JP3313412B2 - Method and apparatus for manufacturing semiconductor crystal - Google Patents

Method and apparatus for manufacturing semiconductor crystal

Info

Publication number
JP3313412B2
JP3313412B2 JP22059692A JP22059692A JP3313412B2 JP 3313412 B2 JP3313412 B2 JP 3313412B2 JP 22059692 A JP22059692 A JP 22059692A JP 22059692 A JP22059692 A JP 22059692A JP 3313412 B2 JP3313412 B2 JP 3313412B2
Authority
JP
Japan
Prior art keywords
crystal
solution
growth
semiconductor
polycrystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22059692A
Other languages
Japanese (ja)
Other versions
JPH0624893A (en
Inventor
徳三 助川
昭 田中
明佳 渡邉
Original Assignee
徳三 助川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徳三 助川 filed Critical 徳三 助川
Priority to JP22059692A priority Critical patent/JP3313412B2/en
Publication of JPH0624893A publication Critical patent/JPH0624893A/en
Application granted granted Critical
Publication of JP3313412B2 publication Critical patent/JP3313412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電子材料の分野に属し,
二種の半導体同士を所定の割合で均質に混合させた混晶
半導体結晶の製造方法ならびに製造装置に関する。
The present invention belongs to the field of electronic materials,
The present invention relates to a method and an apparatus for manufacturing a mixed crystal semiconductor crystal in which two kinds of semiconductors are homogeneously mixed at a predetermined ratio.

【0002】[0002]

【従来の技術】二種類の半導体を所定の割合で均質に混
合して,大型の高品質な単結晶を製造するには高度な技
術を必要とする。これまでこのような大型混晶(バルク
混晶)を成長する技術としてブリッジマン法,チョクラ
ルスキー法,帯溶融法等が開発されてきている。しかし
これらの従来技術は多くの問題を有しており,大型バル
ク混晶の成長に対して,いずれも研究段階にある。従来
技術である帯溶融法では混晶を構成する二種の半導体の
うちで一種のみを原料とすることはできない。目的とす
る組成比の原料結晶を製作することが必要不可欠であ
る。しかしながら原理的には所定の割合の二種の半導体
の均質な混合融液を偏析が起こらないように急冷して固
化させれば,原料結晶が得られるはずであるが,実際に
は二種の半導体間に比重差があるため,均質に混合した
融液を得ることが困難であり,また融液を急冷して固化
する際に高融点側の半導体の偏析が起こるので,均一組
成の原料結晶が得られなかった。これが帯溶融法を用い
て所定の組成を持つ高品質結晶を成長することに対して
大きな障害になっている。一方,通常のブリッジマン法
やチョクラルスキー法を用いて二種類の半導体結晶を溶
融混合した融液から,混晶を成長する方法では,組成
(二種類の半導体の混合比)が一定の混晶を成長するこ
とはできない。これは当該融液組成よりも二種の半導体
のうちで偏析係数の大きな成分(二種の半導体のうちで
高融点をもつ半導体成分)を多く含む固相が析出するた
め,成長が進むにつれて,融液中では偏析係数の小さな
成分,あるいは低融点側の半導体成分が増加する。した
がって,この融液から引き続き混晶成長をおこなうと,
成長する混晶組成は偏析係数の小さな成分,あるいは低
融点側の半導体成分が増加するような分布となる。ま
た,融液組成よりも高融点側の成分を多く含んだ固相を
析出するので,成長の進行に伴って,融点の低下が起こ
るため,成長を持続させるためには成長部,すなわち融
液と固相との界面近傍の温度を徐々に低下させる必要が
あった。このことは成長した混晶に必然的に組成勾配が
生ずることと表裏一体の問題点であった。これらの問題
点は本出願者らが先に行った発明(特願昭60−143
693,公開特許公報(A)昭62−3097)の方
法,すなわち混晶を構成する二種類の半導体のうちで,
高融点側の半導体成分を供給しながら,チョクラルスキ
ー法で混晶成長を行う方法(以下では本方法を溶質供給
チョクラルスキー法と呼ぶことにする)によって,大部
分が解決された。同様な方法が中島らによってGall
ium Arsenide and Related
Compounds1991,Inst.Phys.C
onf.Ser. No.120,chapter 2
pp.62−71 に報告されている図4は従来技術
である上記先願の発明を説明するためのものである。図
4(a)に示すごとく従来技術では一つの溶液溜すなわ
ち坩堝内に成長用溶液を満たし,当該溶液に目的とする
混晶を構成する二種の半導体成分のうちで高融点側の半
導体,あるいはその半導体成分を多く含む溶質供給用の
固相を接触させた状態で,当該溶液から第一の半導体と
第二の半導体を所定の割合で含む混晶を引上げるもので
ある。しかしこの方法には二つの大きな問題点があっ
た。第一に溶質供給用の固相が成長用溶液と直接接触し
ているため,成長用溶液中で生ずる対流等の影響を受け
易く,溶質の供給量が過剰となり易く,またその制御が
困難なことである。第4図(b)は溶液3内の温度分布
の概略を示すものである。縦軸は溶液の縦方向の位置を
示し,横軸は温度を示す。Tは溶液の実温度分布に対
応する。一方Tは溶液中に含まれる溶質の飽和温度
(溶液組成で決まり液相温度ともいう)に対応し,その
分布は溶質の濃度分布を反映している。対流によって溶
液が攪拌されるため,当該溶液中の溶質濃度分布は成長
部の固液界面23近傍を除いてほぼ一様となる。一方固
液界面23において過飽和分が結晶として析出するので
飽和温度となる。混晶成長の場合にはこの析出する固相
の組成は,液相組成よりも高融点側の半導体成分が多
い。そのため固液界面23で飽和温度Tは低下し,固
液界面23における実温度Tと一致する。ところで,
チョクラルスキー法で結晶を引き上げる場合,実温度分
布は図4(b)のごとく,原料結晶4の固液界面43か
ら結晶成長部の固液界面23に近づくにつれて温度が徐
々に低下するごとくなる。このとき成長部の固液界面2
3近傍において実温度Tよりも,飽和温度Tが高く
なり,その部分が組成的過冷却状態になり,多結晶の発
生や樹枝状結晶の発生を引き起こすため大きな問題であ
った。従来技術において,上記の問題を解決する方法と
して,図4(b’)に示すごとく原料結晶側と成長結晶
側との両固液界面における温度差が小さくなるような実
温度分布をとる方法と,第5図(a)に示すごとく原料
結晶4と溶液3との接触面積を小さくして,溶液への溶
質供給量を減少させることによって図5(b)のごとく
原料結晶側の固液界面43における実温度Tよりも飽
和温度Tを低下させる方法とがある。しかし,図4
(b’)のような実温度分布を実現することは困難であ
る。一方図5に示す方法では成長が進むに伴って原料結
晶4は溶解してすぐに消耗するから大型結晶の成長は困
難である。従来技術の第二の問題点は,結晶の引き上げ
が進むに伴い,成長用溶液の量が減少することである。
この減少が成長溶液における溶質の移動や実温度分布に
影響を与え,また成長部における固液界面23の位置の
降下に伴う固液界面の温度変化を引きおこす。そのため
これが引き上げられる結晶の組成,成長速度,直径等に
影響を及ぼし,均質で高品質の混晶を得難くする。
2. Description of the Related Art Advanced technology is required to produce a large, high-quality single crystal by homogeneously mixing two kinds of semiconductors at a predetermined ratio. The Bridgman method, the Czochralski method, the zone melting method, and the like have been developed as techniques for growing such large mixed crystals (bulk mixed crystals). However, these prior arts have many problems, and all of them are at the research stage for the growth of large bulk mixed crystals. In the conventional band melting method, it is not possible to use only one of the two semiconductors constituting the mixed crystal as a raw material. It is essential to produce a raw material crystal having a desired composition ratio. However, in principle, a raw material crystal should be obtained if a homogeneous mixed melt of two semiconductors at a predetermined ratio is solidified by rapid cooling so that segregation does not occur. Since there is a difference in specific gravity between semiconductors, it is difficult to obtain a homogeneously mixed melt, and when the melt is quenched and solidified, segregation of the semiconductor on the high melting point side occurs. Was not obtained. This is a major obstacle to growing a high-quality crystal having a predetermined composition by using the band melting method. On the other hand, in the method of growing a mixed crystal from a melt obtained by melting and mixing two types of semiconductor crystals using the ordinary Bridgman method or Czochralski method, a mixed composition (mixing ratio of the two types of semiconductors) is constant. Crystals cannot grow. This is because a solid phase containing a large amount of a component having a higher segregation coefficient (a semiconductor component having a high melting point among the two semiconductors) is precipitated out of the two types of semiconductors than the melt composition. In the melt, a component having a small segregation coefficient or a semiconductor component having a low melting point increases. Therefore, if mixed crystal growth is continued from this melt,
The growing mixed crystal composition has a distribution such that components having a small segregation coefficient or semiconductor components on the low melting point side increase. In addition, since a solid phase containing more components on the high melting point side than the melt composition is precipitated, the melting point decreases as the growth progresses. It was necessary to gradually lower the temperature near the interface between the metal and the solid phase. This is a problem which is inextricably linked to the fact that a composition gradient is inevitably generated in the grown mixed crystal. These problems are related to the invention (Japanese Patent Application No. 60-143) filed by the present applicant.
693, Published Patent Application (A) 62-3097), that is, of the two types of semiconductors constituting the mixed crystal,
Most of the problems have been solved by a method of performing mixed crystal growth by the Czochralski method while supplying a semiconductor component on the high melting point side (hereinafter, this method is referred to as a solute supply Czochralski method). A similar method was developed by Nakajima et al.
ium Arsenide and Related
Compounds 1991, Inst. Phys. C
onf. Ser. No. 120, chapter 2
pp. FIG. 4 reported at 62-71 explains the prior invention of the prior application. As shown in FIG. 4A, in the prior art, one solution reservoir, ie, a crucible, is filled with a growth solution, and a semiconductor having a high melting point among two semiconductor components constituting a target mixed crystal is contained in the solution. Alternatively, a mixed crystal containing a first semiconductor and a second semiconductor in a predetermined ratio is pulled up from the solution in a state in which a solute-supplying solid phase containing a large amount of the semiconductor component is brought into contact. However, this method had two major problems. First, since the solid phase for solute supply is in direct contact with the growth solution, it is susceptible to the effects of convection and the like in the growth solution, and the supply of solute tends to be excessive, and its control is difficult. That is. FIG. 4B schematically shows the temperature distribution in the solution 3. The vertical axis indicates the vertical position of the solution, and the horizontal axis indicates the temperature. T a corresponds to the actual temperature profile of the solution. Meanwhile T 1 corresponds to the saturation temperature of the solute contained in the solution (also referred to as a determined liquid phase temperature in solution composition), its distribution reflects the concentration distribution of the solute. Since the solution is stirred by convection, the solute concentration distribution in the solution becomes substantially uniform except for the vicinity of the solid-liquid interface 23 in the growth part. On the other hand, at the solid-liquid interface 23, the supersaturated component precipitates as a crystal, so that the temperature becomes the saturation temperature. In the case of mixed crystal growth, the composition of the precipitated solid phase has more semiconductor components on the higher melting point side than the liquid phase composition. Therefore saturation temperatures T 1 in the solid-liquid interface 23 lowers, consistent with the actual temperature T a in the solid-liquid interface 23. by the way,
When the crystal is pulled up by the Czochralski method, the actual temperature distribution becomes as shown in FIG. 4B, as the temperature gradually decreases from the solid-liquid interface 43 of the raw material crystal 4 to the solid-liquid interface 23 of the crystal growth part. . At this time, the solid-liquid interface 2
Than the actual temperature T a at near 3, the higher the saturation temperature T 1, portions thereof become constitutional supercooling state was a major problem to cause the occurrence of polycrystalline generation and dendrites. In the prior art, as a method for solving the above problem, there is a method of obtaining an actual temperature distribution such that the temperature difference at both solid-liquid interfaces between the source crystal side and the growth crystal side becomes small as shown in FIG. 5 (a), the contact area between the raw material crystal 4 and the solution 3 is reduced to reduce the amount of solute supplied to the solution, so that the solid-liquid interface on the raw material crystal side is reduced as shown in FIG. 5 (b). and a method of reducing the saturation temperatures T 1 than the actual temperature T a at 43. However, FIG.
It is difficult to realize the actual temperature distribution as in (b '). On the other hand, in the method shown in FIG. 5, as the growth proceeds, the raw material crystal 4 is melted and consumed immediately, so that it is difficult to grow a large crystal. A second problem of the prior art is that the amount of the growth solution decreases as the pulling of the crystal proceeds.
This decrease affects the movement of solutes and the actual temperature distribution in the growth solution, and causes a change in the temperature of the solid-liquid interface accompanying a drop in the position of the solid-liquid interface 23 in the growth part. Therefore, this affects the composition, growth rate, diameter, etc. of the crystal to be pulled, making it difficult to obtain a homogeneous and high-quality mixed crystal.

【0003】[0003]

【発明が解決しようとする課題】本発明は従来の溶質供
給チョクラルスキー法の問題点であった溶質供給量の制
御の問題と,混晶の成長が進行すると共に成長用溶液
(融液)量が減少することによって生ずる固液界面の位
置の変化の問題を解決した所定の組成(混晶比)をもつ
大型で高品質の混晶の成長技術を提供することにある。
SUMMARY OF THE INVENTION The present invention relates to the problem of controlling the amount of solute supply, which is a problem of the conventional solute supply Czochralski method, and to the fact that the growth of a mixed crystal proceeds and the growth solution (melt). An object of the present invention is to provide a large-sized and high-quality mixed crystal growth technique having a predetermined composition (mixed crystal ratio) which solves the problem of a change in the position of the solid-liquid interface caused by a decrease in the amount.

【0004】[0004]

【課題を解決するための手段】本発明は一種類の半導体
等の結晶を当該結晶よりも低融点をもつ別種類の半導体
等の結晶あるいは溶媒に溶融溶解した溶液あるいは融液
中に、一個乃至複数個の貫通した穴をもつ隔壁を設け
て、当該溶液あるいは融液を結晶成長部と溶質供給部と
に分離し、溶質供給部の溶液に二種の半導体のうちで少
なくとも一方からなる原料結晶を接触させて、当該溶質
供給部溶液に溶質供給すると共に、ピストンあるいは浮
き坩堝等の機構を設けて、当該溶質供給部溶液を隔壁に
設けた穴を通じて、結晶成長部溶液が一定量となるよう
に結晶成長部に供給し、結晶成長部溶液からチョクラル
スキー法によって第一の半導体と第二の半導体を所定の
割合で含む混晶を引き上げることを最も重要な特徴とす
る。従来の技術とは結晶成長部溶液に溶質供給用の原料
結晶が直接接触していない点と、結晶成長部の溶液量を
一定にできる点が異なる。
According to the present invention, one or more crystals of a semiconductor or the like are melted and dissolved in a crystal or a solvent of another kind of a semiconductor or the like having a lower melting point than that of the crystal or a solution or a melt thereof. A partition having a plurality of through holes is provided, and the solution or melt is separated into a crystal growth section and a solute supply section, and the solution of the solute supply section contains a source crystal composed of at least one of two semiconductors. And supplying a solute to the solute supply unit solution, and providing a mechanism such as a piston or a floating crucible so that the crystal growth unit solution becomes a constant amount through a hole provided in the partition wall. The most important feature is that the mixed crystal containing the first semiconductor and the second semiconductor at a predetermined ratio is pulled from the crystal growth part solution by the Czochralski method. The difference from the prior art is that the raw material crystal for solute supply is not in direct contact with the crystal growth section solution, and that the amount of solution in the crystal growth section can be kept constant.

【0005】[0005]

【作用】本発明の特徴を明白にするために図面を用いて
説明する。図1(a)は本発明の製造方法の実施に用い
る結晶成長装置の結晶成長に直接関与する部分の概略を
示す断面構造図である。1は種子結晶、2は引き上げ中
の成長結晶、3は成長用の溶液(融液)、30は溶質供
給部の溶液(融液)、4は溶質供給用の原料結晶、5は
坩堝、50は溶質供給部の溶液30と成長用溶液3の間
に挿入された隔壁で、その隔壁には一個乃至複数個の貫
通した穴51が設けられている。さらに隔壁50は適切
な方法、例えば浮力によって上下に移動することにより
成長用溶液3の量を制御できるようになされている。穴
51は、溶質供給部から成長部へ供給される溶質量を制
御するためのもので、その寸法、位置ならびに個数は目
的に合致するように設定されることは勿論である。本発
明の均質バルク混晶成長の組成制御法の原理は、前述し
た先願発明(昭和40年特許願第143693号)と同
一のものを利用する。すなわち、二元合金系、あるいは
それぞれの化合物を構成する成分のうち一成分元素を共
通とする二種の化合物同士からなる擬二元合金系におい
て、液相ならびに固相が熱平衡にあれば、温度によって
液相ならびに固相の組成が一義的に決定されることに立
脚している。いま、図1(a)に示す成長系の成長軸方
向の中心部の実温度分布が、図1(b)のTaのごと
く、溶質供給部でTaが一定であり、結晶成長部におい
て成長結晶2と溶液3との固液界面23に近づくにつれ
て温度が徐々に降下するような分布にした場合について
説明する。電気炉等の適当な加熱装置によって坩堝5を
均一に加熱することによって、溶質供給部の溶液30と
溶質供給用原料結晶4とは熱平衡に近い状態となる。勿
論、貫通穴51を通じて溶液30から成長用溶液3への
溶質の供給によって、貫通穴51近傍の溶液30の溶質
濃度は低下するが、拡散や対流によって、溶質は周りか
らすぐに補給される。また、原料結晶4と溶液30との
固液界面43の面積が貫通穴51の総面積よりも充分大
きくしておけば、原料結晶から溶液30への溶質の供給
速度が貫通穴51を通じて溶液30から溶液3への溶質
の供給速度に比べて充分大きくできるから、溶液30の
溶質濃度はその部分の実温度Tに対応する飽和濃度を
とる。勿論、単位時間当たりに貫通穴51を通じて溶液
3へ供給される溶質の量と原料結晶4から溶液30への
供給量とは平衡し、一致する。従って図1(b)に示す
ごとく、溶質供給部における実温度分布Tと溶液の飽
和温度分布Tとはほとんど一致した分布となる。一
方、結晶成長部側では隔壁に設けられた貫通穴51によ
って溶液3へ適切な量に溶質が制御されて供給される。
結晶成長が継続している定常状態ではその供給された溶
質、混晶成長の場合には混晶を構成する高融点側の結晶
成分は拡散あるいは対流によって成長結晶側の固液界面
23に輸送され、そこで成長結晶として析出する。混晶
成長の場合にはこの析出の際に溶液中に含まれる低融点
側の結晶成分を所定の割合で取り込み、所定の組成の混
晶を成長する。結晶成長時には成長結晶側の固液界面2
3の温度が最も低く、そこで実温度Tは溶質の飽和温
度Tとほとんど等しくなっている。本発明の方法では
固液界面23以外の部分では実温度Tよりも溶質の飽
和温度Tを低くできるから、組成的過冷却状態の発生
や溶質の過剰な供給に基づく固液界面23以外の部分で
の結晶の析出が防止できるため、高品質の結晶成長がお
こなえるようになった。これは本発明の特徴の一つであ
る。本発明では安定な成長を得るために結晶成長部の溶
液3の量を一定に制御する方法を導入している。図1
(a)においては隔壁50の位置制御に,Levert
on がJournal of Applied Ph
ysics Vol.29,No.8,(1958)p
p.1241−1244に報告した技術,すなわち浮力
を利用している。結晶成長の進行に伴い,結晶成長部3
の量が減少しようとするが,貫通穴51を通じて溶質供
給部の溶液30から自動的に溶液が供給されるから溶液
3の量を一定に保持することができる。勿論隔壁50の
位置制御に浮力以外の方法を用いても良い。第2図
(a)は溶液3の液面と隔壁50の相対位置を検出し,
機械的な方法で隔壁50に矢印Aの方向に駆動力を加え
て位置制御をおこなうものである。以上図1,および図
2は移動式の坩堝型隔壁を用いる場合について述べた
が,問題点の一つは成長の進行に伴って成長部の溶液3
の液面が降下し,当該液面と電気炉等の加熱装置との相
対位置が変化することである。これを防止するためには
成長の進行に伴って,加熱装置の位置を移動して溶液3
の液面と加熱装置との相対位置の変化を無くす必要があ
る。図3に固定式隔壁50と,原料結晶4を押し上げる
ためのピストン60を用いた例を示す。本例では溶液3
の液面の位置を検出し,液面の位置が変化しないように
ピストンを操作し,結晶引上げによって生ずる溶液3の
減少分を隔壁に設けた貫通穴を介して溶液30から補給
する。本例の特徴は溶液3の液面の位置と加熱装置との
相対位置が変化しないために安定な成長がおこなえるこ
と,およびシリンダー状の坩堝5を用いているので,溶
液30の仕込量,および溶質供給用原料4の大きさを変
えることができるので任意の大きさの結晶引き上げに対
応できる点にある。以上図1,図2および図3の三つの
例について述べたが,本発明はこれ以外でも勿論実施で
きることは可能である。また隔壁に設けた貫通穴51を
通じて溶質供給部から結晶成長部へ供給される溶質量を
直接的に制御する方法として,貫通穴に栓を設け,それ
を開閉する方法をとればよい。また磁界の印加による対
流制御,貫通穴に電流を通じてイオンのマイグレーショ
ンを制御することによっても上記供給量の直接制御が可
能である。
The features of the present invention will be described with reference to the drawings. FIG. 1A is a sectional structural view schematically showing a portion directly related to crystal growth of a crystal growth apparatus used for carrying out the manufacturing method of the present invention. 1 is a seed crystal, 2 is a growing crystal during pulling, 3 is a solution (melt) for growth, 30 is a solution (melt) in a solute supply section, 4 is a raw material crystal for solute supply, 5 is a crucible, 50 Is a partition wall inserted between the solution 30 and the growth solution 3 in the solute supply section, and the partition wall is provided with one or a plurality of through holes 51. Further, the amount of the growth solution 3 can be controlled by moving the partition 50 up and down by an appropriate method, for example, buoyancy. The holes 51 are for controlling the mass of the melt supplied from the solute supply unit to the growth unit, and the size, position, and number of the holes 51 are, of course, set so as to meet the purpose. The principle of the composition control method for homogeneous bulk mixed crystal growth of the present invention is the same as that of the above-mentioned prior invention (Japanese Patent Application No. 143693). That is, in a binary alloy system, or a pseudo-binary alloy system composed of two compounds having one component element in common among the components constituting each compound, if the liquid phase and the solid phase are in thermal equilibrium, Is based on the fact that the composition of the liquid phase and the solid phase is uniquely determined. Now, as shown in FIG. 1B, the actual temperature distribution in the center of the growth system in the growth axis direction shown in FIG. 1A is such that Ta is constant in the solute supply portion, and the growth crystal in the crystal growth portion. A case will be described where the distribution is such that the temperature gradually decreases as approaching the solid-liquid interface 23 between the solution 2 and the solution 3. By uniformly heating the crucible 5 with an appropriate heating device such as an electric furnace, the solution 30 in the solute supply unit and the solute supply raw material crystal 4 are in a state close to thermal equilibrium. Of course, the supply of the solute from the solution 30 to the growth solution 3 through the through hole 51 lowers the solute concentration of the solution 30 near the through hole 51, but the solute is immediately supplied from the surroundings by diffusion or convection. Further, if the area of the solid-liquid interface 43 between the raw material crystal 4 and the solution 30 is sufficiently larger than the total area of the through holes 51, the supply rate of the solute from the raw material crystals to the solution 30 is increased through the through holes 51. since the can sufficiently larger than the feed rate of the solute in the solution 3, the solute concentration of the solution 30 takes a saturation density corresponding to the actual temperature T a of the part. Of course, the amount of solute supplied to the solution 3 through the through-hole 51 per unit time and the amount of supply from the raw material crystal 4 to the solution 30 are balanced and coincide. Thus as shown in FIG. 1 (b), is almost consistent with the distribution the saturation temperature distribution T 1 of the real temperature distribution T a a solution of the solute supply unit. On the other hand, on the crystal growth part side, a solute is controlled and supplied to the solution 3 in an appropriate amount by the through hole 51 provided in the partition wall.
In the steady state where crystal growth is continued, the supplied solute, and in the case of mixed crystal growth, the crystal component on the high melting point side constituting the mixed crystal is transported to the solid-liquid interface 23 on the growing crystal side by diffusion or convection. , Where they are deposited as growing crystals. In the case of mixed crystal growth, the crystal component on the low melting point side contained in the solution at the time of this precipitation is taken in at a predetermined ratio, and a mixed crystal having a predetermined composition is grown. During crystal growth, the solid-liquid interface 2 on the growing crystal side
The lowest temperature of 3, where the actual temperature T a is made almost equal to the saturation temperature T 1 of the solute. Since the portion other than the solid-liquid interface 23 in the process of the present invention can lower the saturation temperature T 1 of the solute than the actual temperature T a, except the solid-liquid interface 23 based on the excessive supply of occurrence and solute compositional supercooling state Since the precipitation of crystals at the portion can be prevented, high-quality crystal growth can be performed. This is one of the features of the present invention. In the present invention, a method for controlling the amount of the solution 3 in the crystal growth portion to be constant in order to obtain stable growth is introduced. FIG.
In (a), Levert is used to control the position of the partition 50.
on is the Journal of Applied Ph
ysics Vol. 29, No. 8, (1958) p
p. 1241-1244, that is, utilizing buoyancy. As the crystal growth progresses, the crystal growth part 3
However, since the solution is automatically supplied from the solution 30 in the solute supply section through the through hole 51, the amount of the solution 3 can be kept constant. Of course, a method other than buoyancy may be used to control the position of the partition 50. FIG. 2 (a) detects the relative position between the liquid surface of the solution 3 and the partition wall 50,
The position is controlled by applying a driving force to the partition 50 in the direction of arrow A by a mechanical method. Although FIGS. 1 and 2 have described the case where a movable crucible type partition wall is used, one of the problems is that the solution 3
Is lowered, and the relative position between the liquid level and a heating device such as an electric furnace changes. To prevent this, as the growth progresses, the position of the heating device is moved and the solution 3 is moved.
It is necessary to eliminate the change in the relative position between the liquid surface and the heating device. FIG. 3 shows an example in which a fixed partition 50 and a piston 60 for pushing up the raw material crystal 4 are used. In this example, solution 3
The position of the liquid surface is detected, the piston is operated so that the position of the liquid surface does not change, and the reduced amount of the solution 3 caused by the crystal pulling is supplied from the solution 30 through the through hole provided in the partition. The features of this example are that the position of the liquid surface of the solution 3 and the relative position with respect to the heating device do not change, so that stable growth can be performed. Further, since the cylindrical crucible 5 is used, the charged amount of the solution 30 and Since the size of the solute supply raw material 4 can be changed, it is possible to cope with crystal pulling of an arbitrary size. Although the three examples of FIGS. 1, 2 and 3 have been described above, it is of course possible to implement the present invention in other ways. Further, as a method of directly controlling the melt mass supplied from the solute supply part to the crystal growth part through the through hole 51 provided in the partition wall, a method of providing a plug in the through hole and opening and closing it may be adopted. Direct control of the supply amount is also possible by controlling convection by applying a magnetic field and controlling the migration of ions through a current through the through-hole.

【0006】[0006]

【実施例】【Example】

(イ)まず図1の坩堝5に所定の形状に整形し、且つエ
ッチング処理で表面の酸化膜等を除去した所定量のGa
Sb多結晶インゴットを原料結晶4として挿入する。も
しインゴットの形状が坩堝の形状に合わない場合には、
原料結晶の上にアンチモンの解離防止のために酸化硼素
あるいは塩化ナトリウム等の液体カプセル用材料を適量
加える。つぎに高純度のアルゴンガスあるいは窒素ガス
あるいは水素ガス等の雰囲気中で750℃程度に加熱し
てGaSb原料結晶を溶解させ、坩堝底部にGaSb原
料結晶4を鋳造配置する。そして冷却後、液体カプセル
材料を適当な方法たとえばメタノール等を用いて除去
し,その上に予め調整した所定の組成をもつ成長溶液用
の多結晶(In,Ga)Sbを所定量加える。例えば,
x=0.7の(In,Ga)Sbの混晶の成長を目的と
する場合には,成長溶液の原料となる(In,Ga)S
bの組成はX=0.2とすればよい。勿論この成長溶液
3用多結晶(In,Ga)Sbの組成は実用上充分な均
一性をもち,且つエッチング等により,その表面から酸
化膜や汚染物質を充分除去していなければならない。こ
の原料結晶は隔壁50内に仕込み融解させることによっ
て,坩堝5内に漏れ出させて所定の配置にすることもで
きる。隔壁50の貫通穴は,たとえば直径4mm,長さ
5mmでよいが,溶液の性質によって変えればよい。必
要であれば,成長溶液3用の(In,Ga)Sb多結晶
上にBなどの液体カプセル7用材料を加える。成
長時にこの液体カプセルの粘性を適度にすることが必要
であり,そのためにはアルカリ金属の弗化物や酸化物の
うちの適当なものを適量添加して使用すれば良い。引上
げに必要な種子結晶1用(In,Ga)Sbは目的とす
る混晶組成と軸方位をもつ(In,Ga)Sb単結晶を
所定の形状に加工した後,研磨,エッチング等により加
工層を除去し,また表面の酸化膜ならびに汚染を充分取
り除く。このようにした種子結晶を成長装置の種子結晶
固定チャックに取り付ける。以上のごとく,成長装置に
材料を仕込んだ後,反応管内に高純度水素を所定の流量
でながし,ある時間例えば1時間程度そのまま保ち,反
応管内の残留水分および酸素などを除去する。反応管内
に加えるガスの圧力は成長温度での(In,Ga)Sb
の解離圧が低いので1気圧程度で充分である。次に電気
炉に電流を通じ,成長溶液3用の(In,Ga)Sb多
結晶が丁度溶解するまで昇温する。その温度はIn−G
a−Sb溶液組成Xによって異なるが,X=0.5の場
合675℃となる。昇温後,隔壁50を下げて成長用溶
液を隔壁内に導入する。勿論,隔壁50を固定しておき
坩堝50を上げてもよい。成長系内の温度が定常状態の
達した後,種子結晶を降下させ,In−Ga−Sb成長
溶液3に種子結晶の先端を浸して,その先端が多少当該
成長溶液に溶解する程度保った後,引上げを開始する。
この(In,Ga)Sb混晶の引き上げ初期に,いわゆ
るネッキングを施すなど,通常のLEC法に用いられて
いるような既知の技術を応用することは勿論である。結
晶引き上げの進行と共に,ピストン機構によって坩堝5
を押し上げ,隔壁50内の成長界面23の高さ,したが
って成長溶液3の体積が常に一定となるようにする。こ
のようにして引上げた(In,Ga)Sb混晶の具体例
を示す。In−Ga−Sb成長溶液3の組成および仕込
量,X=0.2および50g,原料4用多結晶GaSb
の仕込量100g,引上げ軸方位(111),回転速度
20rpm,引上げ速度5mm/h,成長温度595℃
で引上げた結果,直径25mm,長さ10cm,混晶組
成x=0.7の(In,Ga)Sb混晶が得られた。 (ロ)原料多結晶4としてGaAsを用い,成長用溶液
3として所定の組成,例えばX=0.35,の(In,
Ga)As多結晶を仕込み,種子結晶1として所定の固
相組成,たとえばx=0.85,と引き上げ軸方向,た
とえば(111),をもつ(In,Ga)As混晶を用
い,所定の温度,たとえば1100℃,で引き上げをお
こなった結果,組成x=0.85の(In,Ga)As
三元混晶を成長できた。なおこの場合,反応管内には砒
素の解離を防止するため,1.5気圧の高純度窒素ガス
を充填した。本研究によって任意の組成の混晶が成長で
きたが,とくにx≧0.6の組成範囲において高品質の
混晶が得られ,本方法が有効であることが判った。 (ハ)原料多結晶4としてGaPを用い,成長用溶液3
として所定の液相組成,たとえばX=0.2,となるよ
うな(In,Ga)P多結晶を仕込み,種子結晶として
所定の固相組成,たとえばx=0.75,と軸方向,た
とえば(111)をもつ(In,Ga)Pを用いて引上
げをおこない,In0.25Ga0.75P三元混晶を
引上げることができた。なお印加ガス圧は30気圧であ
った。本方法によって任意に組成の混晶が成長できた
が,特にx≧0.5の組成範囲において均質組成の混晶
が得られ,本方法が有効であることが判った。 (ニ)原料多結晶4としてGaPを用い,成長用溶液3
として所定の液相組成,たとえばX=0.15,となる
ようなGa(As,P)多結晶を仕込み,種子結晶とし
て所定の固相組成,たとえばx=0.35,と成長軸方
位,たとえば(100)をもつGa(As,P)混晶を
用いて引上げを行い,GaAs0.650.35三元
混晶を成長した。なお本実施例においては燐の解離圧が
高いため,成長系全体に30〜50気圧のガス圧を印可
できるような引上げ装置を使用した。本方法によって任
意の組成の混晶が成長できたが,特にx≧0.2の組成
範囲において高品質の混晶が得られ,本方法が有効であ
ることが判った。もちろん,この場合のように高圧を要
する時には,通常のLEC装置と同様の圧力の印加方法
を採れば,本方法による均一組成の混晶の引上げが実施
できることはいうまでもない。 (ホ)原料多結晶4としてAlAsを用い,成長用溶液
3として所定の液相組成,たとえばX=0.1,となる
ような(Ga,Al)As多結晶を仕込み,種子結晶と
して所定の固相組成,たとえばx=0.5,と軸方向,
たとえば(111),をもつ(Ga,Al)Asを用い
て引上げを行い,Ga0.5Al0.5As三元混晶を
引き上げることができた。なお印加ガス圧は3気圧であ
った。本方法によって任意の組成の混晶が成長できた
が,特にx≦0.7の組成範囲において高品質の混晶が
得られ,本方法が有効であることが判った。 (ヘ)原料多結晶としてSiを用い,成長用溶液3とし
て所定の組成,たとえばX=0.15,のGeSi多結
晶を仕込み,種子結晶1として所定の固相組成,たとえ
ばx=0.4,と引き上げ軸方向,たとえば(11
1),をもつGeSi混晶を用い,所定の温度,たとえ
ば1100℃,で引き上げを行った結果,組成x=0.
4のGeSi混晶を成長できた。本方法によって任意の
組成の混晶が成長できたが,とくにx≧0.4の組成範
囲において高品質な混晶が得られ,本方法が有効である
ことが判った。
(A) First, a predetermined amount of Ga formed in a crucible 5 of FIG. 1 into a predetermined shape and an oxide film or the like on the surface is removed by etching.
The Sb polycrystalline ingot is inserted as the raw material crystal 4. If the shape of the ingot does not match the shape of the crucible,
An appropriate amount of a liquid capsule material such as boron oxide or sodium chloride is added to the raw material crystal to prevent dissociation of antimony. Next, the GaSb raw material crystal is melted by heating to about 750 ° C. in an atmosphere of high-purity argon gas, nitrogen gas, hydrogen gas or the like, and the GaSb raw material crystal 4 is cast and arranged at the bottom of the crucible. After cooling, the liquid encapsulant is removed using an appropriate method, such as methanol, and a predetermined amount of polycrystalline (In, Ga) Sb for a growth solution having a predetermined composition adjusted in advance is added thereto. For example,
When the purpose is to grow a mixed crystal of (In, Ga) Sb with x = 0.7, (In, Ga) Sb as a raw material of the growth solution is used.
The composition of b may be X = 0.2. Of course, the composition of the polycrystalline (In, Ga) Sb for the growth solution 3 must have practically sufficient uniformity, and an oxide film and contaminants must be sufficiently removed from the surface by etching or the like. The raw material crystals can be charged into the partition walls 50 and melted to leak into the crucible 5 and have a predetermined arrangement. The through hole of the partition wall 50 may be, for example, 4 mm in diameter and 5 mm in length, but may be changed depending on the properties of the solution. If necessary, a material for the liquid capsule 7 such as B 2 O 3 is added on the (In, Ga) Sb polycrystal for the growth solution 3. At the time of growth, it is necessary to make the viscosity of the liquid capsule appropriate, and for that purpose, an appropriate amount of an alkali metal fluoride or oxide may be added and used. (In, Ga) Sb for seed crystal 1 required for pulling is formed by processing a (In, Ga) Sb single crystal having a target mixed crystal composition and an axial orientation into a predetermined shape, and then polishing, etching, or the like. , And also sufficiently remove oxide film and contamination on the surface. The seed crystal thus formed is attached to a seed crystal fixing chuck of the growth apparatus. As described above, after the materials are charged into the growth apparatus, high-purity hydrogen is flown in the reaction tube at a predetermined flow rate, and is kept for a certain time, for example, about one hour, to remove residual moisture and oxygen in the reaction tube. The pressure of the gas added into the reaction tube is (In, Ga) Sb at the growth temperature.
Is about 1 atm. Next, an electric current is passed through an electric furnace, and the temperature is raised until the (In, Ga) Sb polycrystal for the growth solution 3 is just dissolved. The temperature is In-G
Although it depends on the a-Sb solution composition X, the temperature is 675 ° C. when X = 0.5. After the temperature is raised, the partition wall 50 is lowered and the growth solution is introduced into the partition wall. Of course, the crucible 50 may be raised with the partition wall 50 fixed. After the temperature in the growth system reaches a steady state, the seed crystal is lowered, the tip of the seed crystal is immersed in the In-Ga-Sb growth solution 3, and the tip is maintained to such an extent that the tip is slightly dissolved in the growth solution. , Start pulling.
It is a matter of course to apply a known technique used in a normal LEC method, such as so-called necking, at the initial stage of pulling up the (In, Ga) Sb mixed crystal. With the progress of crystal pulling, the crucible 5
So that the height of the growth interface 23 in the partition wall 50 and therefore the volume of the growth solution 3 are always constant. A specific example of the (In, Ga) Sb mixed crystal thus pulled will be described. Composition and charge amount of In-Ga-Sb growth solution 3, X = 0.2 and 50 g, polycrystalline GaSb for raw material 4
100 g, pulling shaft orientation (111), rotation speed 20 rpm, pulling speed 5 mm / h, growth temperature 595 ° C.
As a result, a (In, Ga) Sb mixed crystal having a diameter of 25 mm, a length of 10 cm, and a mixed crystal composition x = 0.7 was obtained. (B) GaAs is used as the raw material polycrystal 4, and the growth solution 3 has a predetermined composition, for example, X = 0.35 (In,
Ga) As polycrystal is charged and (In, Ga) As mixed crystal having a predetermined solid phase composition, for example, x = 0.85 and a pulling-up axis direction, for example, (111), is used as the seed crystal 1. As a result of raising at a temperature of, for example, 1100 ° C., (In, Ga) As having a composition x = 0.85 is obtained.
A ternary mixed crystal could be grown. In this case, the reaction tube was filled with a high-purity nitrogen gas at 1.5 atm in order to prevent dissociation of arsenic. Although mixed crystals of any composition could be grown by this study, high-quality mixed crystals were obtained especially in the composition range of x ≧ 0.6, indicating that this method was effective. (C) A solution for growth 3 using GaP as the raw material polycrystal 4
A (In, Ga) P polycrystal having a predetermined liquid phase composition, for example, X = 0.2, is prepared, and a predetermined solid phase composition, for example, x = 0.75, and an axial direction, for example, as a seed crystal. Pulling was performed using (In, Ga) P having (111), and a ternary mixed crystal of In 0.25 Ga 0.75 P could be pulled. The applied gas pressure was 30 atm. Although a mixed crystal having an arbitrary composition could be grown by this method, a mixed crystal having a homogeneous composition was obtained particularly in a composition range of x ≧ 0.5, which proved that the method was effective. (D) A growth solution 3 using GaP as the raw material polycrystal 4
As a seed crystal, a predetermined solid phase composition, for example, x = 0.35, and a growth axis direction are prepared as seed crystals by preparing a predetermined liquid phase composition, for example, Ga (As, P) polycrystal having X = 0.15. For example, pulling was performed using a Ga (As, P) mixed crystal having (100), and a ternary mixed crystal of GaAs 0.65 P 0.35 was grown. In this embodiment, since the dissociation pressure of phosphorus is high, a pulling device capable of applying a gas pressure of 30 to 50 atm to the entire growth system was used. Although a mixed crystal of an arbitrary composition could be grown by this method, a high-quality mixed crystal was obtained particularly in a composition range of x ≧ 0.2, which proved that this method was effective. Of course, when a high pressure is required as in this case, it is needless to say that a mixed crystal having a uniform composition can be pulled by the present method by applying a pressure application method similar to that of a normal LEC apparatus. (E) AlAs is used as the raw material polycrystal 4, and a (Ga, Al) As polycrystal having a predetermined liquid phase composition, for example, X = 0.1, is charged as the growth solution 3 and a predetermined seed crystal is prepared. Solid phase composition, eg, x = 0.5, and axial direction,
For example, pulling was performed using (Ga, Al) As having (111), and a Ga 0.5 Al 0.5 As ternary mixed crystal could be pulled. The applied gas pressure was 3 atm. Although a mixed crystal of an arbitrary composition could be grown by this method, a high-quality mixed crystal was obtained particularly in a composition range of x ≦ 0.7, which proved that this method was effective. (F) Si is used as a raw material polycrystal, a predetermined composition, for example, GeSi polycrystal having X = 0.15, is charged as a growth solution 3, and a predetermined solid phase composition, for example, x = 0.4, is used as a seed crystal 1. , And the lifting axis direction, for example, (11
1), and pulled up at a predetermined temperature, for example, 1100 ° C., as a result of composition x = 0.
Thus, a GeSi mixed crystal of No. 4 could be grown. Although a mixed crystal having an arbitrary composition could be grown by this method, a high-quality mixed crystal was obtained particularly in a composition range of x ≧ 0.4, which proved that this method was effective.

【0007】[0007]

【発明の効果】貫通穴をもった隔壁によって本発明の結
晶成長系を,溶質供給部と結晶成長部とに分離した結
果,まず溶質供給部において原料結晶と溶液とを接触さ
せて,所定の温度で溶質を飽和溶解できるために,所定
の組成をもつ溶質供給用の安定した溶液が得られるよう
になった。次に貫通穴の寸法,個数,配置を適宜設定す
ることによって,溶質供給部から結晶成長部へ一定の割
合で溶質を供給できるようになった。さらに結晶成長部
では実温度よりも飽和温度(組成で決まる液相温度)が
低くできるよう用になったため,溶液中での組成的過冷
却や,溶質の過剰に基づく樹枝状結晶の発生を防止でき
るようになった。また、ピストン等の機構によって成長
部の溶液量を成長期間中不変に保てるようになり、結晶
や混晶の成長条件を厳密に一定化することができるよう
になった。このことは混晶組成の均一化だけでなく、結
晶の質的均一化も可能とするものである。以上に述べた
本発明の諸効果により,所定の組成をもち均質で高品質
のGeSi等の二元系合金結晶およびIII−V族化合
物の三元混晶が成長できる方法を確立し,また本方法を
実施するための装置が実現できた。本発明の効果は上記
の混晶以外の混晶,たとえばII−VI族化合物同士や
Ge−GaAs,等の元素半導体と化合物半導体同士の
混晶の成長が可能であるだけでなく,KTPやBBOと
いった酸化物結晶の均一組成化にも大きな効果をもつ。
As a result of separating the crystal growth system of the present invention into a solute supply section and a crystal growth section by a partition wall having a through-hole, first, the raw material crystal and the solution are brought into contact with each other in the solute supply section to obtain a predetermined solution. Since a solute can be dissolved at a temperature in a saturated manner, a stable solution for supplying a solute having a predetermined composition can be obtained. Next, by appropriately setting the size, number, and arrangement of the through holes, the solute can be supplied at a constant rate from the solute supply unit to the crystal growth unit. Furthermore, in the crystal growth part, the saturation temperature (liquidus temperature determined by the composition) can be made lower than the actual temperature, preventing the composition from supercooling in the solution and the generation of dendrites due to excess solute. Now you can. Further, the amount of solution in the growth portion can be kept constant during the growth period by a mechanism such as a piston, and the growth conditions for crystals and mixed crystals can be strictly fixed. This enables not only uniformity of the mixed crystal composition but also qualitative uniformity of the crystal. By the above-described various effects of the present invention, a method for growing a binary alloy crystal such as GeSi having a predetermined composition and high quality and a ternary mixed crystal of a III-V compound has been established. An apparatus for implementing the method has been realized. The effect of the present invention is not only to enable the growth of mixed crystals other than the above-described mixed crystals, for example, mixed crystals of II-VI compounds or element semiconductors such as Ge-GaAs and compound semiconductors, but also KTP and BBO. It has a great effect on the uniform composition of oxide crystals.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の製造方法の実施に用いる装置の断面
構造図の一例
FIG. 1 is an example of a sectional structural view of an apparatus used for carrying out a manufacturing method of the present invention.

【図2】 本発明の製造方法の実施に用いる装置の断面
構造図の一例
FIG. 2 is an example of a sectional structural view of an apparatus used for carrying out the manufacturing method of the present invention.

【図3】 本発明の製造方法の実施に用いる装置の断面
構造図の一例
FIG. 3 is an example of a sectional structural view of an apparatus used for carrying out the manufacturing method of the present invention.

【図4】 先願発明の説明図FIG. 4 is an explanatory view of the invention of the prior application.

【図5】 先願発明の説明図FIG. 5 is an explanatory view of the invention of the prior application.

【符号の説明】[Explanation of symbols]

1は種子結晶 2は成長結晶 3は成長用溶液 4は溶質供給用原料結晶 5は坩堝 23は成長結晶と成長用溶液との界面 30は溶質供給部溶液 43は原料結晶と溶質供給部溶液との界面 50は隔壁 51は貫通穴 60はピストン Tは液相温度(飽和温度) Tは実温度1 is a seed crystal 2 is a growth crystal 3 is a growth solution 4 is a solute supply material crystal 5 is a crucible 23 is an interface between a growth crystal and a growth solution 30 is a solute supply solution 43 is a source crystal and a solute supply solution 50 is a partition wall 51 is a through hole 60 is a piston T 1 is a liquid phase temperature (saturation temperature) Ta is an actual temperature

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−26594(JP,A) 特開 平1−208389(JP,A) 特開 昭62−3097(JP,A) 特開 昭61−174189(JP,A) 特開 昭58−91098(JP,A) 特開 平5−213689(JP,A) 特開 平5−85877(JP,A) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-26594 (JP, A) JP-A-1-208389 (JP, A) JP-A-62-3097 (JP, A) JP-A 61-26 174189 (JP, A) JP-A-58-91098 (JP, A) JP-A-5-213689 (JP, A) JP-A-5-85877 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C30B 1/00-35/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 板状で、成長用溶液と成長結晶との固液
界面の表面積に比して十分大きな表面積の溶質供給用原
料結晶を固定する原料結晶固定部を底部に有する坩堝
と、 該坩堝の内部に、該坩堝に対して相対的に移動可能なよ
うに配置され、貫通穴を具備するカップ型の隔壁と、 該隔壁の内部に前記成長用溶液、該隔壁の外部で前記坩
堝の内部に溶質供給部溶液を収納した状態で、前記成長
用溶液の表面が、前記固液界面となるように種子結晶を
保持する種子結晶固定チャックと、 前記坩堝の内部に前記溶質供給部溶液及び前記成長用溶
液を収納した状態で、前記固液界面近傍を除き前記溶質
供給部溶液及び前記成長用溶液の実温度が一定で、前記
固液界面に近づくに従い前記成長用溶液の実温度が低下
する温度分布となるように、前記坩堝を加熱する加熱装
置とを含むことを特徴とする半導体結晶の製造装置。
1. A plate-like solid-liquid of a growth solution and a grown crystal
Source for solute supply with a sufficiently large surface area compared to the surface area of the interface
A crucible having a material crystal fixing part at the bottom for fixing the raw material crystal, a cup-shaped partition wall provided inside the crucible so as to be relatively movable with respect to the crucible, and having a through hole ; said growth solution in the interior of the partition wall, while accommodating the solute supply unit solution in the interior of the crucible outside of the partition wall, the surface of the growth solution, holding the seed crystal so that the solid-liquid interface A seed crystal fixed chuck, and in a state where the solute supply unit solution and the growth solution are stored inside the crucible, the actual temperature of the solute supply unit solution and the growth solution is constant except near the solid-liquid interface. A heating device for heating the crucible so as to have a temperature distribution in which the actual temperature of the growth solution decreases as approaching the solid-liquid interface.
【請求項2】 前記原料結晶固定部は、前記坩堝の内径
と実質的に等しい最大寸法の前記溶質供給用原料結晶を
固定可能であることを特徴とする請求項1記載の半導体
結晶の製造装置。
2. The semiconductor crystal manufacturing apparatus according to claim 1, wherein the raw material crystal fixing section is capable of fixing the solute supply raw material crystal having a maximum dimension substantially equal to the inner diameter of the crucible. .
【請求項3】 坩堝の底部の原料結晶固定部に、溶質供
給用原料結晶として、成長用溶液と成長結晶との固液界
面の表面積に比して十分大きな表面積となるように選定
された板状の第1の半導体の多結晶を固定するステップ
と、 前記坩堝の内部に、前記第1の半導体と第2の半導体と
の混晶の多結晶を載置するステップと、 前記坩堝を前記混晶の多結晶が融解するまで昇温し、融
解した前記多結晶を溶質供給部溶液とするステップと、 前記昇温状態において、前記溶質供給部溶液に対し、貫
通穴を有するカップ型の隔壁を相対的に移動し、前記
の内部に前記成長用溶液となる融解した前記多結晶を
導入するステップと、 前記第1の半導体の多結晶を固定した状態において、前
記昇温状態を維持し、前記溶質供給部溶液の濃度が、前
記溶質供給部溶液の実温度に対応した実質的に一定の飽
和濃度を常に保ち、且つ前記貫通穴により溶質の供給量
を制御することにより、前記成長用溶液の飽和温度が前
記成長用溶液の実温度よりも低い濃度プロファイルとな
る定常状態にするステップと、 該定常状態において、種子結晶の先端を前記成長用溶液
に浸し、該先端の一部を前記成長用溶液に溶解させるス
テップと、 前記定常状態において、前記先端の一部が前記成長用溶
液に溶解した後、前記種子結晶を引き上げ、前記成長結
晶を得るステップとを少なくとも含むことを特徴とする
半導体結晶の製造方法。
3. A plate selected as a solute supply raw material crystal so as to have a sufficiently large surface area as compared with a surface area of a solid-liquid interface between a growth solution and a growth crystal in a raw material crystal fixing portion at a bottom portion of the crucible. Fixing a polycrystal of a first semiconductor in a shape of a solid; mounting a polycrystal of a mixed crystal of the first semiconductor and the second semiconductor inside the crucible; Raising the temperature until the polycrystal of the crystal is melted, and using the melted polycrystal as a solute supply section solution; and in the elevated temperature state, a cup-shaped partition wall having a through hole for the solute supply section solution. relatively moving said septum
Introducing the melted polycrystal that becomes the growth solution into the interior of a wall ; maintaining the temperature rising state in a state in which the first semiconductor polycrystal is fixed, and increasing the concentration of the solute supply solution. However, by always maintaining a substantially constant saturated concentration corresponding to the actual temperature of the solute supply unit solution, and controlling the supply amount of the solute by the through hole, the saturation temperature of the growth solution A step of bringing into a steady state having a concentration profile lower than the actual temperature of the solution; and, in the steady state, immersing a tip of the seed crystal in the growth solution, and dissolving a part of the tip in the growth solution. A step of obtaining the grown crystal by pulling up the seed crystal after a part of the tip is dissolved in the growth solution in the steady state. Method of manufacturing a crystal.
【請求項4】 前記原料結晶固定部に、前記原料結晶固
定部の形状に合わない形状・寸法の前記第1の半導体の
多結晶を搭載するステップと、 前記第1の半導体の多結晶を加熱し、前記第1の半導体
の多結晶を融解することにより、前記第1の半導体の多
結晶を前記原料結晶固定部に鋳造配置するステップと、 該鋳造配置された前記第1の半導体の多結晶を冷却する
ステップとからなることを特徴とする請求項3記載の半
導体結晶の製造方法。
4. A step of mounting a polycrystal of the first semiconductor having a shape and a dimension not conforming to the shape of the raw crystal fixing part on the raw crystal fixing part, and heating the polycrystal of the first semiconductor. Melting the polycrystal of the first semiconductor to cast and arrange the polycrystal of the first semiconductor in the raw material crystal fixing portion; and polycrystal of the cast first semiconductor. 4. The method of manufacturing a semiconductor crystal according to claim 3, comprising a step of cooling the semiconductor crystal.
JP22059692A 1992-07-07 1992-07-07 Method and apparatus for manufacturing semiconductor crystal Expired - Fee Related JP3313412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22059692A JP3313412B2 (en) 1992-07-07 1992-07-07 Method and apparatus for manufacturing semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22059692A JP3313412B2 (en) 1992-07-07 1992-07-07 Method and apparatus for manufacturing semiconductor crystal

Publications (2)

Publication Number Publication Date
JPH0624893A JPH0624893A (en) 1994-02-01
JP3313412B2 true JP3313412B2 (en) 2002-08-12

Family

ID=16753460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22059692A Expired - Fee Related JP3313412B2 (en) 1992-07-07 1992-07-07 Method and apparatus for manufacturing semiconductor crystal

Country Status (1)

Country Link
JP (1) JP3313412B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100654486B1 (en) * 1998-11-26 2006-12-05 신에쯔 한도타이 가부시키가이샤 SiGe decision

Also Published As

Publication number Publication date
JPH0624893A (en) 1994-02-01

Similar Documents

Publication Publication Date Title
US4619730A (en) Process for solidification in a magnetic field with a D.C. heater
US3353914A (en) Method of seed-pulling beta silicon carbide crystals from a melt containing silver and the product thereof
JP3313412B2 (en) Method and apparatus for manufacturing semiconductor crystal
JPS5850953B2 (en) crystal growth method
US4469512A (en) Process for producing high-purity aluminum
JP4235711B2 (en) Manufacturing method of GaAs single crystal by vertical boat method
EP0104741A1 (en) Process for growing crystalline material
JP2002522353A (en) Method and system for stabilizing dendritic web crystal growth
Watanabe et al. GaSb solution growth by the solute feeding Czochralski method
JP3885245B2 (en) Single crystal pulling method
JPS63144191A (en) Production of compound semiconductor single crystal and apparatus therefor
JP3654314B2 (en) Manufacturing method of AlGaAs single crystal by flux method and manufacturing apparatus used therefor
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPH10152393A (en) Growth of bulk crystal and seed crystal for bulk crystal growth
JP2533760B2 (en) Mixed crystal manufacturing method
JP4576571B2 (en) Method for producing solid solution
JPH03193693A (en) Method for growing mixed crystal of compound semiconductor
JPS623097A (en) Production of iii-v compound semiconductor mixed crystal
JP3485120B2 (en) Method for producing ZnSe single crystal
JPH03193689A (en) Production of compound semiconductor crystal
Mullin Single Crystal Growth I: Melt Growth
JPH0952789A (en) Production of single crystal
US4617084A (en) Process for the production of metallic or semimetallic shaped elements
JP2002029881A (en) Method of producing compound semiconductor single crystal
JPH08133897A (en) Production of single crystal of znse

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees