JPS623097A - Production of iii-v compound semiconductor mixed crystal - Google Patents
Production of iii-v compound semiconductor mixed crystalInfo
- Publication number
- JPS623097A JPS623097A JP14369385A JP14369385A JPS623097A JP S623097 A JPS623097 A JP S623097A JP 14369385 A JP14369385 A JP 14369385A JP 14369385 A JP14369385 A JP 14369385A JP S623097 A JPS623097 A JP S623097A
- Authority
- JP
- Japan
- Prior art keywords
- iii
- mixed crystal
- compound
- solution
- compound semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は二種のIII‐V族化合物半導体同士を所定の
割合で均質に混合させた混晶半導体結晶の製造方法に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a mixed semiconductor crystal in which two types of III-V compound semiconductors are homogeneously mixed in a predetermined ratio.
二次元ガスを用いた超高速デバイスや、半導体レーザ、
発光ダイオード、フォトダイオードなどにおいて、燐化
インジウム(InP)、砒化ガリウム(GaAs)、燐
化ガリウム(GaP)、アンチモン化ガリウム(GaS
b)などのIII‐V族化合物半導体のみならず、これ
らの二種類以上のIII‐V族化合物半導体の混晶半導
体(以下混晶と略称する)ならびにそれらを組合わせた
ヘテロ接合が重要な地位を占めるに至った。そして、こ
れまで種々の結晶成長法が開発され、種子結晶となる基
板が供給されるならば、その上に格子整合の条件のもと
で、所望の組成の混晶のエピタキシャル成長ができるよ
うな段階に達しつつある。しかし、それら混晶の成長や
ヘテロ接合の成長に不可欠である、結晶基板として、現
在GsAs、InP、GsSb、InAs、GsPなど
の二元化合物しかなく、これが混晶の利用できる組成範
囲を制限している。Ultrahigh-speed devices using two-dimensional gas, semiconductor lasers,
In light emitting diodes, photodiodes, etc., indium phosphide (InP), gallium arsenide (GaAs), gallium phosphide (GaP), gallium antimonide (GaS)
Not only III-V compound semiconductors such as b), but also mixed crystal semiconductors (hereinafter referred to as mixed crystals) of two or more of these III-V compound semiconductors, and heterojunctions that combine these semiconductors are playing an important role. has come to occupy the majority of Various crystal growth methods have been developed so far, and if a substrate to serve as a seed crystal is supplied, there is a stage in which a mixed crystal of a desired composition can be epitaxially grown on it under lattice matching conditions. is reaching. However, currently only binary compounds such as GsAs, InP, GsSb, InAs, and GsP are available as crystal substrates that are essential for the growth of these mixed crystals and the growth of heterojunctions, and this limits the composition range in which mixed crystals can be used. ing.
本発明はこの問題を解決することを目的としてなされた
ものである。換言すれば、エピタキシャル成長の基板に
使用しうるようなIII‐V族化合物混晶の成長法を提
供するものである。The present invention was made with the aim of solving this problem. In other words, the present invention provides a method for growing a III-V compound mixed crystal that can be used as a substrate for epitaxial growth.
この基板用混晶としては、所定の格子定数、換言すれば
組成をもち、均質で高品質の大型単結晶が要求される。The mixed crystal for this substrate is required to be a large, homogeneous, high-quality single crystal that has a predetermined lattice constant, in other words, a composition.
これまでにこの要求を充す混晶が得られなかったのは、
混晶を構成する各成分化合物の偏析係数が異なるために
、成長溶液組成を一定にすることが困難であったことに
起因する。すなわち、これまでにブリッジマン法や、I
II‐V族化合物の解離を防止するための液体カプセル
を用いた回転引上げ法(LEC法;Liguid−En
capsulated−Czoch−ralski法)
で大型バルク混晶を成長させようとする試みはなされた
が、溶液から偏析係数の大きな成分が早く析出し、成長
が進むにつれて、溶液中では偏析係数の小さな成分が増
加し、したがって成長結晶中で組成勾配が生じてしまい
、均質混晶の成長はできなかった。The reason why we have not been able to obtain a mixed crystal that meets this requirement is because
This is due to the fact that it was difficult to keep the composition of the growth solution constant because the segregation coefficients of each component compound constituting the mixed crystal were different. In other words, the Bridgman method, the I
Rotational pulling method (LEC method; Liquid-En
capsulated-Czoch-ralski method)
Attempts have been made to grow large bulk mixed crystals in the solution, but components with large segregation coefficients precipitate out of the solution quickly, and as growth progresses, components with small segregation coefficients increase in the solution. A compositional gradient occurred, and the growth of homogeneous mixed crystals was not possible.
本発明は、この様な問題を解決し、均一組成の混晶を引
上げられるようにした改良型の液体カプセル封止による
回転引上げ法に関するものである。本発明は均質バルク
混晶成長の要件が成長溶液の組成を一定に制御すること
にあることを狙ってなされた。そしてその組成制御法の
原理は、二種のIII‐V族化合物同士から成る擬二元
合金系において、液相ならびに固相は勿論のこと、成長
系全体が熱平衡にあり、且つ系が密閉されていれば、そ
の自由度は1であり、温度によって液相ならびに固相の
組成が一義的に決定されることに立脚している。すなわ
ち、成長系をできるかぎり熱平衡に近付けるようにすれ
ば、混晶として析出する固相の組成ならびにその固相に
対応する液相組成が、温度によって制御可能となる。さ
らに本発明では、この混晶の成長溶液に、混晶を構成す
る二種のIII‐V族化合物の内で融点の高い方の化合
物、あるいは成長溶液の融点よりも高融点の擬二元系混
晶を補給用の原料として接触させておき、当該成長溶液
から混晶を引上げることによって、この偏析係数の大き
な高融点の化合物成分が減少するのを防止できるように
工夫している。The present invention solves these problems and relates to an improved rotary pulling method using liquid encapsulation that makes it possible to pull up mixed crystals of uniform composition. The present invention was made with the aim of realizing that a requirement for homogeneous bulk mixed crystal growth is to control the composition of the growth solution to be constant. The principle of this composition control method is that in a quasi-binary alloy system consisting of two types of III-V compounds, not only the liquid phase and the solid phase but also the entire growth system are in thermal equilibrium and the system is sealed. If so, the degree of freedom is 1, which is based on the fact that the compositions of the liquid phase and solid phase are uniquely determined by temperature. That is, by bringing the growth system as close to thermal equilibrium as possible, the composition of the solid phase precipitated as a mixed crystal and the liquid phase composition corresponding to the solid phase can be controlled by temperature. Furthermore, in the present invention, a compound with a higher melting point among the two III-V group compounds constituting the mixed crystal, or a pseudo-binary system with a melting point higher than that of the growth solution is added to the mixed crystal growth solution. By keeping the mixed crystal in contact as a replenishing raw material and pulling the mixed crystal out of the growth solution, it is possible to prevent this high melting point compound component with a large segregation coefficient from decreasing.
つぎに本発明の化合物混晶の製造方法を図面を用いて具
体的に説明する。図・1は本発明の製造方法の実施に用
いる結晶成長装置の断面構造図で、炉10に囲まれた反
応管8の中に設置された坩堝5の中には原料多結晶4、
成長用溶液3が入れてある。1は種子結晶、2は引き上
げられたIII‐V族化合物混晶、6は坩堝の支持棒で
あり、これによって坩堝を回転できるようにしてある。Next, the method for producing the compound mixed crystal of the present invention will be specifically explained using the drawings. Figure 1 is a cross-sectional structural diagram of a crystal growth apparatus used to carry out the manufacturing method of the present invention.
Contains growth solution 3. 1 is a seed crystal, 2 is a pulled III-V group compound mixed crystal, and 6 is a support rod for the crucible, which allows the crucible to rotate.
7はB2O3などの封止剤、9はフランジであり、反応
管8との間が適当な方法で密閉されている。11は引上
用の棒であり、種子結晶1を固定するチャック12を通
じて化合物混晶2を回転し、且つ引上げられるようにな
っている。もちろん、フランジ9および9′と混晶の引
上棒11および坩堝の支持棒6との間は、これらの棒が
それぞれ回転可能な状態で密閉されている。また反応管
の内部には適当な圧力で加圧された高純度のアルゴンな
どの不活性ガス、窒素あるいは水素ガスが充填されてい
る。7 is a sealing agent such as B2O3, 9 is a flange, and the space between the reaction tube 8 and the reaction tube 8 is sealed by an appropriate method. Reference numeral 11 denotes a pulling rod, which rotates and pulls up the compound mixed crystal 2 through a chuck 12 that fixes the seed crystal 1. Of course, the spaces between the flanges 9 and 9' and the mixed crystal pulling rod 11 and the crucible support rod 6 are sealed so that these rods can rotate, respectively. The interior of the reaction tube is filled with a high-purity inert gas such as argon, nitrogen, or hydrogen gas pressurized at an appropriate pressure.
坩堝5は窒化ボロンあるいはグラファイトなど適当な材
料で構成され、また坩堝からの不純物による汚染を防止
するため、坩堝5の内側に高純度石英、PBN、コラン
ダムなどの内部坩堝5′を適宜使用する。図・2は本発
明における組成制御の原理を説明するためのもである。The crucible 5 is made of a suitable material such as boron nitride or graphite, and an internal crucible 5' made of high-purity quartz, PBN, corundum, etc. is appropriately used inside the crucible 5 to prevent contamination by impurities from the crucible. Figure 2 is for explaining the principle of composition control in the present invention.
図は一種のIII‐V族化合物ABと、それよりも融点
の高い他種のIII‐V族化合物CDから成る擬二元系
状態図を示すものである。ここでAおよびCはIII族
元素、BおよびDはV族元素に対応するものとする。ま
た図・2においてTm1ならびにTm2はそれぞれ化合
物ABおよびCDの融点を表すものとする。いま、AB
およびCDを分子比で(1−X):Xで合金した混晶A
1−XCXB1−XDXを成長する場合について説明す
る。図・2のごとく当該混晶の成長温度Tg(ただしT
m1≦Tg≦Tm2)が決まれば、このAB−CD擬二
元系平衡状態図において、液相線Lと固相線Sとによっ
て溶液組成Xと固相組成Xとが一義的に決定されること
がわかる。本方法において、引上げられる混晶中に析出
するCD成分の析出速度よりも溶液へのCD成分の補給
速度が大であるようにすれば、溶液組成は常に一定に制
御可能となる。The figure shows a pseudo-binary system phase diagram consisting of one type of III-V group compound AB and another type of III-V group compound CD having a higher melting point. Here, A and C correspond to group III elements, and B and D correspond to group V elements. Furthermore, in Figure 2, Tm1 and Tm2 represent the melting points of compounds AB and CD, respectively. Now AB
Mixed crystal A made by alloying CD and CD with a molecular ratio of (1-X):X
The case of growing 1-XCXB1-XDX will be explained. As shown in Figure 2, the growth temperature Tg of the mixed crystal (however, T
m1≦Tg≦Tm2) is determined, the solution composition X and solid phase composition X are uniquely determined by the liquidus line L and the solidus line S in this AB-CD pseudo-binary system equilibrium phase diagram I understand that. In this method, if the rate of replenishment of the CD component to the solution is set to be higher than the rate of precipitation of the CD component precipitated in the pulled mixed crystal, the solution composition can always be controlled to be constant.
本発明において、それを達成するため、図・1に示すご
とく坩堝5の底部に所定量のCD化合物原料多結晶4を
配置し、下方から比重差を利用して高速にCD成分を成
長溶液に補給できるようにした。これは溶液中で融点の
高いCD成分の濃度が高くなる程、溶液の比重が小さく
なることに着目したことによる。この結果として、A‐
B‐C‐Dから成る成長溶液3からA1−XCXB1−
XDX混晶2を引上げると、溶液3からは偏析係数の大
きなCD成分が減少しようとするが、この析出に見合っ
た量のCD成分がただちにCD原料多結晶4から補給さ
れるので、溶液3の組成は常に一定に保持され、したが
って引上げられた混晶2の組成も常に一定に制御され、
本発明の目的が達成される。特に本発明はAおよびCの
元素あるいはBおよびDの元素が同一、すなわちA=C
あるいはB=Dである三元素混晶、AB1−XDXある
いはA1−XCXB、の成長に有効である。In the present invention, in order to achieve this, a predetermined amount of the CD compound raw material polycrystalline 4 is placed at the bottom of the crucible 5 as shown in Figure 1, and the CD component is rapidly converted into the growth solution from below using the difference in specific gravity. Made it possible to replenish. This is due to the fact that the higher the concentration of the CD component with a higher melting point in the solution, the lower the specific gravity of the solution. As a result of this, A-
A1-XCXB1- from growth solution 3 consisting of B-C-D
When the XDX mixed crystal 2 is pulled up, the CD component with a large segregation coefficient tends to decrease from the solution 3, but an amount of CD component corresponding to this precipitation is immediately replenished from the CD raw material polycrystal 4, so that the solution 3 The composition of the mixed crystal 2 is always kept constant, so the composition of the pulled mixed crystal 2 is also always controlled to be constant,
The objectives of the invention are achieved. In particular, the present invention provides that the elements A and C or the elements B and D are the same, that is, A=C
Alternatively, it is effective for growing a ternary mixed crystal in which B=D, AB1-XDX or A1-XCXB.
実施例1
まず図・1の坩堝5に所定の形状に整形し、且つエッチ
ング処理で表面の酸化膜等を除去した所定量のGaSb
多結晶インゴットを原料結晶4として挿入する。もしイ
ンゴットの形状が坩堝の形状に合わない場合には、原料
結晶の上にアンチモンの解離防止のために酸化硼素(B
2O3)あるいは塩化ナトリウム(Nacl)などの液
体オプセル用材料を適量加える。つぎに反応管8中に高
純度のアルゴンガスあるいは窒素ガスあるいは水素ガス
をバルブ13、13′を用いて通じながら750℃程度
に加熱してGaSb原料結晶を溶解させて、坩堝の底部
にGaSb原料結晶4を鋳造配置する。そして冷却後、
液体カプセル材料を適当な方法たとえばメタノールなど
を用いて除去し、その上に予め調整した所定の組成をも
つ成長溶液用の多結晶(In、Ga)Sbを所定量加え
る。例えば、X=0.7の(In、Ga)Sbの混晶の
成長を目的とする場合には、成長溶液の原料となる(I
n、Ga)Sbの組成はX=0.2とすればよい。勿論
この成長溶液3用多結晶(In、Ga)Sbの組成は実
用上充分な均一性をもち、且つエッチング等により、そ
の表面から酸化膜や汚染物質を充分除去していなければ
ならない。さらに、成長溶液3用の(In、Ga)Sb
多結晶上にB2O3などの液体カプセルク用材料を加え
る。成長時にこの液体カプセルの粘性を適度にすること
が必要であり、そのためにはアルカリ金属の弗化物や酸
化物のうちの適当なものを適量添加して使用すればよい
。Example 1 First, a predetermined amount of GaSb was formed into a predetermined shape in the crucible 5 shown in FIG.
A polycrystalline ingot is inserted as raw material crystal 4. If the shape of the ingot does not match the shape of the crucible, boron oxide (B) is placed on top of the raw material crystal to prevent dissociation of antimony.
Add an appropriate amount of liquid opcell material such as 2O3) or sodium chloride (NaCl). Next, high-purity argon gas, nitrogen gas, or hydrogen gas is passed into the reaction tube 8 using valves 13 and 13' and heated to about 750°C to melt the GaSb raw material crystals, and the GaSb raw material is placed at the bottom of the crucible. Crystal 4 is cast and placed. And after cooling,
The liquid encapsulant is removed using a suitable method, such as methanol, and a predetermined amount of polycrystalline (In, Ga) Sb for a growth solution having a predetermined composition adjusted in advance is added thereon. For example, when the purpose is to grow a (In, Ga)Sb mixed crystal with X=0.7, (I
The composition of n, Ga)Sb may be set to X=0.2. Of course, the composition of the polycrystalline (In, Ga)Sb for growth solution 3 must have sufficient uniformity for practical use, and oxide films and contaminants must be sufficiently removed from its surface by etching or the like. Furthermore, (In, Ga)Sb for growth solution 3
Add liquid encapsulant material such as B2O3 onto the polycrystal. It is necessary to moderate the viscosity of this liquid capsule during growth, and for this purpose, an appropriate amount of an alkali metal fluoride or oxide may be added.
引上げに必要な種子結晶1用(In、Ga)Sbは目的
とする混晶組成と軸方位をもつ(In、Ga)Sb単結
晶を所定の形状に加工した後、研磨、エッチング等によ
り加工層を除去し、また表面の酸化膜ならびに汚染を充
分取除く。このようにした種子結晶を成長装置の種子結
晶固定チャック12に取付ける。以上のごとく、成長装
置に材料を仕込んだ後、反応管内に高純度水素を所定の
流量で流し、ある時間たとえば1時間程度そのまま保ち
、反応管内の残留水分および酸素など除去する。反応管
内に加えるガスの圧力は成長温度での(In、Ga)S
bの解離圧が低いので1気圧程度で充分である。つぎに
電気炉10に電流を通じ、成長溶液3用の(In、Ga
)Sb多結晶が丁度溶解するまで昇温する。その温度は
In−Ga−Sb溶解組成Xによって異なるが、X=0
.5の場合675℃となる。成長系内の温度が定常状態
に達した後、種子結晶を降下させ、In−Ga−Sb成
長溶液3に種子結晶の先端を浸して、その先端が多少当
該成長用溶液に溶解する程度係った後、引上げを開始す
る。この(In、Ga)Sb混晶の引上げ初期に、謂ゆ
るネッキングを施すなど、通常のLEC法に用いられて
いるような既知の技術を応用することは勿論である。こ
のようにして引上げた(In、Ga)Sb混晶の具体例
を示す。In−Ga−Sb成長用溶液3の組成および仕
込量、X=0.2および50g、原料4用多結晶GaS
bの仕込量100g、引上げ軸方位(111)、回転速
度20rpm、引上げ速度5mm/h、成長温度595
℃で引上げた結果、直径25mm、長さ10cm、混晶
組成X=0.7の(In、Ga)Sb混晶が得られた。(In, Ga) Sb for seed crystal 1 required for pulling is obtained by processing an (In, Ga) Sb single crystal with the desired mixed crystal composition and axial orientation into a predetermined shape, and then forming a processed layer by polishing, etching, etc. , and thoroughly remove the oxide film and contamination on the surface. The seed crystal thus prepared is attached to the seed crystal fixing chuck 12 of the growth apparatus. As described above, after the materials are charged into the growth apparatus, high-purity hydrogen is flowed into the reaction tube at a predetermined flow rate and kept as it is for a certain period of time, for example, about one hour, to remove residual moisture, oxygen, etc. inside the reaction tube. The pressure of the gas applied inside the reaction tube is the same as that of (In, Ga)S at the growth temperature.
Since the dissociation pressure of b is low, about 1 atm is sufficient. Next, an electric current is passed through the electric furnace 10, and the (In, Ga) for the growth solution 3 is
) Raise the temperature until the Sb polycrystals just melt. The temperature varies depending on the In-Ga-Sb melt composition X, but X=0
.. In the case of 5, the temperature is 675°C. After the temperature in the growth system reaches a steady state, the seed crystal is lowered and the tip of the seed crystal is immersed in the In-Ga-Sb growth solution 3 until the tip is slightly dissolved in the growth solution. After that, start lifting. Of course, known techniques used in the usual LEC method, such as applying so-called necking at the initial stage of pulling this (In, Ga)Sb mixed crystal, can be applied. A specific example of the (In, Ga)Sb mixed crystal pulled in this manner will be shown. Composition and amount of In-Ga-Sb growth solution 3, X = 0.2 and 50 g, polycrystalline GaS for raw material 4
Charge amount of b 100 g, pulling axis direction (111), rotation speed 20 rpm, pulling speed 5 mm/h, growth temperature 595
As a result of pulling at .degree. C., an (In, Ga)Sb mixed crystal having a diameter of 25 mm, a length of 10 cm, and a mixed crystal composition of X=0.7 was obtained.
なお本混晶成長を実施するにあたり、所定の組成の(I
n、Ga)Sb種子結晶をどのようにして得たかについ
てのべる。最初、種子結晶として使用し得るような(I
n、Ga)Sb混晶が無い。そこでまずGaSbを種子
結晶として用いて、本方法によりX=0.95の(In
、Ga)Sb混晶を引上げた。このように種子結晶と引
上げる(In、Ga)Sbとの組成の差が5%以内であ
れば充分良好な混晶が成長できることがわかった。つぎ
にこの組成X=0.95の(In、Ga)Sbを種子結
晶として用いて、X=0.9の(In、Ga)Sb混晶
を引上げることができた。このように順次種子結晶(I
n、Ga)SbよりXが少し小さな混晶の引上げをおこ
ない、目的とするX=a7の(In、Ga)Sb混晶を
引上げることができた。このようなことをさらに繰返し
適用すれば勿論任意の組成の(In、Ga)Sb混晶の
成長が可能である。同様の手続きはブリッジマン法を用
いてもできる。In carrying out this mixed crystal growth, (I
This article describes how the n,Ga)Sb seed crystals were obtained. Initially, (I
n, Ga) There is no Sb mixed crystal. Therefore, first, using GaSb as a seed crystal and using this method, (In
, Ga)Sb mixed crystal was pulled up. It has thus been found that a sufficiently good mixed crystal can be grown if the difference in composition between the seed crystal and the (In, Ga)Sb to be pulled is within 5%. Next, using this (In, Ga)Sb with a composition of X=0.95 as a seed crystal, it was possible to pull up an (In,Ga)Sb mixed crystal with a composition of X=0.9. In this way, the seed crystals (I
By pulling up a mixed crystal with X slightly smaller than n, Ga)Sb, it was possible to pull up the desired (In, Ga)Sb mixed crystal with X=a7. Of course, by repeating this process further, it is possible to grow an (In, Ga)Sb mixed crystal of any desired composition. A similar procedure can also be performed using the Bridgman method.
ここで述べた本発明の方法で高品質の混晶が容易に成長
できた組成範囲はX≧0.7の範囲であった。これは擬
二元系状態図の固相線の勾配が大きな組成範囲に対応し
、その範囲が本発明の混晶成長法に適することがわかっ
た。The composition range in which a high quality mixed crystal could be easily grown by the method of the present invention described here was the range of X≧0.7. This corresponds to a composition range in which the gradient of the solidus line in the pseudo-binary phase diagram is large, and it was found that this range is suitable for the mixed crystal growth method of the present invention.
実施例2
原料多結晶4としてGaAsを用い、成長用溶液3とし
て所定の組成、たとえばX=0.35、の(In、Ga
)As多結晶を仕込み、種子結晶1として所定の固相組
成、たとえばX=0.85、と引上げ軸方向、たとえば
(111)、をもつ(In、Ga)As混晶を用い、所
定の温度、たとえば1100℃、で引上げをおこなった
結果、組成X=0.85の(In、Ga)As三元混晶
を成長できた。Example 2 GaAs was used as the raw material polycrystalline 4, and a predetermined composition was used as the growth solution 3, for example, (In, Ga with X=0.35).
) As the seed crystal 1, an (In, Ga) As mixed crystal having a predetermined solid phase composition, e.g., X=0.85, and a pulling axis direction, e.g. , for example, at 1100° C., it was possible to grow an (In, Ga)As ternary mixed crystal with a composition of X=0.85.
なおこの場合、反応管内には砒素の解離を防止するため
、1.5気圧の高純度窒素ガスを充填した。In this case, the reaction tube was filled with 1.5 atmospheres of high-purity nitrogen gas to prevent dissociation of arsenic.
実施例3
原料多結晶4としてGaPを用い、成長用溶液3として
所定の液相組成、たとえばX=0.15、となるような
Ga(As、P)多結晶を仕込み、種子結晶として所定
の固相組成、たとえばX=0.35、と成長軸方位、た
とえば(100)、をもつGa(As、P)混晶を用い
て引上げをおこない、GaAs0.65P0.35三元
混晶を成長した。なお本実施例においては燐の解離圧が
高いため、成長系全体に30〜50気圧のガス圧を印加
できるような引上げ装置を使用した。Example 3 GaP was used as the raw material polycrystal 4, Ga(As, P) polycrystal having a predetermined liquid phase composition, for example, X = 0.15, was charged as the growth solution 3, and a predetermined amount A Ga(As,P) mixed crystal with a solid phase composition, e.g. . In this example, since the dissociation pressure of phosphorus is high, a pulling device capable of applying a gas pressure of 30 to 50 atmospheres to the entire growth system was used.
実施例4
原料多結晶4としてGaPを用い、成長用溶液3として
所定の液相組成、たとえばX=0.2、となるような(
In、Ga)P多結晶を仕込み、種子結晶として所定の
固相組成、たとえばX=0.75、と軸方向、たとえば
(111)、をもつ(In、Ga)Pを用いて引上げを
おこない、In0.25Ga0.75P三元混晶を引上
げることができた。なお印加ガス圧は30気圧であった
。Example 4 GaP is used as the raw material polycrystal 4, and the growth solution 3 has a predetermined liquid phase composition, for example, (
In, Ga) P polycrystals are charged and pulled using (In, Ga) P having a predetermined solid phase composition, for example, X = 0.75, and an axial direction, for example (111), as a seed crystal, In0.25Ga0.75P ternary mixed crystal could be pulled up. Note that the applied gas pressure was 30 atm.
以上本発明の四つの実施例について述べたが、本発明の
混晶の製造方法はこれ以外のIII‐V族化合物の三元
ならびに四元混晶、たとえば(Ga、Al)As、(G
a、Al)P、(Ga、Al)Sb、(Ga、Al)(
As、P)などはもとより、II‐VI族化合物同士の
混晶やその他の混晶の成長に対しても適用可能なことは
言うまでもない。Although the four embodiments of the present invention have been described above, the method for producing mixed crystals of the present invention can be applied to other ternary and quaternary mixed crystals of III-V group compounds, such as (Ga, Al)As, (G
a, Al) P, (Ga, Al) Sb, (Ga, Al) (
It goes without saying that this method can be applied to the growth of not only As, P), etc., but also mixed crystals of II-VI group compounds and other mixed crystals.
図1は本発明の製造方法の実施に用いる装置の断面構造
図である。
図2は本発明の原理を説明するための二つの化合物を成
分とする擬二元系平衡状態図である。なお、1は種子結
晶、2は本発明の製造方法で引上げられた混晶、3は混
晶成長用溶液、4は成長用溶液に不足する成分を補給す
るための多結晶原料、5および5´は成長用坩堝、6は
坩堝の支持棒、7は成長系を密閉するための液体カプセ
ル、8は反応管、9および9′はフランジ、10は電気
炉、11は引上げ結晶の支持棒、12は種子結晶固定用
チャック、13、13′ガスバルブLは液相線、Sは固
相線、Xは混晶(固相)の組成、Xは成長溶液(液相)
の組成を示す。FIG. 1 is a cross-sectional structural diagram of an apparatus used to implement the manufacturing method of the present invention. FIG. 2 is an equilibrium phase diagram of a pseudo-binary system containing two compounds for explaining the principle of the present invention. In addition, 1 is a seed crystal, 2 is a mixed crystal pulled by the manufacturing method of the present invention, 3 is a mixed crystal growth solution, 4 is a polycrystalline raw material for replenishing the ingredients lacking in the growth solution, 5 and 5 ' is a growth crucible, 6 is a support rod for the crucible, 7 is a liquid capsule for sealing the growth system, 8 is a reaction tube, 9 and 9' are flanges, 10 is an electric furnace, 11 is a support rod for the pulled crystal, 12 is a chuck for fixing seed crystals, 13, 13' gas valve L is a liquidus line, S is a solidus line, X is a composition of mixed crystal (solid phase), and X is a growth solution (liquid phase).
The composition of
Claims (6)
化合物より高い第二のIII−V族化合 物とから構成される擬二元系溶液に、第二 のIII−V族化合物の固相あるいは溶液より 高融点である擬二元系混晶固相を接触させ た状態で、当該溶液から第一の化合物と第 二の化合物とを所定の割合で均質に含む混 晶を引上げ成長させることを特徴としたIII −V族化合物半導体混晶の製造方法。(1) A second III-V compound is added to a pseudo-binary solution composed of a first III-V compound and a second III-V compound whose melting point is higher than that of the first III-V compound. A mixed crystal homogeneously containing the first compound and the second compound in a predetermined ratio is obtained from the solution in a state in which the solid phase of the group compound or the pseudo-binary mixed crystal solid phase having a higher melting point than the solution is in contact with the solid phase. 1. A method for producing a III-V group compound semiconductor mixed crystal, which comprises pulling and growing a III-V group compound semiconductor mixed crystal.
合物から構成される擬二元系溶液の 下側に接触して配置し、当該溶液の上面よ り当該混晶を引上げることを特徴とする特 許請求の範囲(1)のIII−V族化合物半導体混晶の製
造方法。(2) Place the solid phase of the second III-V compound in contact with the lower side of the pseudo-binary solution composed of the first and second compounds, and pour the mixed crystal from the top surface of the solution. A method for producing a III-V group compound semiconductor mixed crystal according to claim (1), characterized in that the mixed crystal is pulled up.
アンチモン化インジウムとアンチモ ン化ガリウムとの二成分から構成されるこ とを特徴とする特許請求の範囲(1)のIII−V族化合
物半導体混晶の製造方法。(3) A III-V compound semiconductor according to claim (1), wherein the III-V compound semiconductor mixed crystal to be grown is composed of two components: indium antimonide and gallium antimonide. Method for producing mixed crystals.
砒化インジウムと砒化ガリウムとの 二成分から構成されることを特徴とする特 許請求の範囲(1)III−V族化合物半導体混晶の製造
方法。(4) Claims characterized in that the III-V group compound semiconductor mixed crystal to be grown is composed of two components of indium arsenide and gallium arsenide (1) III-V group compound semiconductor mixed crystal Production method.
砒化ガリウムと燐化ガリウムとの二 成分から構成されることを特徴とする特許 請求の範囲(1)のIII−V族化合物半導体混晶の製造
方法。(5) A III-V compound semiconductor mixed crystal according to claim (1), characterized in that the III-V compound semiconductor mixed crystal to be grown is composed of two components of gallium arsenide and gallium phosphide. Crystal manufacturing method.
燐化ガリウムと燐化インジウムとの 二成分から構成されることを特徴とする特 許請求の範囲(1)のIII−V族化合物半導体混晶の製
造方法。(6) The III-V compound semiconductor according to claim (1), wherein the III-V compound semiconductor mixed crystal to be grown is composed of two components: gallium phosphide and indium phosphide. Method for producing mixed crystals.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14369385A JPS623097A (en) | 1985-06-28 | 1985-06-28 | Production of iii-v compound semiconductor mixed crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14369385A JPS623097A (en) | 1985-06-28 | 1985-06-28 | Production of iii-v compound semiconductor mixed crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS623097A true JPS623097A (en) | 1987-01-09 |
Family
ID=15344763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14369385A Pending JPS623097A (en) | 1985-06-28 | 1985-06-28 | Production of iii-v compound semiconductor mixed crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS623097A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5454346A (en) * | 1993-02-12 | 1995-10-03 | Japan Energy Corporation | Process for growing multielement compound single crystal |
-
1985
- 1985-06-28 JP JP14369385A patent/JPS623097A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5454346A (en) * | 1993-02-12 | 1995-10-03 | Japan Energy Corporation | Process for growing multielement compound single crystal |
US5471938A (en) * | 1993-02-12 | 1995-12-05 | Japan Energy Corporation | Process for growing multielement compound single crystal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0751242B1 (en) | Process for bulk crystal growth | |
JP2009149452A (en) | Method for growing semiconductor crystal | |
JP2000143397A (en) | Gallium arsenic single crystal | |
WO2021251349A1 (en) | Gaas ingot, method for manufacturing gaas ingot, and gaas wafer | |
JP2006306723A (en) | Gallium arsenide single crystal | |
US5728212A (en) | Method of preparing compound semiconductor crystal | |
JP4235711B2 (en) | Manufacturing method of GaAs single crystal by vertical boat method | |
US5047112A (en) | Method for preparing homogeneous single crystal ternary III-V alloys | |
JPS623097A (en) | Production of iii-v compound semiconductor mixed crystal | |
JPH0244798B2 (en) | ||
Dutta | Bulk crystal growth of ternary III–V semiconductors | |
JPH10152393A (en) | Growth of bulk crystal and seed crystal for bulk crystal growth | |
JP3738471B2 (en) | Method for producing II-VI or III-V compound single crystal | |
JP2533760B2 (en) | Mixed crystal manufacturing method | |
JP2004099390A (en) | Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal | |
JP2010030847A (en) | Production method of semiconductor single crystal | |
JP4576571B2 (en) | Method for producing solid solution | |
JP2873449B2 (en) | Compound semiconductor floating zone melting single crystal growth method | |
JP3313412B2 (en) | Method and apparatus for manufacturing semiconductor crystal | |
JPS63144191A (en) | Production of compound semiconductor single crystal and apparatus therefor | |
JPS5912639B2 (en) | crystal growth method | |
JP2922039B2 (en) | Single crystal growth method | |
JPH10212192A (en) | Method for growing bulk crystal | |
JP3202405B2 (en) | Epitaxial growth method | |
JPS6325292A (en) | Crystal growth of mixed crystal of indium gallium phosphide |