JPH02293394A - Production of single-crystalline compound semiconductor - Google Patents

Production of single-crystalline compound semiconductor

Info

Publication number
JPH02293394A
JPH02293394A JP9861489A JP9861489A JPH02293394A JP H02293394 A JPH02293394 A JP H02293394A JP 9861489 A JP9861489 A JP 9861489A JP 9861489 A JP9861489 A JP 9861489A JP H02293394 A JPH02293394 A JP H02293394A
Authority
JP
Japan
Prior art keywords
crystal
crucible
single crystal
compound semiconductor
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9861489A
Other languages
Japanese (ja)
Inventor
Eishu Kyo
許 栄宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Priority to JP9861489A priority Critical patent/JPH02293394A/en
Publication of JPH02293394A publication Critical patent/JPH02293394A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE: To improve quality by rotating a bulk crystal and crucible in the same direction and executing single crystal growth in the state that the rotating speed of the crucible is higher than the rotating speed of the bulk crystal by using a Czochralski method.
CONSTITUTION: The crucible 3 which rotates in the same direction as the direction of a pulling shaft 6 and at the speed higher than the speed of the shaft is disposed within a high-pressure vessel 2 of an inert gaseous atmosphere, such as Ar, of several tens atm. A two-dimensional compd., such as GaP, is melted by heating with a heater 4 in the crucible 3. A melt 5 added with a high concn. of In is sealed by a liquid sealant 8, such as B2O3, of a suitable thickness and a second crystal 7 fixed to the bottom end of the pulling up shaft 6 is contacted with the melt and thereafter, the pulling shaft 6 is slowly pulled in an arrow A direction while the shaft is kept rotated, by which the bulk crystal 1 is drown to the single crystal. The semiconductor single crystal of the compd. is obtainable even from three- and higher dimensional compds., such as Ga1-xAlxAs and InxGa1-xAs1-yPy, by this process.
COPYRIGHT: (C)1990,JPO

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、化合物半導体単結晶の製造方法に関する。更
に訂しく言えば、融液中に高濃度の不純物を添加するL
EC法による化合物半導体中結晶の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing compound semiconductor single crystals. To be more precise, L adds a high concentration of impurities to the melt.
The present invention relates to a method for manufacturing a compound semiconductor medium crystal using an EC method.

従来の技術 集積回路(IC)’などに使用される゛ト絶縁性基板結
晶の原料として作製ざれる化合物半導体単結晶は、シリ
コン(S i>単結品に比較して転移移動度が格段と高
いので、高速,a!i積回路(IC)として注目され実
用化されている。しかも、化合物半導体単結晶の中には
、S1単結晶にはない発光機能を備えているものもある
ので、マイクロ通信分野,光通信・情報処理分野におけ
る重要なデバイスとして有望である。
Compound semiconductor single crystals, which are produced as raw materials for insulating substrate crystals used in conventional technology integrated circuits (ICs), have significantly higher dislocation mobility than silicon (Si> single crystals). Because of its high price, it has been attracting attention and being put into practical use as a high-speed, a!i product circuit (IC).Moreover, some compound semiconductor single crystals have a light-emitting function that S1 single crystals do not have. It holds promise as an important device in the fields of microcommunications, optical communication, and information processing.

そして、化合物半導体単結晶のf′l製は、化合される
元素の種類が多ければ多いほど少元素の融点における蒸
気圧が大きく異なっているので、水平ブリッジマン法(
HB法)を適用することが難しく、一般には、高圧容器
内でLEC法を用いて単結晶成長を行っている。
For f'l compound semiconductor single crystals, the horizontal Bridgman method (horizontal Bridgman method)
It is difficult to apply the HB method), and single crystal growth is generally performed using the LEC method in a high-pressure container.

第4図は、LEC法によって化合物半導体用の単結晶を
成艮させる一方法の概略を示す図である。
FIG. 4 is a diagram schematically showing one method for forming a single crystal for a compound semiconductor by the LEC method.

第4図において、高圧容器9の内に石英またはパイ口リ
テイツク窒化ホウ県などで作成されたルツボ10を配設
し、このルツボ10の中でと一タ11により化合物半導
体の多粘晶材料を加熱し溶融させて、融液12とする,
,同じく加熱された酸化ホウ素(B203)も融液状と
なって融液12に対する液体封止剤13としての役目を
果たす。
In FIG. 4, a crucible 10 made of quartz or nitrided nitride is placed in a high-pressure container 9, and a multiviscosity crystal material of a compound semiconductor is heated in the crucible 10 by a pot 11. Heating and melting it to form a melt 12,
Similarly, heated boron oxide (B203) also becomes a melt and serves as a liquid sealant 13 for the melt 12.

続いて、高圧容器9内をアルゴン(Ar)等の不活性ガ
ス14で高Bに加圧した後、融液12に対して種結晶1
5を図の上方から接触させ、上シャフト16を回転させ
ながら矢印D方向ヘバルク結晶17を引き上げていくが
、ルツボをバルク結晶17とは反対の方向へ回転させる
と、ルツボ10への加熱を均一化しやすいとともに、単
結晶成長に都合のよい凸形の固一液界面18が形成でき
る。なお、固一液界面18が凹形となると、バルク結晶
17内部に双晶や多結晶が発生するので不都合である。
Subsequently, after pressurizing the inside of the high-pressure container 9 to a high B with an inert gas 14 such as argon (Ar), a seed crystal 1 is applied to the melt 12.
5 in contact with each other from above in the figure, and pull up the bulk crystal 17 in the direction of arrow D while rotating the upper shaft 16. However, by rotating the crucible in the opposite direction to the bulk crystal 17, heating to the crucible 10 is uniform. It is possible to form a convex solid-liquid interface 18 that is easy to form and is convenient for single crystal growth. Note that if the solid-liquid interface 18 is concave, twins and polycrystals will occur inside the bulk crystal 17, which is disadvantageous.

この際、LEC法による化合物半導体結晶の結晶成長に
おいて、結晶欠点としての転位の数(酋通、転位密度E
PDという)を出来るだけ少なくするために、不純物添
加効果として、化合物半導体単結晶、例えば半絶縁性G
aAs結晶を成長させる時にはインジウム(In)等を
、また半絶縁性インジウムリん(InP)結晶を成長さ
せる時にはGa@を、それぞれ融液12中に添加して、
結晶成長中に転位が発生したり拡散したりすることを抑
制できることが知られている。
At this time, in the crystal growth of a compound semiconductor crystal by the LEC method, the number of dislocations as crystal defects (Fujitsu, dislocation density E
In order to reduce as much as possible (referred to as PD), as an impurity addition effect, compound semiconductor single crystals, such as semi-insulating G
Indium (In) or the like is added to the melt 12 when growing an aAs crystal, and Ga@ is added when growing a semi-insulating indium phosphide (InP) crystal.
It is known that it is possible to suppress the generation and diffusion of dislocations during crystal growth.

そして、融液中に不純物を添加するLEC法で化合物半
導体単結晶を作成するとき、結晶引上げ軸方向の潟度勾
配を小さくするように[夫すると不純物の添加世を減ら
しても十分な不純物添加効采が上げられることが周知で
あるが、この種の製造方法においては、もともとLEC
法では組成的過冷郎にともなう異常なセル成長が発生し
やすいことから温度勾配を下げると組成的過冷却による
セル成長が更に発生しやすくなる。
When creating a compound semiconductor single crystal using the LEC method in which impurities are added to the melt, it is necessary to reduce the lagoonality gradient in the direction of the crystal pulling axis. It is well known that this type of manufacturing method improves the efficiency of LEC.
In the method, abnormal cell growth due to compositional supercooling is likely to occur, so if the temperature gradient is lowered, cell growth due to compositional supercooling is more likely to occur.

そして、この組成的過冷却による異常なセル成長を解消
する技術としては、特願昭61−105910(特開昭
62−260794)がある。
Japanese Patent Application No. 61-105910 (Japanese Unexamined Patent Publication No. 62-260794) discloses a technique for eliminating abnormal cell growth caused by compositional supercooling.

発明が解決しようとする課題 しかしながら、第4図において、ルツボ10とバルク結
晶17とを互いに反対方向へ回転させながら単結晶を引
き上げていくという方法は、第5図に図丞のように、ル
ツボ10とバルク結晶17とが反対方向へ回転するので
、ルツボ10内の融液12において上対流12A2下対
流12Bという反対方向の対流が発生する。これら上対
流12Aと下対流12Bとは、点線で示した中間滞留1
2Cを界としてUいに混流することがないので、以下2
つの解決すべき課題を存右させている。
Problems to be Solved by the Invention However, the method of pulling the single crystal while rotating the crucible 10 and the bulk crystal 17 in opposite directions in FIG. 10 and the bulk crystal 17 rotate in opposite directions, convection currents in opposite directions such as upper convection 12A2 and lower convection 12B occur in the melt 12 in the crucible 10. These upper convection 12A and lower convection 12B are the intermediate stagnation 1 shown by the dotted line.
Since there is no mixing with U with 2C as a field, the following 2
There are still several issues that need to be solved.

(一)LEC法により融液12中に不純物を添加して化
合物半導体単結晶を成長させる場合、固相すなわちバル
ク結晶17の不純物濃度Cs,液相すなわち融液12中
の平均不純物濃度をCLとすると、k =Cs / C
 L.という関係が成立する。
(1) When growing a compound semiconductor single crystal by adding impurities to the melt 12 using the LEC method, the impurity concentration Cs in the solid phase, that is, the bulk crystal 17, and the average impurity concentration in the liquid phase, that is, the melt 12, are CL. Then, k = Cs / C
L. This relationship is established.

このkは実効偏析係数と呼ばれる量で、この関係式から
、kが1より小さい時には、あとから成長する部分ほど
不純物濃度が高くなり、kが1よりも大きい時には、は
じめに固化した部分で不純物濃度が高くなることがわか
る。従って、第5図において、従来技術の単結晶成長に
用いられる回転速度では、上対流12Aと下対流128
とは点線で表示した中間滞留帯12Gを界として互いに
混流することがないので、上対流12A中の不純物濃度
が下対流12B中の不純物濃度よりずっと大きくなるよ
うに促進されてしまうことになる。
This k is a quantity called the effective segregation coefficient, and from this relational expression, when k is smaller than 1, the impurity concentration is higher in the parts that grow later, and when k is larger than 1, the impurity concentration is higher in the parts that solidify first. It can be seen that the value becomes higher. Therefore, in FIG. 5, at the rotational speed used for conventional single crystal growth, the upper convection flow 12A and the lower convection flow 128A
Since these do not mix with each other using the intermediate retention zone 12G indicated by the dotted line as a boundary, the impurity concentration in the upper convection flow 12A is promoted to be much larger than the impurity concentration in the lower convection flow 12B.

(二)上対流12Aの存るにより、上対流12A中の温
度分布が均一化され、温度勾配が非常に小さくなってし
まう。
(2) Due to the existence of the upper convection 12A, the temperature distribution in the upper convection 12A becomes uniform, and the temperature gradient becomes extremely small.

ところで、周知のように、不純物を添加するLEC法に
よる化合物半導体の結晶引上げ工程において、組成的過
冷即が発生する条件は、の不等式が成立する時である。
By the way, as is well known, in the crystal pulling process of a compound semiconductor by the LEC method in which impurities are added, the condition for compositional overcooling to occur is when the following inequality is satisfied.

なお、不等式aの各記号は、 △T:融液中の固一液界付近の温度勾配D :不純物の
融液中での拡散係数 m :液相線の温度勾配 CL:融液中の不純物濃度 V :結晶成長速度 k :実効偏析計数 の各吊を表している,, そこで、不等式0を、ルツボ10とバルク結晶17とを
反対方向へ回転させる公知技術に適用すると分るように
、上対流12Aの不純物母度CLが上記(一)の埋由で
高くなると不等式a中、右辺のCL値が増大し、しかも
士記(二)の即由で不等式a中、左辺のΔ「の値が減少
するので、不等式■が非常に成立しやすくなる。すなわ
ち、ルツボ10とバルク結晶17とを反苅方向へ回転さ
せる公知技術は、組成的過冷郎を促進するという欠点を
有していることがわかる。
The symbols in inequality a are as follows: △T: Temperature gradient near the solid-liquid boundary in the melt D: Diffusion coefficient of impurities in the melt m: Temperature gradient of the liquidus line CL: Impurities in the melt Concentration V: Crystal growth rate k: Represents each equation of the effective segregation coefficient. Therefore, as can be seen from the above, when inequality 0 is applied to the known technique of rotating the crucible 10 and the bulk crystal 17 in opposite directions, When the impurity density CL of convection 12A increases due to the above reason (1), the CL value on the right side of inequality a increases, and the value of Δ' on the left side of inequality a increases due to the reason of Shiki (2). decreases, the inequality (3) is very likely to hold true.In other words, the known technique of rotating the crucible 10 and the bulk crystal 17 in the opposite direction has the disadvantage of promoting compositional supercooling. I understand that.

この組成的過冷Wという現条は結晶成長において、同化
率9がまだ小さい時から、温度勾配Δ丁が低下する口と
によって、異常なセル成長が発生する現象を言うが、単
結晶中に異常的にセル成長があると、当該バルク結晶1
7の利用可能率が著しく低下して製品化した時の歩留り
に大きな影響をあたえる。
This compositional supercooling W refers to a phenomenon in which abnormal cell growth occurs in crystal growth due to the temperature gradient Δ decreasing from when the assimilation rate 9 is still small. If there is abnormal cell growth, the bulk crystal 1
The availability rate of 7 is significantly reduced, which has a large impact on the yield when commercialized.

上記特願昭61−105910(特開昭62−2607
94 )は、この組成的過冷却の発生に対して、固化率
Qのときに融液中の温度勾配△T〈g〉を、結晶成長の
進行にともなって変化する融液中の不純物濃度OLの変
化囲に合せて変化させることで組成的過冷却による異常
なセル成長をよくするという技術を開示している。しか
しながら、温度勾配△「を不純物濃度CLの変化量に合
せて抑制するためには、結晶引上げ時間が2〜3倍かか
るうえ、精密な連続測定ができる測定手段が必要である
とともに、測定結果により自動制御する加熱手段も必要
となるので、装置全体がたいへん複雑なものとなる。
The above patent application No. 61-105910 (Japanese Patent Application No. 62-2607
94) deals with the occurrence of compositional supercooling by changing the temperature gradient ΔT〈g〉 in the melt when the solidification rate is Q to the impurity concentration OL in the melt, which changes with the progress of crystal growth. This paper discloses a technique that improves abnormal cell growth due to compositional supercooling by changing the temperature according to the change range of . However, in order to suppress the temperature gradient △' according to the amount of change in the impurity concentration CL, it takes two to three times as long to pull the crystal, and a measuring means that can perform precise continuous measurements is required. Since automatically controlled heating means are also required, the entire device becomes very complex.

しかも、組成的過冷団の発生原囚となる上対流12A.
下対流12Bそして中間対流帯12Cの発生を根本的に
解消するものではないので自効な解決策とはならない。
Moreover, the upper convection 12A.
This is not a self-effective solution because it does not fundamentally eliminate the occurrence of the lower convection zone 12B and the intermediate convection zone 12C.

さらに、温度勾配△T (q)を大きくするように制願
すると、すでに成艮した単結晶部分が比較的に大きな温
度勾配△T (o)の影響を受けて、かえって転位密[
fEPDを高めてしまうという好ましくない結果となる
Furthermore, if the temperature gradient △T (q) is increased, the already formed single crystal part will be affected by the relatively large temperature gradient △T (o), and the dislocation density [
This results in an unfavorable result of increasing fEPD.

本発明は、以上のような実情を背円になされたもので、
融液中に高濃度の不純物を添加するIEC法による化合
物半導体単結晶の作製において、組成的過冷却による異
常なセル成長の発外を有効に防止できる化合物半導体単
結晶の製造方法を提供することを目的とする。
The present invention was made based on the above-mentioned circumstances.
To provide a method for manufacturing a compound semiconductor single crystal that can effectively prevent abnormal cell growth due to compositional supercooling in manufacturing the compound semiconductor single crystal by the IEC method in which a high concentration of impurities is added to the melt. With the goal.

課題を解決するための手段 上記目的を達成するために、本発明においては、融液中
に高濃度の不純物を添加する液体封止チ1クラルスキー
法([、EC法)を用いた化合物半導体単結晶の!lI
造方法であって、バルク結晶とルツボとを同一方向へ回
転させるとともに、ルツボの回転速度がバルク結晶の回
転速度よりも太き(,)状態を緒持して単結晶成長を行
うように構成している。
Means for Solving the Problems In order to achieve the above-mentioned objects, the present invention has developed a compound semiconductor monomer using the liquid-enclosed chemical method (EC method), in which impurities are added at a high concentration into the melt. Crystal! lI
A method for growing single crystals, in which the bulk crystal and the crucible are rotated in the same direction, and the rotation speed of the crucible is set to be thicker (,) than the rotation speed of the bulk crystal. are doing.

そして、本発明にかかわる好適な実施例において、化合
物半導体が例えばガリウムリん(GaP)のような二元
化合物から形成されると好都合である。
In a preferred embodiment according to the invention, the compound semiconductor is then advantageously formed from a binary compound, such as gallium phosphide (GaP).

また、化合物半導体が、例えばガリウム・アル?ニウム
・ひ素(Ga1,A IxAs)およびインジウム・ガ
リウム・ひ木・りん( I n, Ga1,AS1■P
,)のような三元以上の多元化合物から形成されると便
利である。
Also, compound semiconductors such as gallium aluminum? Indium/Arsenic (Ga1, A IxAs) and Indium/Gallium/Hiki/Phosphorus (In, Ga1, AS1■P
, ) is conveniently formed from a ternary or more multi-component compound.

作用 上記のように構成された融液中に不純物を添110する
化合物半導体単結晶の製造方法において、バルク結晶と
ルツボとを同一方向に回転させることで組成的過冷却が
発生する原因となる上対流および中間滞留帯の形成を抑
制して異常なセル成艮を防止する。
Effect: In the method for manufacturing a compound semiconductor single crystal in which impurities are added to the melt configured as described above, rotating the bulk crystal and the crucible in the same direction may cause compositional supercooling. Prevents abnormal cell formation by suppressing convection and the formation of intermediate retention zones.

また、ルツボの回転速度がバルク結晶の回転速度より大
きい状態に維持しながら、結晶成長を行うことで、結晶
成長にとって好都合な凸形の固一液界面を獲得する。
Further, by performing crystal growth while maintaining the crucible rotation speed higher than the bulk crystal rotation speed, a convex solid-liquid interface favorable for crystal growth is obtained.

実施例 以下、本発明にかかわる好適な実施例を図面に基づいて
説明する。
Embodiments Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第1図において、バルク結晶1は、100気圧以上の圧
力に耐える高圧容器2の内部に回転可能に配設されたル
ツボ3内でヒータ4により加熱されて溶融した融液5に
対して、引き上げシャフト6の図下端に固着された種結
晶7を接触させた上、引き土げシャフト6を回転させな
がら矢印Aの方向へゆっくり引き上げられることで(例
えば10m+/h)l結晶成艮されるものである。
In FIG. 1, a bulk crystal 1 is pulled up from a melt 5 heated by a heater 4 in a crucible 3 rotatably disposed inside a high-pressure container 2 that can withstand pressures of 100 atmospheres or more. A crystal is grown by bringing the seed crystal 7 fixed to the lower end of the shaft 6 into contact and slowly pulling it up in the direction of arrow A while rotating the pulling shaft 6 (for example, 10 m+/h). It is.

本実施例では融液5をガリウムリん(GaP)融液とし
、結晶欠点としての転位が発生および伝播することを抑
@11tるために、不純物(ドーパント)として高濃度
のインジウム(In)を添加している。そして、液体封
止剤8として、本実施例では酸化ホウ素(B2 03 
>の融液を適当な厚さだけ形成して融液5の上表面を封
止している1,高圧容器2は、通常、数十気圧の不活竹
ガス、例えばアルゴン(Ar>が雰囲気2Aとして形成
される。
In this example, the melt 5 is a gallium phosphide (GaP) melt, and a high concentration of indium (In) is added as an impurity (dopant) to suppress the generation and propagation of dislocations as crystal defects. are doing. In this example, boron oxide (B2 03
The upper surface of the melt 5 is sealed by forming a suitable thickness of the melt. 2A.

ルツボ3は、石英やパイ口jイック窒化ホウ素等で作成
されたものを採用している。そして、このルツボ3は、
高圧容器2の内部でバルク結晶1つまり引き上げシャフ
ト6の回転方向と同一な回転方向へ下方シャフト3Aに
より回転させられるとともに、引き上げシャフト6の回
転速度WSに対して下方シャフト3Aの回転速度WCを
、Ws<Wc                (1)
とする関係としている。すなわち、バルク結晶1は、バ
ルク結晶1とルツボ3とを同一h向へ回転させるととも
に、ルツボ3の回転速度Wcがバルク結晶1の回転速度
WSよりも大ぎい状態を維持して単結晶成長させられる
The crucible 3 is made of quartz, solid boron nitride, or the like. And this crucible 3 is
Inside the high-pressure container 2, the bulk crystal 1, that is, the pulling shaft 6, is rotated by the lower shaft 3A in the same rotational direction as the pulling shaft 6, and the rotational speed WC of the lower shaft 3A is set relative to the rotational speed WS of the pulling shaft 6. Ws<Wc (1)
The relationship is as follows. That is, the bulk crystal 1 is grown as a single crystal by rotating the bulk crystal 1 and the crucible 3 in the same direction h and maintaining the rotation speed Wc of the crucible 3 larger than the rotation speed WS of the bulk crystal 1. It will be done.

第2図について、本発明にかかわる不純物を添加するL
EC法による化合物半導体結晶の製造方法が、バルク結
晶1とルツボ3とを同一方向へ回転させ、かつルツボ3
の回転速rfWcをバルク結晶1の回転速度Wsより大
きい状態に維持しながら単結晶成長ざせると、バルク結
晶1および融液5にどのような影響を与えるかを説明す
る。
Regarding FIG. 2, L to which impurities related to the present invention are added
A method for producing a compound semiconductor crystal using the EC method includes rotating a bulk crystal 1 and a crucible 3 in the same direction, and rotating a bulk crystal 1 and a crucible 3 in the same direction.
The effect on the bulk crystal 1 and the melt 5 when the single crystal is grown while maintaining the rotational speed rfWc of the bulk crystal 1 to be higher than the rotational speed Ws of the bulk crystal 1 will be explained.

まず、ws<wc・・・(1)という関係を雛持しなが
らバルク結晶1とルツボ3とが同一方向へ回転させられ
ると、融液5中には大ぎい回転速度Wcのルツボ3に従
動されて、図中、湾曲した実線の矢印で示した単一の対
流5Aが発生する。この対流5Aは、点線の矢印Bで図
示したようにバルク結晶1の外縁部から中心部へと流動
し、単結晶成長に好都合な凸形の同一液界而1Aを形成
する。
First, when the bulk crystal 1 and the crucible 3 are rotated in the same direction while maintaining the relationship ws<wc...(1), there is a part of the melt 5 that follows the crucible 3 at a large rotational speed Wc. As a result, a single convection current 5A is generated, which is indicated by a curved solid line arrow in the figure. This convection 5A flows from the outer edge of the bulk crystal 1 to the center as shown by the dotted arrow B, forming a convex liquid boundary 1A that is convenient for single crystal growth.

そして、バルク結晶1とルツボ3とを同一方向へ回転さ
せるという本発明の製造方法により、第5図に図丞した
上対流12Aならびに中間滞留帯12Cが発生しないの
で、対流5Aは単一な対流となり眞述した組成的過冷却
の発生を有効に解消できる。
By the manufacturing method of the present invention in which the bulk crystal 1 and the crucible 3 are rotated in the same direction, the upper convection 12A and the intermediate retention zone 12C shown in FIG. 5 are not generated, so the convection 5A is a single convection. Therefore, the occurrence of compositional supercooling as described above can be effectively eliminated.

しかしながら、第3図に示すように、バルク結晶1の回
転速度WSがルツボ3の回転速aWcより大きい場合、 すなわち、   W s > W c        
■の場合、融液5の流動はバルク結晶1により主動され
るので、同じく単一な対流5Bでありながら、バルク結
晶1の中心部の下hに強い流動が発生することになる。
However, as shown in FIG. 3, when the rotation speed WS of the bulk crystal 1 is larger than the rotation speed aWc of the crucible 3, that is, W s > W c
In case (2), since the flow of the melt 5 is driven primarily by the bulk crystal 1, a strong flow occurs below the center of the bulk crystal 1, although it is also a single convection flow 5B.

従って、同一液界面Bの中心部から外縁部へと点線矢印
Cの方向へと流動することになる。そして、LEC法に
おいて、バルク結晶1が最も低温な部分であるので、固
一液界面1Bに沿って外縁部へ流動する融液5は、バル
ク結晶1の図下面の外縁部から先に単結晶成良し、単結
晶成長にとって不都合な凹形の固一液界面1Bとなる。
Therefore, the liquid flows in the direction of the dotted arrow C from the center of the same liquid interface B to the outer edge. In the LEC method, since the bulk crystal 1 is the lowest temperature part, the melt 5 flowing toward the outer edge along the solid-liquid interface 1B flows into the single crystal first from the outer edge of the bottom surface of the bulk crystal 1. This results in a concave solid-liquid interface 1B that is inconvenient for single crystal growth.

このような凹形の同一液界面1Bが形成されると、結晶
成長がバルク結晶1の外縁部から中心部へと進行するの
で、双晶や多結晶がバルク結晶1の内部に析出される可
能性が出て、バルク結晶1の使用可能率が大幅に低減す
ることになりやすい。
When such a concave identical liquid interface 1B is formed, crystal growth progresses from the outer edge of the bulk crystal 1 to the center, so twins and polycrystals may be precipitated inside the bulk crystal 1. As a result, the availability of the bulk crystal 1 is likely to be significantly reduced.

そこで、本発明では式(1)の関係にそれぞれの回転速
度を維持することで、単結晶成長にとって好都合な凸形
の固一液界而1Δ(第1図.第2図を参照)を形成する
ように構成している。
Therefore, in the present invention, a convex solid-liquid boundary 1Δ (see Fig. 1 and Fig. 2), which is convenient for single crystal growth, is formed by maintaining the respective rotational speeds in the relationship expressed by equation (1). It is configured to do so.

次に、本発明の有効性を証明するために行ったー実験例
をあげる。
Next, I will give an example of an experiment conducted to prove the effectiveness of the present invention.

実施例 ガリウムリ/v(GaP)!液に1.78t%のInを
不純物として添加して本発明の製造方法により単結晶さ
せると、下記表の帖渠が得られた。表中、a−eはサン
プル番号である。
Example gallium li/v (GaP)! When 1.78 t% of In was added as an impurity to the liquid and single crystal was produced by the production method of the present invention, the crystals shown in the table below were obtained. In the table, a-e are sample numbers.

表1 なセル成長が発生した時点での固化率Q (cell)
を測定して示した。
Table 1 Solidification rate Q at the time when cell growth occurs (cell)
was measured and shown.

この実験例から、サンプルc−eのように、バルク結品
とルツボとが反対方向に回転する場合、回転速度にかか
わりなく、凸形の固一界而が形成ざれるが、これらのリ
ンブルc−eにおいては固化率qが非常に小さい時から
セル成長が発生することがわかる。
This experimental example shows that when the bulk crystal and the crucible rotate in opposite directions, as in samples ce, a convex solid field is formed regardless of the rotation speed, but these limbs c It can be seen that cell growth occurs at -e when the solidification rate q is very small.

逆に、サンプルa,bにおいてバルク結晶とルツボとが
同一h向に回転すると、いずれも固化率qが充分に高く
なってから初めてセル成長が発生することがわかる。し
かし、バルク結晶の回転速度のほうが大きいと凹形の固
一液界面が形成されて、中結晶の内部に双晶や多結晶が
析出する危険性があって実用的でないが、ルツボの回転
速度のほうが大きいと凸形の固一液界而が形成されて好
都合である。
Conversely, it can be seen that when the bulk crystal and the crucible in samples a and b rotate in the same direction h, cell growth occurs only after the solidification rate q becomes sufficiently high. However, if the rotation speed of the bulk crystal is higher, a concave solid-liquid interface will be formed and there is a risk that twins or polycrystals will precipitate inside the medium crystal, which is impractical, but the rotation speed of the crucible If is larger, a convex solid-liquid boundary will be formed, which is advantageous.

発明の効果 本発明は以上のように構成されているので、少なくとも
下記の効果を奏する。
Effects of the Invention Since the present invention is configured as described above, it exhibits at least the following effects.

本発明にかかわる化合物半導体単結晶の製造方法では、
バルク結晶とルツボとを同一h向に回転させることによ
り、組成的過冷却に基づく異常なセル成長をh効に抑制
するので、中結晶の利用可能率ひいては半導体として加
工したときの歩留り率を向上させることができる。また
、ルッポの回転速度をバルク結晶の回転速度より大きい
状態に紺持しながら単結晶成長を行うことで、単結晶成
長に好都合な凸形固一液界面を形成するので、単結晶の
品質を向上させることができる。
In the method for manufacturing a compound semiconductor single crystal according to the present invention,
By rotating the bulk crystal and the crucible in the same h direction, abnormal cell growth due to compositional supercooling is effectively suppressed, which improves the availability of medium crystals and the yield rate when processed into semiconductors. can be done. In addition, by growing a single crystal while keeping the rotational speed of the lupus higher than the rotational speed of the bulk crystal, a convex solid-liquid interface that is favorable for single crystal growth is formed, which improves the quality of the single crystal. can be improved.

また、本発明にかかわる化合物半導体単結晶の製造方法
においては、三元以上の化合物半導体単結晶のfl[J
にも適用できるので利用範囲が広いものとなる。
Further, in the method for manufacturing a compound semiconductor single crystal according to the present invention, fl[J
It can also be applied to a wide range of applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法を説明するための垂直断面図
、第2図は本発明にかかわる凸形の固一液界面が形成さ
れるプロセスを説明するための要部断面図、第3図は同
じく凹形の固一液界面が形成されるプロセスを説明する
ための要部断面図、第4図は公知技術を示す垂直断面図
、第5図は同じく公知技術で組成的過冷却が発生するプ
ロセスを説明するために図半分を省略した要部断面図で
ある。 1・・・バルク結晶、1A・・・凸形の固一液界而、1
B・・・凹形の固一液界面、2・・・高圧容器、2A・
・・雰囲気、3・・・ルツボ、3A・・・下方シャフト
、4・・・ヒーウ、5・・・融液、5A.5B・・・単
一な対流、6・・・引き上げシャフト、7・・・種結晶
、8・・・液体月葎剤、Ws・・・バルク結晶の回転速
度、Wc・・・ルッポの回転速度。
FIG. 1 is a vertical sectional view for explaining the manufacturing method of the present invention, FIG. 2 is a sectional view of essential parts for explaining the process of forming a convex solid-liquid interface according to the present invention, The figure is a cross-sectional view of the main part to explain the process of forming a concave solid-liquid interface, Figure 4 is a vertical cross-sectional view showing a known technique, and Figure 5 is a known technique in which compositional supercooling is performed. FIG. 2 is a cross-sectional view of a main part with half of the figure omitted to explain the process that occurs. 1...Bulk crystal, 1A...Convex solid-liquid boundary, 1
B... Concave solid-liquid interface, 2... High pressure container, 2A.
... Atmosphere, 3... Crucible, 3A... Lower shaft, 4... Heat, 5... Melt, 5A. 5B... Single convection, 6... Pulling shaft, 7... Seed crystal, 8... Liquid Moon Seed agent, Ws... Bulk crystal rotation speed, Wc... Luppo rotation speed .

Claims (3)

【特許請求の範囲】[Claims] (1)融液中に高濃度の不純物を添加する液体封止チョ
クラルスキー法(LEC法)を用いた化合物半導体単結
晶の製造方法であって、 バルク結晶とルツボとを同一方向へ回転させるとともに
、ルツボの回転速度がバルク結晶の回転速度よりも大き
い状態を維持して単結晶成長を行うことを特徴とする化
合物半導体単結晶の製造方法。
(1) A method for manufacturing a compound semiconductor single crystal using the liquid-enclosed Czochralski method (LEC method) in which a high concentration of impurities is added to the melt, and the bulk crystal and the crucible are rotated in the same direction. Also, a method for producing a compound semiconductor single crystal, characterized in that single crystal growth is performed while maintaining a crucible rotation speed higher than a bulk crystal rotation speed.
(2)化合物半導体が、例えばガリウムりん(GaP)
のような二元化合物から形成されることを特徴とする請
求項1記載の化合物半導体単結晶の製造方法。
(2) The compound semiconductor is, for example, gallium phosphide (GaP)
2. The method for producing a compound semiconductor single crystal according to claim 1, wherein the compound semiconductor single crystal is formed from a binary compound such as.
(3)化合物半導体が、例えばガリウム・アルミニウム
・ひ素(Ga_1_−_xAl_xAs)およびインジ
ウム・ガリウム・ひ素・りん(In_xGa_1_−_
xAS_1_−_yP_y)のような三元以上の多元化
合物から形成されることを特徴とする請求項1記載の化
合物半導体単結晶の製造方法。
(3) Compound semiconductors include, for example, gallium-aluminum-arsenic (Ga_1_-_xAl_xAs) and indium-gallium-arsenic-phosphorus (In_xGa_1_-_
2. The method for manufacturing a compound semiconductor single crystal according to claim 1, wherein the compound semiconductor single crystal is formed from a ternary or more multi-component compound such as xAS_1_-_yP_y).
JP9861489A 1989-04-18 1989-04-18 Production of single-crystalline compound semiconductor Pending JPH02293394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9861489A JPH02293394A (en) 1989-04-18 1989-04-18 Production of single-crystalline compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9861489A JPH02293394A (en) 1989-04-18 1989-04-18 Production of single-crystalline compound semiconductor

Publications (1)

Publication Number Publication Date
JPH02293394A true JPH02293394A (en) 1990-12-04

Family

ID=14224457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9861489A Pending JPH02293394A (en) 1989-04-18 1989-04-18 Production of single-crystalline compound semiconductor

Country Status (1)

Country Link
JP (1) JPH02293394A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123887A (en) * 1981-01-17 1982-08-02 Toshiba Corp Preparation of single crystal
JPS623120A (en) * 1985-06-27 1987-01-09 ザ・ユニバ−シテイ・オブ・ブリテイツシユ・コロンビア Squish jet device in internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123887A (en) * 1981-01-17 1982-08-02 Toshiba Corp Preparation of single crystal
JPS623120A (en) * 1985-06-27 1987-01-09 ザ・ユニバ−シテイ・オブ・ブリテイツシユ・コロンビア Squish jet device in internal combustion engine

Similar Documents

Publication Publication Date Title
Shinoyama et al. Growth of dislocation-free undoped InP crystals
Moravec et al. Crystal growth and dislocation structure of gallium antimonide
Mullin Progress in the melt growth of III–V compounds
JPH02293394A (en) Production of single-crystalline compound semiconductor
JPS5983999A (en) Preparation of single crystal of compound of iii-v group
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPS62256793A (en) Method for pulling compound semiconductor single crystal
JP4200690B2 (en) GaAs wafer manufacturing method
JPH10152393A (en) Growth of bulk crystal and seed crystal for bulk crystal growth
JP4576571B2 (en) Method for producing solid solution
JPS6389497A (en) Production of silicon-added gallium arsenic single crystal
JP2929006B1 (en) Manufacturing method of high quality crystal sheet material
JPS623097A (en) Production of iii-v compound semiconductor mixed crystal
JPH09175892A (en) Production of single crystal
JPH05319973A (en) Single crystal production unit
JPS63176397A (en) Production of iii-v compound semiconductor single crystal
JPH0222200A (en) Production of semiconductor single crystal of iii-v compound
JP2922039B2 (en) Single crystal growth method
JP2004010467A (en) Method for growing compound semiconductor single crystal
JPH10194898A (en) Manufacture of gallium-arsenic seed crystal
JPH0196093A (en) Method for pulling single crystal
Weber et al. Growth stability of zinc selenide bulk crystals from solutions
JPH03137085A (en) Production of ii-vi compound semiconductor crystal
JPH0369592A (en) Production of single crystal of iii-v compound semiconductor
JPH01208396A (en) Production of compound semiconductor single crystal