、特開昭5
0−79442号公報によるコロイド状シリカとリン酸
マグネシウムを主体とするコ−テイング液、または特願
平4−222849号公報によるアルミナ・ゾルとホウ
酸を主成分とするコ−テイング液を焼き付ける方法等を
採用すればよい。
As the tension coating, for example, a coating liquid mainly comprising colloidal silica and aluminum phosphate according to JP-A-48-39338;
A method of baking a coating liquid mainly comprising colloidal silica and magnesium phosphate according to Japanese Patent Application No. 0-79442 or a coating liquid mainly comprising alumina sol and boric acid according to Japanese Patent Application No. 4-22849. Etc. may be adopted.

【0035】[0035]

【実施例】【Example】

〈実施例1〉C:0.05%、Si:3.3%、Mn:
0.1%、S:0.01%、酸可溶性Al:0.03
%、N:0.008%、の電磁鋼を溶製し鋳造後、11
50℃に加熱し、抽出後直ちに2.3mm板厚まで熱間
圧延し空冷した。その後、窒素ガス中において酸化度
0.03、0.87、3.68とし1050℃の温度で
120秒焼鈍した(T=1050,t=120)。そし
て硫酸液酸洗により酸洗板厚減量を10、30、60μ
mとした。0.23mmまで途中250℃での時効処理
を5回挟んで冷延し(圧下率 R=90%)、冷延板の
けい光X線分析により最表面Si含有量を求めた。ここ
で(0.0023T−1.9)t(100−R)≦20
0は満足する。
<Example 1> C: 0.05%, Si: 3.3%, Mn:
0.1%, S: 0.01%, acid-soluble Al: 0.03
%, N: 0.008%, after melting and casting electromagnetic steel,
It was heated to 50 ° C., immediately after the extraction, hot-rolled to a thickness of 2.3 mm and air-cooled. Thereafter, in nitrogen gas, the oxidation degree was set to 0.03, 0.87, and 3.68, and annealing was performed at a temperature of 1050 ° C. for 120 seconds (T = 1050, t = 120). Then, the pickling plate thickness reduction by sulfuric acid solution pickling was 10, 30, 60 μm.
m. The specimen was cold-rolled with aging treatment at 250 ° C. 5 times to 0.23 mm (rolling reduction R = 90%), and the outermost surface Si content was determined by fluorescent X-ray analysis of the cold-rolled sheet. Where (0.0023T-1.9) t (100-R) ≦ 20
0 is satisfied.

【0036】これらの冷延板を窒素と水素の混合ガスの
酸化度を0.12および0.28とし830℃の温度で
90秒焼鈍し、脱炭・一次再結晶させた焼鈍板のC、O
分析を行った。次いでアンモニア雰囲気中で焼鈍するこ
とにより、窒素量を0.02%に増加して、インヒビタ
ーの強化を行った。これらの鋼板にアルミナ水スラリ−
を塗布・乾燥しながら鋼板を積層し、仕上焼鈍を施し
た。仕上焼鈍板の鏡面状態をチェックしたのち、試料に
歯車ロールで圧延方向と直角方向から10度の方向で、
幅50μm、深さ15μmの溝を形成した後、コロイド
状シリカとリン酸塩を主成分とするコーテイング液を塗
布して850℃で2分間焼き付けた。これらの試料の磁
気特性を測定した後、更に800℃で4時間の歪取り焼
鈍を行った。得られた製品の磁気特性を表3に示す。
These cold rolled sheets were annealed at a temperature of 830 ° C. for 90 seconds at an oxidation degree of a mixed gas of nitrogen and hydrogen of 0.12 and 0.28, and decarburized and primarily recrystallized. O
Analysis was carried out. Then, by annealing in an ammonia atmosphere, the amount of nitrogen was increased to 0.02% to strengthen the inhibitor. Alumina water slurry was added to these steel sheets.
While applying and drying, the steel sheets were laminated and subjected to finish annealing. After checking the mirror surface condition of the finished annealed plate, the sample was rolled with gear rolls in a direction 10 degrees from the direction perpendicular to the rolling direction.
After forming a groove having a width of 50 μm and a depth of 15 μm, a coating liquid containing colloidal silica and phosphate as main components was applied and baked at 850 ° C. for 2 minutes. After measuring the magnetic properties of these samples, strain relief annealing was further performed at 800 ° C. for 4 hours. Table 3 shows the magnetic properties of the obtained products.

【0037】[0037]

【表3】 [Table 3]

【0038】〈実施例2〉重量で、Si:3.5%,M
n:0.07%,C:0.07%,Se:0.025
%,酸可溶性Al:0.02%,N:0.008%,S
b:0.03%の電磁鋼を溶製し、それぞれ鋳片に分注
鋳造後、1350℃で加熱し、抽出後直ちに2.2mm
の板厚まで熱間圧延し、直ちに550℃まで水冷した。
この熱延板を酸洗し中間厚0.9mmまで冷延した。そ
の後、窒素+水素ガス中において酸化度0.02、0.
18とし950℃で30秒および60秒焼鈍した後、酸
洗せずに最終板厚0.18mmまで冷延し、冷延板の螢
光X線分析により最表面Si含有量を求めた(T=95
0, t=30 or 60, R=80)。(0.0
023T−1.9)t(100−R)を計算した結果、
t=30は200以下で、t=60は200以上であっ
た。
Example 2 Si: 3.5% by weight, M
n: 0.07%, C: 0.07%, Se: 0.025
%, Acid-soluble Al: 0.02%, N: 0.008%, S
b: 0.03% of electromagnetic steel was melted, each was cast into a slab, then heated at 1350 ° C., and 2.2 mm immediately after extraction.
, And immediately cooled with water to 550 ° C.
The hot rolled sheet was pickled and cold rolled to an intermediate thickness of 0.9 mm. Thereafter, the degree of oxidation is set to 0.02, 0.
After annealing at 950 ° C. for 30 seconds and 60 seconds, the sheet was cold-rolled to a final sheet thickness of 0.18 mm without pickling, and the cold-rolled sheet was subjected to fluorescent X-ray analysis to determine the outermost surface Si content (T = 95
0, t = 30 or 60, R = 80). (0.0
023T-1.9) t (100-R),
t = 30 was 200 or less, and t = 60 was 200 or more.

【0039】これらの冷延板を窒素と水素の混合ガスの
酸化度を0.11、0.14および0.18とし850
℃の温度で70秒焼鈍し脱炭・一次再結晶させた焼鈍板
のC、O分析を行った。これらの鋼板にアルミナ粉末を
静電装置で塗布しながら鋼板を積層し仕上げ焼鈍を施し
た。仕上焼鈍板の鏡面状態をチェックしたのち、試料に
圧延方向と直角方向に、幅30μm、深さ10μmの溝
をフォトエッチング法で形成した後、アルミナ・ゾルと
ホウ酸を主成分とするコ−テイング液を塗布して870
℃で2分間焼き付けた。これらの試料の磁気特性を測定
した後、更に800℃で4時間の歪取り焼鈍を行った。
得られた製品の磁気特性を表4に示す。
These cold-rolled sheets were prepared by setting the oxidation degree of the mixed gas of nitrogen and hydrogen to 0.11, 0.14 and 0.18 and setting them to 850.
C, O analysis of the annealed plate which was annealed at a temperature of ° C. for 70 seconds and decarburized and primary recrystallized was performed. While applying alumina powder to these steel sheets with an electrostatic device, the steel sheets were laminated and subjected to finish annealing. After checking the mirror surface state of the finished annealed plate, a groove having a width of 30 μm and a depth of 10 μm is formed in the sample in a direction perpendicular to the rolling direction by a photoetching method, and then a core mainly composed of alumina sol and boric acid is formed. 870 after applying coating solution
Bake at 2 ° C. for 2 minutes. After measuring the magnetic properties of these samples, strain relief annealing was further performed at 800 ° C. for 4 hours.
Table 4 shows the magnetic properties of the obtained products.

【0040】[0040]

【表4】 [Table 4]

【0041】〈実施例3〉C:0.05%、Si:3.
2%、Mn:0.1%、S:0.01%、P:0.03
%,酸可溶性Al:0.03%、N:0.007%、S
n:0.005%,Cr:0.1%を含有する珪素鋼を
溶製し、スラブに鋳造後、1150℃に加熱し、抽出後
直ちに2.0mm板厚まで熱延し、熱延後水冷し550
℃で巻き取った。その後熱延板を1120℃の温度で3
0秒900℃で90秒焼鈍し、750℃まで空冷後80
℃の水中に急冷した。焼鈍ガスは窒素とし、酸化度を
(A)0.12および(B)1.39に調整した。次い
で80℃の塩酸濃度を3%とし10秒間酸洗し、0.2
3mmまで5パスの圧延を行い、途中200℃以上で5
分以上の時効処理を行った(圧下率88.5%)。
(0.0023T−1.9)t(100−R)の計算値
は446であり200以上を満足した。
Example 3 C: 0.05%, Si: 3.
2%, Mn: 0.1%, S: 0.01%, P: 0.03
%, Acid-soluble Al: 0.03%, N: 0.007%, S
Silicon steel containing n: 0.005% and Cr: 0.1% is melted, cast into a slab, heated to 1150 ° C, hot-rolled to 2.0 mm thickness immediately after extraction, and hot-rolled. 550 with water cooling
Wound at ℃. Thereafter, the hot rolled sheet is heated at a temperature of 1120 ° C. for 3 hours.
Annealed at 900 ° C for 0 seconds for 90 seconds, air-cooled to 750 ° C,
Quenched in water at ℃. The annealing gas was nitrogen, and the oxidation degree was adjusted to (A) 0.12 and (B) 1.39. Next, the hydrochloric acid concentration at 80 ° C. was set to 3%, and the resultant was pickled for 10 seconds.
Rolling 5 passes to 3mm
The aging treatment was performed for more than one minute (a reduction ratio of 88.5%).
The calculated value of (0.0023T-1.9) t (100-R) was 446, which satisfied 200 or more.

【0042】冷延板の螢光X線分析にて表層のSi含有
量を測定し、引き続き脱炭・1次再結晶焼鈍を窒素+水
素の混合ガス中において酸化度0.13の雰囲気とし、
850℃の温度で100秒行い、引き続いてNH3 雰囲
気でN含有量が200ppmになるよう窒化焼鈍を行っ
た後、焼鈍板のC、O量を分析した。そしてアルミナを
主成分とする焼鈍分離剤を気水スプレーで塗布し乾燥し
ながら巻き取った10Tコイルを、ボックスタイプの焼
鈍炉で2次再結晶仕上焼鈍を行った。炉内に窒素を流し
ながらしながら1200℃まで15℃/hrで昇温し、
引き続いて水素を流しながら1200℃で75時間の純
化焼鈍を行った。コイルのアルミナを軽酸洗処理にて除
去した結果、コイル全幅、全長で鋼板表面が鏡面を呈し
ていた。これら鋼帯に、ハイドロタルサイト+ホウ酸を
主成分とするコーテイング液を塗布して850℃で2分
間焼き付けた。その後、鋼板表面に圧延方向と直角方向
に5mm間隔でレーザー照射を行った。冷延板最表面の
Si含有量、脱炭焼鈍後のC、O量および製品の磁気特
性を以下に示す。
The Si content of the surface layer was measured by X-ray fluorescence analysis of the cold-rolled sheet, and then decarburization and primary recrystallization annealing were performed in a mixed gas of nitrogen and hydrogen with an oxidation degree of 0.13.
This was carried out at a temperature of 850 ° C. for 100 seconds, followed by nitriding annealing in an NH 3 atmosphere so that the N content became 200 ppm, and then the C and O contents of the annealed plate were analyzed. Then, a 10T coil wound and wound while drying and applying an annealing separator containing alumina as a main component by air-water spray was subjected to secondary recrystallization finish annealing in a box-type annealing furnace. While flowing nitrogen into the furnace, the temperature was raised to 1200 ° C at 15 ° C / hr,
Subsequently, purification annealing was performed at 1200 ° C. for 75 hours while flowing hydrogen. As a result of removing the alumina of the coil by light pickling, the steel plate surface had a mirror surface over the entire width and the entire length of the coil. A coating solution containing hydrotalcite + boric acid as a main component was applied to these steel strips and baked at 850 ° C. for 2 minutes. Thereafter, the surface of the steel sheet was irradiated with laser at intervals of 5 mm in a direction perpendicular to the rolling direction. The Si content of the outermost surface of the cold rolled sheet, the C and O contents after decarburizing annealing, and the magnetic properties of the product are shown below.

【0043】 表面Si含有量 C量 O量 W17/50 B8 (A)3.15% 148ppm 232ppm 1.29W/kg 1.93T (B)2.87% 14ppm 235ppm 0.69W/kg 1.95TSurface Si content C content O content W17 / 50 B8 (A) 3.15% 148 ppm 232 ppm 1.29 W / kg 1.93 T (B) 2.87% 14 ppm 235 ppm 0.69 W / kg 1.95 T

【0044】[0044]

【発明の効果】以上のように、鋼板表面から2μmまで
の深さにおけるSi含有量を3.0より低くすることに
より、低酸化度雰囲気の脱炭焼鈍でもC量を効果的に低
下させることが可能となり、脱炭焼鈍表面の低酸化層と
アルミナ焼鈍分離剤の有機的効果により、極めて磁気特
性が良好な鏡面一方向性電磁鋼板を低コストで得ること
ができる。
As described above, by lowering the Si content at a depth of 2 μm from the steel sheet surface to less than 3.0, the C content can be effectively reduced even in decarburizing annealing in a low oxidation atmosphere. And the organic effect of the low-oxidized layer on the decarburized annealing surface and the alumina annealing separator makes it possible to obtain a mirror-oriented unidirectional magnetic steel sheet having extremely good magnetic properties at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼板成分、工程条件が変動した冷間圧延板を脱
炭焼鈍したときの、雰囲気酸化度(PH2 O/PH2
と焼鈍後C量の関係を示す図。
FIG. 1 Atmosphere oxidation degree (PH 2 O / PH 2 ) when a cold-rolled sheet with varied steel sheet components and process conditions was decarburized and annealed.
FIG. 4 is a graph showing the relationship between C and the amount of C after annealing.

【図2】図1についての雰囲気酸化度と焼鈍後O量の関
係を示す図。
FIG. 2 is a diagram showing the relationship between the degree of atmospheric oxidation and the amount of O after annealing in FIG. 1;

【図3】冷延板最表面の螢光X線分析Si強度と酸化度
0.105で脱炭焼鈍した後のC量の関係を示す図。
FIG. 3 is a graph showing the relationship between the fluorescent X-ray analysis Si intensity of the outermost surface of a cold rolled sheet and the C content after decarburizing annealing at an oxidation degree of 0.105.

【図4】脱炭良好材と不良材の冷延前鋼板の表層断面C
MA分析によるSiマッピング画像を示す図。
Fig. 4 Surface section C of cold rolled steel sheet of good decarburized material and bad material
The figure which shows the Si mapping image by MA analysis.

【図5】図4をSi含有量に線分析変換した、深さ方向
のSi濃度変化を示す図。
FIG. 5 is a diagram showing a change in Si concentration in a depth direction obtained by linearly converting FIG. 4 into a Si content.

【図6】0.01と1.84の酸化度で熱延板焼鈍した
鋼板を酸洗したときの、酸洗板厚減量と冷延板最表面の
螢光X線Si強度の関係を示す図。
FIG. 6 shows the relationship between the thickness reduction of the pickled sheet and the fluorescent X-ray Si intensity on the outermost surface of the cold-rolled sheet when the steel sheet annealed at the oxidation degree of 0.01 and 1.84 is pickled. FIG.

【図7】図6の冷延板を酸化度0.105で脱炭焼鈍し
たときの、酸洗板厚減量とC量の関係を示す図。
FIG. 7 is a diagram showing the relationship between the thickness reduction of the pickled plate and the C content when the cold-rolled plate of FIG. 6 is decarburized and annealed at an oxidation degree of 0.105.

【図8】鋼中のSi含有量が2.8〜3.4%の材料を
用いて冷延板最表面のSi含有量を変化させたときの、
冷延板最表面のSi含有量と脱炭焼鈍後(酸化度0.1
05)のC量の関係を示す図。
FIG. 8 shows a case where the Si content of the outermost surface of the cold-rolled sheet is changed by using a material having a Si content of 2.8 to 3.4% in steel.
Si content of the outermost surface of the cold rolled sheet and after decarburizing annealing (oxidation degree 0.1
FIG. 05) is a view showing the relationship between C amounts in FIG.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.03〜0.10%、
Si:3.0〜4.0%を含有する一方向性電磁鋼板の
最終冷延板に、脱炭焼鈍を酸化度(PH2 O/PH2
が0.01以上0.15以下の雰囲気ガス中で行ない、
アルミナを主成分とする焼鈍分離剤を塗布し、仕上げ焼
鈍を施すことからなる鏡面一方向性電磁鋼板の製造方法
において、前記最終冷延板の鋼板表面から2μmまでの
深さにおけるSi含有量を3.0%より低くすることを
特徴とする磁気特性が優れた鏡面一方向性電磁鋼板の製
造方法。
(1) C: 0.03 to 0.10% by weight,
Si: the final cold rolled sheet of grain-oriented electrical steel sheet containing 3.0 to 4.0%, the decarburization annealing oxidation degree (PH 2 O / PH 2)
Is performed in an atmosphere gas of 0.01 to 0.15,
In a method for producing a mirror-oriented unidirectional electrical steel sheet comprising applying an annealing separator containing alumina as a main component and performing finish annealing, the Si content at a depth of 2 μm from the steel sheet surface of the final cold-rolled sheet is determined. A method for producing a mirror-oriented unidirectional electrical steel sheet having excellent magnetic properties, characterized by being lower than 3.0%.
【請求項2】 重量%で、C:0.03〜0.10%、
Si:3.0〜4.0%を含有する一方向性電磁鋼板の
熱延板を、熱延板焼鈍後に1回以上の冷延を行うか、ま
たは熱延板焼鈍を行わずに中間焼鈍を挟む2回以上の冷
延を施して最終板厚とし、引き続き脱炭焼鈍を酸化度
(PH2 O/PH2 )が0.01以上0.15以下の雰
囲気ガス中で行ない、アルミナを主成分とする焼鈍分離
剤を塗布し、仕上げ焼鈍を施す工程からなる磁気特性が
優れた鏡面一方向性電磁鋼板の製造方法において、熱延
から最終冷延までに行う焼鈍の条件として、焼鈍の均熱
温度をT℃、均熱時間をt秒、焼鈍する板厚から最終冷
延板厚までの圧下率をR%とした場合、(0.0023
T−1.9)t(100−R)≧200の範囲とし、か
つ焼鈍雰囲気ガス中の酸化度(PH2 O/PH2 )を
0.15以上とすることを特徴とする磁気特性が優れた
鏡面一方向性電磁鋼板の製造方法。
2. C: 0.03 to 0.10% by weight,
The hot-rolled sheet of the grain-oriented electrical steel sheet containing Si: 3.0 to 4.0% is subjected to one or more cold rollings after the hot-rolled sheet annealing, or to intermediate annealing without performing the hot-rolled sheet annealing. The final thickness is obtained by performing cold rolling two or more times, and then decarburization annealing is performed in an atmosphere gas having an oxidation degree (PH 2 O / PH 2 ) of 0.01 to 0.15, and alumina is mainly used. In a method for producing a mirror-oriented unidirectional electrical steel sheet having excellent magnetic properties, comprising the steps of applying an annealing separator as a component and performing finish annealing, the annealing conditions performed from hot rolling to final cold rolling are as follows: When the heat temperature is T ° C., the soaking time is t seconds, and the rolling reduction from the sheet thickness to be annealed to the final cold-rolled sheet thickness is R%, (0.0023
T-1.9) Excellent magnetic characteristics characterized by being in the range of t (100-R) ≧ 200 and having the degree of oxidation (PH 2 O / PH 2 ) in the annealing atmosphere gas being 0.15 or more. Method for producing mirror-oriented unidirectional magnetic steel sheets.
【請求項3】 仕上焼鈍後に磁区細分化処理を施す事を
特徴とする請求項1または2記載の磁気特性が優れた鏡
面一方向性電磁鋼板の製造方法。
3. The method according to claim 1, wherein a magnetic domain refining treatment is performed after the finish annealing.
JP28760997A 1997-10-06 1997-10-06 Method for manufacturing mirror-oriented unidirectional electrical steel sheet with excellent magnetic properties Expired - Lifetime JP3337958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28760997A JP3337958B2 (en) 1997-10-06 1997-10-06 Method for manufacturing mirror-oriented unidirectional electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28760997A JP3337958B2 (en) 1997-10-06 1997-10-06 Method for manufacturing mirror-oriented unidirectional electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH11106827A true JPH11106827A (en) 1999-04-20
JP3337958B2 JP3337958B2 (en) 2002-10-28

Family

ID=17719495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28760997A Expired - Lifetime JP3337958B2 (en) 1997-10-06 1997-10-06 Method for manufacturing mirror-oriented unidirectional electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP3337958B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254829A (en) * 2006-03-23 2007-10-04 Nippon Steel Corp METHOD FOR PRODUCING HIGH Si-CONTAINING GRAIN ORIENTED SILICON STEEL SHEET HAVING EXCELLENT MAGNETIC PROPERTY
WO2019013348A1 (en) 2017-07-13 2019-01-17 新日鐵住金株式会社 Oriented electromagnetic steel sheet
WO2019013352A1 (en) 2017-07-13 2019-01-17 新日鐵住金株式会社 Oriented electromagnetic steel plate
WO2019013355A1 (en) 2017-07-13 2019-01-17 新日鐵住金株式会社 Oriented electromagnetic steel plate
WO2019181952A1 (en) * 2018-03-20 2019-09-26 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
WO2020012666A1 (en) 2018-07-13 2020-01-16 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and manufacturing method for same
WO2020012665A1 (en) 2018-07-13 2020-01-16 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and manufacturing method for same
KR20200022016A (en) 2017-07-13 2020-03-02 닛폰세이테츠 가부시키가이샤 Directional electronic steel sheet
WO2020149338A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
WO2020149342A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet
WO2020149347A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for producing grain-oriented electromagnetic steel sheet
WO2020149344A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet having no forsterite film and exhibiting excellent insulating film adhesion
JPWO2020149320A1 (en) * 2019-01-16 2021-12-02 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254829A (en) * 2006-03-23 2007-10-04 Nippon Steel Corp METHOD FOR PRODUCING HIGH Si-CONTAINING GRAIN ORIENTED SILICON STEEL SHEET HAVING EXCELLENT MAGNETIC PROPERTY
JP4598702B2 (en) * 2006-03-23 2010-12-15 新日本製鐵株式会社 Manufacturing method of high Si content grain-oriented electrical steel sheet with excellent magnetic properties
KR20200017480A (en) 2017-07-13 2020-02-18 닛폰세이테츠 가부시키가이샤 Directional electronic steel sheet
US11145446B2 (en) 2017-07-13 2021-10-12 Nippon Steel Corporation Grain-oriented electrical steel sheet
WO2019013355A1 (en) 2017-07-13 2019-01-17 新日鐵住金株式会社 Oriented electromagnetic steel plate
WO2019013352A1 (en) 2017-07-13 2019-01-17 新日鐵住金株式会社 Oriented electromagnetic steel plate
WO2019013348A1 (en) 2017-07-13 2019-01-17 新日鐵住金株式会社 Oriented electromagnetic steel sheet
US11189407B2 (en) 2017-07-13 2021-11-30 Nippon Steel Corporation Grain-oriented electrical steel sheet
US11225706B2 (en) 2017-07-13 2022-01-18 Nippon Steel Corporation Grain-oriented electrical steel sheet
KR20200017458A (en) 2017-07-13 2020-02-18 닛폰세이테츠 가부시키가이샤 Directional electronic steel sheet
KR20200021999A (en) 2017-07-13 2020-03-02 닛폰세이테츠 가부시키가이샤 Directional electronic steel sheet
KR20200022016A (en) 2017-07-13 2020-03-02 닛폰세이테츠 가부시키가이샤 Directional electronic steel sheet
RU2755918C1 (en) * 2018-03-20 2021-09-22 Ниппон Стил Корпорейшн Method for producing electrotechnical steel sheet with oriented grain structure and electrotechnical steel sheet with oriented grain structure
WO2019181952A1 (en) * 2018-03-20 2019-09-26 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
JPWO2019181952A1 (en) * 2018-03-20 2021-03-25 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
WO2020012665A1 (en) 2018-07-13 2020-01-16 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and manufacturing method for same
WO2020012666A1 (en) 2018-07-13 2020-01-16 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and manufacturing method for same
KR20210018433A (en) 2018-07-13 2021-02-17 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
KR20210018934A (en) 2018-07-13 2021-02-18 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
WO2020149347A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for producing grain-oriented electromagnetic steel sheet
KR20210110680A (en) 2019-01-16 2021-09-08 닛폰세이테츠 가부시키가이샤 grain-oriented electrical steel sheet
KR20210111287A (en) 2019-01-16 2021-09-10 닛폰세이테츠 가부시키가이샤 grain-oriented electrical steel sheet
KR20210111279A (en) 2019-01-16 2021-09-10 닛폰세이테츠 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet
KR20210110681A (en) 2019-01-16 2021-09-08 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet with excellent insulation film adhesion without forsterite film
WO2020149344A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet having no forsterite film and exhibiting excellent insulating film adhesion
WO2020149342A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet
JPWO2020149320A1 (en) * 2019-01-16 2021-12-02 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
WO2020149338A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
US11952646B2 (en) 2019-01-16 2024-04-09 Nippon Steel Corporation Grain-oriented electrical steel sheet having excellent insulation coating adhesion without forsterite coating

Also Published As

Publication number Publication date
JP3337958B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
JP3470475B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and its manufacturing method
JP5273944B2 (en) Manufacturing method of mirror-oriented electrical steel sheet
KR100442101B1 (en) The method for producing an electromagnetic steel sheet having high magnetic flux density
JP3537339B2 (en) Grain-oriented electrical steel sheet having excellent film properties and magnetic properties and method for producing the same
JP3337958B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet with excellent magnetic properties
RU2771318C1 (en) Method for producing electrical steel sheet with oriented grain structure
JPH0717960B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
WO2020162611A1 (en) Grain-oriented electrical steel sheet, method for forming insulative coating film for grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3496067B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet
JP2653638B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JPH10130727A (en) Production of low core loss mirror finished grain oriented silicon steel sheet high in magnetic flux density
JP4427226B2 (en) Method for producing grain-oriented electrical steel sheet
RU2771130C1 (en) Method for producing electrical steel sheet with oriented grain structure
JP4873770B2 (en) Unidirectional electrical steel sheet
JP2674917B2 (en) Method for producing high magnetic flux density grain-oriented silicon steel sheet without forsterite coating
JP3154935B2 (en) Manufacturing method of low iron loss mirror-oriented unidirectional electrical steel sheet with high magnetic flux density
JP3148096B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2680532B2 (en) Method for producing grain-oriented electrical steel sheet with low iron loss
JP3148092B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3148094B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
RU2771315C1 (en) Method for producing electrical steel sheet with oriented grain structure
JP4119614B2 (en) Method for producing grain-oriented electrical steel sheet
JP3148093B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term