JP3654314B2 - Manufacturing method of AlGaAs single crystal by flux method and manufacturing apparatus used therefor - Google Patents

Manufacturing method of AlGaAs single crystal by flux method and manufacturing apparatus used therefor Download PDF

Info

Publication number
JP3654314B2
JP3654314B2 JP29359295A JP29359295A JP3654314B2 JP 3654314 B2 JP3654314 B2 JP 3654314B2 JP 29359295 A JP29359295 A JP 29359295A JP 29359295 A JP29359295 A JP 29359295A JP 3654314 B2 JP3654314 B2 JP 3654314B2
Authority
JP
Japan
Prior art keywords
flux
crucible
gaas
single crystal
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29359295A
Other languages
Japanese (ja)
Other versions
JPH09110577A (en
Inventor
長寿 永田
武晴 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP29359295A priority Critical patent/JP3654314B2/en
Publication of JPH09110577A publication Critical patent/JPH09110577A/en
Application granted granted Critical
Publication of JP3654314B2 publication Critical patent/JP3654314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、縦型ボートを用いた三元系の単結晶体の製造方法およびその製造装置に関し、さらに詳しくは縦型ボート内に装填されたフラックス(融液)を攪拌しながら結晶を成長せしめる多成分系単結晶の製造方法およびその製造装置に関する。
【0002】
【従来の技術】
従来より、多成分系単結晶の製造方法としては、原料融液中に種結晶(シード)を入れ、この種結晶についた単結晶を回転させながら引き上げるチョコラルスルキー法や、筒状の縦型ボートの中に原料を入れて融液化した後、その融液の温度をボート下部から下げて行き、ボート内に結晶を成長させる縦型ボート法などが広く知られている。
【0003】
この他、目的組成の化合物半導体が析出するような原料組成のフラックスを生成させた後、これをGaAs単結晶シード上にエピタキシャル成長させる方法や、目的組成のAlGaAsをフラックスの上部に浮かせ、これをフラックス下部に析出させて目的組成のAlGaAs単結晶を育成する方法等も知られるようになった。
【0004】
しかしながら、これら従来の結晶成長方法によると、結晶の成長速度が極めて遅いという問題があった。これは結晶の成長速度は、原料がフラックス中に拡散する速度によって左右されるものであるが、従来の技術においてはフラックスを攪拌するための好適な手段がなく、原料のフラックス中への拡散速度は自然拡散支配に基づいていたためである。
【0005】
これらの欠点を解消する一手段として、本発明者等は先に特開平6−340489号「多成分系単結晶体の製造方法およびその製造装置」において、フラックスを容易に攪拌できる希土類磁石回転機構を開示したが、この方法により相当の効果をあげることができた。
【0006】
【発明が解決しようとする課題】
しかしながら、その後の研究で多成分系半導体化合物のうち、特にAlGaAs三元系単結晶を製造する過程で結晶成長時にAlの偏析が著しいことによってフラックス中のAl分が減少することや、AlGaAs化合物のGaに対する溶解度が小さいことから、目的とするAl/Ga比を有するAlGaAs組成の単結晶とすることができない上、フラックス量に対して僅かな量のAlGaAs単結晶しか生成できないということが判明した。
【0007】
従って本発明は、上記の課題を解決し、均一かつ高品質なAlGaAs単結晶を、安価かつ簡易な手段によって短時間で大量に製造できるAlGaAs単結晶体の製造方法およびその製造装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者等は、上記目的を達成するために鋭意研究した結果、希土類磁石でフラックス内に電磁誘導電流を誘起させることによってフラックスを攪拌すると共に、一旦二元系化合物をフラックス化させた後に不足するAl系化合物を添加することによって所望の成分比の組成を有するAlGaAs単結晶を製造できることを見いだし本発明を提供することができた。
【0009】
すなわち本発明の第1は、垂直ブリッジマン炉を用いて、底部にGaAsシードを配置した縦型るつぼ内において該シード上および該シード上方の小孔を有する仕切板上にGaとGaAsとからなる原料を装入した後、これを融解して得たフラックスをGaAsシードに接触させてシーディングする第一工程、次いでAl粒を投入して融解し得られた融液を上記フラックス内に添加してAlを所定濃度に調整した後、Al粒とGaAsとを交互に投入して融解し得られた融液を添加してAlGaAs単結晶体を得る第二工程、から成り、希土類磁石を前記るつぼの外周囲部に周回せしめ前記フラックス内に電磁誘導電流を誘起させることによって該フラックスを撹拌することを特徴とするフラックス法によるAlGaAs単結晶の製造方法である。
【0010】
本発明の第2は、底部にGaAsシードを配置した縦型るつぼを備えた垂直ブリッジマン炉を用いてフラックス法によりGaAsシード上にAlGaAs単結晶を製造する方法であって、成長を開始する第一工程、Al組成を増加する第二工程および目的組成の単結晶を成長させる第三工程から成り、前記第一工程では該るつぼ内において該シード上および該シード上方の小孔を有する仕切板上に装入され融解して得たGaとGaAsとからなりかつAlを含まないフラックスを使用してGaAsシード上にシード付けを行い、前記第二工程ではフラックス量の1/1000(重量)以下の金属Alを一定の時間間隔で投入して融解し得られた融液をフラックス中に装入し、前記第三工程ではAl/Ga重量比が目的組成の重量比となるように金属AlとGaAsを同時または交互に投入して融解し得られた融液をフラックス中に混入するものであって、希土類磁石を前記るつぼの外周囲部に周回せしめ前記フラックス内に電磁誘導電流を誘起させることによって該フラックスを撹拌することを特徴とするAlGaAs単結晶の製造方法である。
【0011】
本発明の第3は、前記縦型るつぼが投入されたAlおよびGaAsを収容する容器(フラックス投入容器)とAlGaAsの単結晶を成長させる容器(結晶成長容器)とからなり、両容器の間の境界に設けられた仕切板の直径2〜5mmの穴を通して両容器内のフラックスが連結され、該仕切板上部の前記投入されたAl、GaAsが融液となって該穴を通って前記AlGaAsの単結晶を成長させる容器(結晶成長容器)内に入ることを特徴とする前記第1または2に記載のAlGaAs単結晶の製造方法である。
【0012】
本発明の第4は、原料融解るつぼを内部に配備した縦型ボートと、るつぼに駆動機構が装備されてなる電磁誘導撹拌式垂直ブリッジマン炉を用いた結晶製造装置において、原料融解るつぼの外周囲部には希土類磁石を周回せしめる希土類磁石回転機構が設けてあると共に、上部にAl、GaAsを投入する原料投入口が設けられ、さらに該ルツボ内にフラックスを上下に分割するための小孔を有する仕切板を設けてあることを特徴とするAlGaAs単結晶の製造装置である。
【0013】
【作用】
本発明において図1に示す製造装置を用い、予め原料融解るつぼ1内の仕切板上下にGaとGaAs原料とを装入して炉内の中央、上部、下部の各ヒーター13、14、15で1170℃まで加熱し、前記るつぼ内の原料を融解する。
【0014】
この場合、るつぼ内の仕切板上下の原料が融解し始めると、中央ヒーター13外周部に設けられた希土類磁石4が周回してこれらの融解液を攪拌し、仕切板上部の原料が融液(以下、フラックスという)となって、仕切板の小孔12を通ってるつぼ1内に入り、一方、るつぼ内のフラックスはるつぼ底部に予め設けられたシードにシード付けされる(第一工程)。
【0015】
次いで該製造装置上部に設けた原料投入口16からAl粒(0.06g/一個)を10分毎に投入して重量でフラックス量の1/1000以下の割合となるように金属Al粒を投下して、フラックス中にAlを一定濃度混入させる。
【0016】
次いで炉温を5℃/hrの割合で徐冷させながら同時に、GaAs0.5gを5分毎に、またAl粒を10分毎に投入して得られたフラックスが仕切板下部のGaAs主体のフラックスと混合するように操作してAlGaAs単結晶を育成し、最終的にAlGaAs単結晶体のインゴットを製造した(第二工程)。
【0017】
上述のように第一工程ならびに第二工程において、フラックス(融液)内に希土類磁石によって電磁誘導電流を誘起させることにより、誘起した電磁誘導電流によってフラックスが攪拌され、原料がフラックス中に拡散する速度が速くなる上、電磁誘導電流でのフラックスの攪拌によるとコンタミネーション等の発生がないため、極めて均一かつ高品質なAlGaAs単結晶を短時間で製造することができるようになる。
【0018】
一方、本発明のAlGaAs単結晶体の製造装置は、縦型ボートと、るつぼに駆動機構が装備されてなる結晶製造装置であるが、中央ヒーターの外周囲部に希土類磁石を周回せしめる希土類磁石回転機構が設けられている。このような結晶製造装置としては、例えば従来の垂直ブリッジマン型多成分系単結晶製造装置の外部に希土類磁石回転機構を設置したものを使用することができ、これにより単結晶を製造することができる。
【0019】
本装置の他の特色の一つは、ヒーター内部に設けたるつぼの中に小孔を有する仕切板を配置して、生成したフラックスをシードに付着させた後、原料投入口から添加して得たAl粒の融液を上記フラックスに少しずつ仕切板の小孔を通してフラックス中に混入させることである。
【0020】
これにより従来法の欠点である結晶成長時のAl偏析を防止し、フラックス中に均一に混入することができるようになった。
【0021】
本発明装置の第二の特色は、るつぼの材質として従来のグラファイト材単独に代え、グラファイトとビトロカーボン(日本カーボン社製ガラス質カーボンの商品名)の特殊な素材を組合わせてるつぼを形成し温度勾配をもたせてあることである。
【0022】
これはグラファイト材単独であると熱伝導率が良すぎるため、熱が逃げ易い性質を有しており、このため熱伝導率がグラファイト材より1/20〜1/50の素材であるビトロカーボン材を使用している。さらに該るつぼ外側には約0.1mm位のビトロコーティングを施して、るつぼ内のガスもれを防止すると効果がよいことを確認している。
【0023】
以下、実施例を参照して本発明について詳細に説明するが、本発明の範囲はこれらに限定されるものではない。
【0024】
【実施例1】
図1に示す同和鉱業製電磁誘導攪拌式垂直ブリッジマン炉(VGF炉)を用い、まず原料としてGa300gとGaAs580gとを2インチ内径の特殊カーボンるつぼに装入するが、この場合先ずGaAsシード3(φ52×15t:方位[100])の上部に適量装入した後、仕切板11を定位置に装備し、さらに残部を仕切板11上に装入し、アルゴン雰囲気で加熱した。
【0025】
ある程度、原料が融解し始めたところで希土類磁石4を100rpm の回転速度で周回させ、電磁誘導攪拌をしながら生成したフラックスを均一に混合してるつぼ温度を1170℃とし、得られたフラックスをGaAsシード3にシード付けを行なった(第一工程)。
【0026】
次いで原料投入口16から金属Al粒(0.06g/個)を10分毎に投入して融解し、得られたAl融液を仕切板11に設けたφ2〜φ5の複数の小孔12からるつぼ1内部のフラックス2中に装入して、混入し続けフラックス量の全量の1/1000(重量比)以下となるように調整した後、炉温を5℃/hrの割合で徐冷すると同時にGaAs0.5gを5分毎に260回、Al粒(0.06g)を10分毎に130回投入して上記同様、得られた融液をるつぼ内部のフラックスに混入せしめて、最終的にAlを30〜35%含有するAlGaAs単結晶(φ52×10mm)を含むインゴットを得た(第二工程)。
【0027】
【実施例2】
実施例1に示す装置を用いて、第一工程を同一条件で制御した。
【0028】
次いでAl粒を10分毎に100ケ投入してAl濃度を調整した後、15℃/cmの温度勾配中を0.25mm/hrの速度でるつぼを下げながら、GaAs(0.5g)を5分毎260回、Al粒(0.06g)を10分毎130回投入して上記同様、得られた融液をるつぼ内部のフラックスに混入せしめて、最終的にAlを30〜35%含むAlGaAs単結晶(φ52×10mm)を含むインゴットを得た(第二工程)。
【0029】
【比較例1】
実施例1と同様の装置を用い、るつぼ内部にGa300g、GaAs580g、Al13.2gを同時に入れ、るつぼ底部に設けられているGaAsシード(φ52×15t)と1200℃で反応させてシード付けを行なった(第一工程)。
【0030】
次いで15℃/cmの温度勾配の雰囲気中を100rpm の電磁誘導攪拌をしながら0.25mm/hrの速度でるつぼを下げて冷却して単結晶化を図ったが、多結晶AlGaAsしか得られなかった。
【0031】
【発明の効果】
従来法においてはAlGaAsダイオードを作製する手段としてAlGaAs単結晶の製造が不可能であったため、GaAs基板上にAlGaAsエピタキシャル層を作成した後GaAs基板をエッチングにより取り除く手段しかなかったが、本発明法によりAlGaAs単結晶の製造が可能となり、生産性の向上に寄与するところが大である。
【図面の簡単な説明】
【図1】本発明に係る製造装置の断面概略図である。
【符号の説明】
1 るつぼ底部(グラファイト)
1´ るつぼ側部(ビトロカーボン)
2 フラックス
GaAsシード
4 希土類磁石
5 上部ヒーターセンサー
6 中央ヒーターセンサー
7 るつぼ受台センサー
8 下部ヒーターセンサー
9 断熱材
10 水冷ジャケット
11 仕切板
12 小孔
13 中央ヒーター
14 上部ヒーター
15 中央ヒーター
16 原料投入口
17 試料温度測定用センサー
[0001]
[Industrial application fields]
The present invention relates to a method for manufacturing a ternary single crystal body using a vertical boat and a manufacturing apparatus therefor, and more particularly, grows crystals while stirring a flux (melt) loaded in the vertical boat. The present invention relates to a method for producing a multicomponent single crystal and an apparatus for producing the same.
[0002]
[Prior art]
Conventionally, as a method for producing a multi-component single crystal, a seed crystal (seed) is put in a raw material melt, and a single crystal attached to this seed crystal is pulled up while rotating, or a cylindrical vertical type A vertical boat method in which a raw material is put into a boat to be melted and then the temperature of the melt is lowered from the bottom of the boat to grow crystals in the boat is widely known.
[0003]
In addition, after generating a raw material composition flux that precipitates the compound semiconductor of the target composition, this is epitaxially grown on a GaAs single crystal seed, or AlGaAs of the target composition is floated on the top of the flux and this is used as a flux. A method of growing an AlGaAs single crystal having a target composition by depositing it at the bottom has also become known.
[0004]
However, according to these conventional crystal growth methods, there is a problem that the crystal growth rate is extremely slow. This is because the crystal growth rate depends on the rate at which the raw material diffuses into the flux. However, in the prior art, there is no suitable means for stirring the flux, and the diffusion rate of the raw material into the flux. Is based on natural diffusion control.
[0005]
As one means for solving these drawbacks, the present inventors previously described a rare earth magnet rotation mechanism capable of easily stirring a flux in Japanese Patent Laid-Open No. 6-340490 “Manufacturing method and manufacturing apparatus for multi-component single crystal”. However, this method has been able to achieve a considerable effect.
[0006]
[Problems to be solved by the invention]
However, in the subsequent research, among the multi-component semiconductor compounds, especially in the process of producing AlGaAs ternary single crystals, the segregation of Al during crystal growth significantly reduces the Al content in the flux. Since the solubility in Ga is small, it was found that an AlGaAs single crystal having the target Al / Ga ratio cannot be obtained, and that only a small amount of AlGaAs single crystal can be formed with respect to the flux amount.
[0007]
Therefore, the present invention provides an AlGaAs single crystal manufacturing method and apparatus for manufacturing an AlGaAs single crystal that can solve the above problems and can manufacture a uniform and high-quality AlGaAs single crystal in a large amount in a short time by an inexpensive and simple means. With the goal.
[0008]
[Means for Solving the Problems]
As a result of diligent research to achieve the above-mentioned object, the present inventors stir the flux by inducing electromagnetic induction current in the flux with a rare earth magnet, and after the binary compound is once fluxed, it is insufficient. The present inventors have found that an AlGaAs single crystal having a composition with a desired component ratio can be produced by adding an Al-based compound.
[0009]
That is, according to the first aspect of the present invention, a vertical Bridgman furnace is used to form Ga and GaAs on the seed and on a partition plate having a small hole above the seed in a vertical crucible having a GaAs seed disposed at the bottom. After the raw material is charged, the first step of seeding the flux obtained by melting this with the GaAs seed is added , and then the melt obtained by melting by adding Al grains is added into the flux. after adjusting the Al to a predetermined concentration Te, Ri second step to obtain an AlGaAs single crystal by adding Al particle and the melt which is obtained melted by introducing alternating with GaAs from adult, the rare earth magnet in the production method of the AlGaAs single crystal by the flux method, wherein that you stirring the flux by inducing an electromagnetic induction current in said flux caused to orbit on the outer periphery of the crucible That.
[0010]
A second aspect of the present invention is a method for producing an AlGaAs single crystal on a GaAs seed by a flux method using a vertical Bridgman furnace having a vertical crucible having a GaAs seed disposed at the bottom , and starting growth. It consists of one step, a second step for increasing the Al composition, and a third step for growing a single crystal of the target composition. In the first step, on the seed plate in the crucible and on the partition plate having a small hole above the seed. The GaAs seed is seeded by using a flux composed of Ga and GaAs obtained by melting and obtained without melting and containing Al, and in the second step, it is 1/1000 (weight) or less of the flux amount. the metallic Al was obtained melted was charged at a constant time interval melt were charged in the flux, in the third step so that Al / Ga ratio by weight is the weight ratio of the target composition Metal Al simultaneously or melt which is obtained melted by introducing alternating GaAs be those mixed in the flux, an electromagnetic induction current in said flux caused to orbit the rare earth magnet to the outer periphery of the crucible This is a method for producing an AlGaAs single crystal, characterized in that the flux is stirred by induction .
[0011]
A third aspect of the present invention includes a container (flux charging container) containing Al and GaAs charged with the vertical crucible and a container (crystal growth container) for growing a single crystal of AlGaAs. The flux in both containers is connected through a hole with a diameter of 2 to 5 mm in the partition plate provided at the boundary, and the introduced Al and GaAs at the upper part of the partition plate become a melt and pass through the hole to form the AlGaAs. 3. The method for producing an AlGaAs single crystal according to the first or second aspect, wherein the method enters a container (crystal growth container) for growing a single crystal.
[0012]
A fourth aspect of the present invention is a crystal manufacturing apparatus using a vertical boat having a raw material melting crucible disposed therein and an electromagnetic induction stirring type vertical Bridgman furnace in which a driving mechanism is installed in the crucible. The surrounding area is provided with a rare earth magnet rotation mechanism for rotating the rare earth magnet , and a raw material inlet for introducing Al and GaAs is provided at the top, and a small hole for dividing the flux vertically in the crucible. An apparatus for producing an AlGaAs single crystal, characterized in that a partition plate is provided.
[0013]
[Action]
In the present invention, using the manufacturing apparatus shown in FIG. 1, Ga and GaAs raw materials are charged in advance on the upper and lower sides of the partition plate in the raw material melting crucible 1, and the heaters 13, 14 and 15 at the center, upper and lower portions in the furnace are used. Heat to 1170 ° C. to melt the raw material in the crucible.
[0014]
In this case, when the raw material above and below the partition plate in the crucible begins to melt, the rare earth magnet 4 provided on the outer peripheral portion of the central heater 13 circulates and stirs these melts. Hereinafter referred to as “flux” and enters the crucible 1 through the small holes 12 of the partition plate, while the flux in the crucible is seeded into seeds provided in advance at the bottom of the crucible (first step).
[0015]
Next, Al particles (0.06 g / piece) are charged every 10 minutes from the raw material inlet 16 provided in the upper part of the production apparatus, and the metal Al particles are dropped so that the ratio is 1/1000 or less of the flux amount by weight. Then, a certain concentration of Al is mixed in the flux.
[0016]
Next, while gradually cooling the furnace temperature at a rate of 5 ° C./hr, at the same time, 0.5 g of GaAs is added every 5 minutes and Al particles are added every 10 minutes. The AlGaAs single crystal was grown by operating so as to be mixed, and finally an ingot of the AlGaAs single crystal was manufactured (second step).
[0017]
As described above, in the first step and the second step, an electromagnetic induction current is induced in the flux (melt) by a rare earth magnet, whereby the flux is agitated by the induced electromagnetic induction current and the raw material diffuses into the flux. In addition to increasing the speed, the flux agitation with the electromagnetic induction current does not cause contamination, so that an extremely uniform and high quality AlGaAs single crystal can be produced in a short time.
[0018]
On the other hand, the AlGaAs single crystal manufacturing apparatus of the present invention is a crystal manufacturing apparatus in which a vertical boat and a crucible are equipped with a drive mechanism, but a rare earth magnet rotating around the outer periphery of the central heater. A mechanism is provided. As such a crystal manufacturing apparatus, for example, a conventional vertical Bridgman type multi-component single crystal manufacturing apparatus with a rare earth magnet rotating mechanism installed outside can be used, and thereby a single crystal can be manufactured. it can.
[0019]
One of the other features of this device is that a partition plate having small holes is placed in a crucible provided inside the heater, and the generated flux is attached to the seed and then added from the raw material inlet. The Al particle melt is mixed into the flux little by little through the small holes in the partition plate.
[0020]
As a result, Al segregation during crystal growth, which is a drawback of the conventional method, can be prevented and the flux can be mixed uniformly in the flux.
[0021]
The second feature of the device of the present invention is that a crucible is formed by combining a special material of graphite and Vitrocarbon (a product name of vitreous carbon manufactured by Nippon Carbon Co., Ltd.) instead of the conventional graphite material alone as the crucible material. It has a temperature gradient.
[0022]
This is because a graphite material alone has a thermal conductivity that is too good, and therefore has a property that heat easily escapes. Therefore, a vitro carbon material that has a thermal conductivity of 1/20 to 1/50 that of a graphite material. Is used. Furthermore, it has been confirmed that the outer side of the crucible is provided with a vitro coating of about 0.1 mm to prevent gas leakage in the crucible.
[0023]
EXAMPLES Hereinafter, although this invention is demonstrated in detail with reference to an Example, the scope of the present invention is not limited to these.
[0024]
[Example 1]
Dowa Mining Ltd. Electromagnetic induction stirring type vertical Bridgman furnace shown in FIG. 1 (VGF furnace) using a first charged to a special carbon crucible 2 inch inner diameter and a Ga300g and GaAs580g as raw materials Suruga, in this case first GaAs seed 3 ( After an appropriate amount was charged in the upper part of φ52 × 15t (azimuth [100]), the partition plate 11 was mounted at a fixed position, and the remaining portion was further charged on the partition plate 11 and heated in an argon atmosphere.
[0025]
When the raw material starts to melt to some extent, the rare earth magnet 4 is rotated at a rotational speed of 100 rpm, the generated flux is uniformly mixed with electromagnetic induction stirring, the crucible temperature is set to 1170 ° C., and the obtained flux is used as a GaAs seed. 3 was seeded (first step).
[0026]
Next, metallic Al particles (0.06 g / piece) are charged every 10 minutes from the raw material inlet 16 and melted, and the obtained Al melt is supplied from a plurality of small holes 12 of φ2 to φ5 provided in the partition plate 11. When it is charged into the flux 2 inside the crucible 1 and adjusted to be 1/1000 (weight ratio) or less of the total amount of flux, the furnace temperature is gradually cooled at a rate of 5 ° C./hr. At the same time, 0.5 g of GaAs is added 260 times every 5 minutes and Al particles (0.06 g) are added 130 times every 10 minutes, and the resulting melt is mixed into the flux inside the crucible as above, and finally An ingot containing an AlGaAs single crystal (φ52 × 10 mm) containing 30 to 35% Al was obtained (second step).
[0027]
[Example 2]
Using the apparatus shown in Example 1, the first step was controlled under the same conditions.
[0028]
Next, 100 grains of Al particles were added every 10 minutes to adjust the Al concentration, and then 5% GaAs (0.5 g) was added while lowering the crucible at a rate of 0.25 mm / hr in a temperature gradient of 15 ° C./cm. AlGaAs (0.06 g) was added 260 times per minute and 130 times every 10 minutes and the resulting melt was mixed into the flux inside the crucible, and finally AlGaAs containing 30 to 35% Al. An ingot containing a single crystal (φ52 × 10 mm) was obtained (second step).
[0029]
[Comparative Example 1]
Using the same apparatus as in Example 1, Ga300g, GaAs580g, and Al13.2g were simultaneously placed in the crucible, and the seeding was performed by reacting at 1200 ° C. with the GaAs seed (φ52 × 15t) provided at the bottom of the crucible. (First step).
[0030]
Next, in an atmosphere with a temperature gradient of 15 ° C./cm, cooling was performed by lowering the crucible at a speed of 0.25 mm / hr with electromagnetic induction stirring at 100 rpm, but single crystallization was achieved, but only polycrystalline AlGaAs was obtained. It was.
[0031]
【The invention's effect】
In the conventional method, since it was impossible to produce an AlGaAs single crystal as a means for producing an AlGaAs diode, there was only a means for removing the GaAs substrate by etching after forming an AlGaAs epitaxial layer on the GaAs substrate. AlGaAs single crystals can be manufactured, which greatly contributes to the improvement of productivity.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a manufacturing apparatus according to the present invention.
[Explanation of symbols]
1 Crucible bottom (graphite)
1 'crucible side (vitrocarbon)
2 Flux 3 GaAs seed 4 Rare earth magnet 5 Upper heater sensor 6 Central heater sensor 7 Crucible cradle sensor 8 Lower heater sensor 9 Heat insulating material 10 Water cooling jacket 11 Partition plate 12 Small hole 13 Central heater 14 Upper heater 15 Central heater 16 Raw material inlet
17 Sample temperature measurement sensor

Claims (4)

垂直ブリッジマン炉を用いて、底部にGaAsシードを配置した縦型るつぼ内において該シード上および該シード上方の小孔を有する仕切板上にGaとGaAsとからなる原料を装入した後、これを融解して得たフラックスをGaAsシードに接触させてシーディングする第一工程、次いでAl粒を投入して融解し得られた融液を上記フラックス内に添加してAlを所定濃度に調整した後、Al粒とGaAsとを交互に投入して融解し得られた融液を添加してAlGaAs単結晶体を得る第二工程、から成り、希土類磁石を前記るつぼの外周囲部に周回せしめ前記フラックス内に電磁誘導電流を誘起させることによって該フラックスを撹拌することを特徴とするフラックス法によるAlGaAs単結晶の製造方法。 Using a vertical Bridgman furnace, after a raw material composed of Ga and GaAs is charged on the seed and on a partition plate having a small hole above the seed in a vertical crucible having a GaAs seed at the bottom, The first step of seeding by bringing the flux obtained by melting the GaAs seed into contact with the GaAs seed, then adding the melt obtained by melting the Al grains into the flux to adjust the Al to a predetermined concentration after the second step to obtain an AlGaAs single crystal by adding Al particle and the melt which is obtained melted by introducing alternating with GaAs, formed Ri from allowed around the rare earth magnet to the outer periphery of the crucible method of manufacturing AlGaAs single crystal by the flux method, wherein that you stirring the flux by inducing an electromagnetic induction current in said flux. 底部にGaAsシードを配置した縦型るつぼを備えた垂直ブリッジマン炉を用いてフラックス法によりGaAsシード上にAlGaAs単結晶を製造する方法であって、成長を開始する第一工程、Al組成を増加する第二工程および目的組成の単結晶を成長させる第三工程から成り、前記第一工程では該るつぼ内において該シード上および該シード上方の小孔を有する仕切板上に装入され融解して得たGaとGaAsとからなりかつAlを含まないフラックスを使用してGaAsシード上にシード付けを行い、前記第二工程ではフラックス量の1/1000(重量)以下の金属Alを一定の時間間隔で投入して融解し得られた融液をフラックス中に装入し、前記第三工程ではAl/Ga重量比が目的組成の重量比となるように金属AlとGaAsを同時または交互に投入して融解し得られた融液をフラックス中に混入するものであって、希土類磁石を前記るつぼの外周囲部に周回せしめ前記フラックス内に電磁誘導電流を誘起させることによって該フラックスを撹拌することを特徴とするAlGaAs単結晶の製造方法。 This is a method of manufacturing an AlGaAs single crystal on a GaAs seed by a flux method using a vertical Bridgman furnace equipped with a vertical crucible with a GaAs seed placed at the bottom. The first step of starting growth is to increase the Al composition. And a third step of growing a single crystal of the desired composition. In the first step, the crucible is charged on the seed and on a partition plate having a small hole above the seed and melted. The obtained GaAs seed is seeded using a flux composed of Ga and GaAs and containing no Al. In the second step, metal Al of 1/1000 (weight) or less of the flux amount is fixed at regular intervals. in a charged to have been obtained by melting the melt was charged in the flux, the third metallic Al as Al / Ga ratio by weight is the weight ratio of the target composition in the process and Ga simultaneously or melt which is obtained melted by introducing alternating s be those mixed in the flux, thereby inducing an electromagnetic induction current in the flux caused to orbit the rare earth magnet to the outer periphery of the crucible The method for producing an AlGaAs single crystal, wherein the flux is stirred by 前記縦型るつぼが投入されたAlおよびGaAsを収容する容器(フラックス投入容器)とAlGaAsの単結晶を成長させる容器(結晶成長容器)とからなり、両容器の間の境界に設けられた仕切板の直径2〜5mmの穴を通して両容器内のフラックスが連結され、該仕切板上部の前記投入されたAl、GaAsが融液となって該穴を通って前記AlGaAsの単結晶を成長させる容器(結晶成長容器)内に入ることを特徴とする請求項1または2に記載のAlGaAs単結晶の製造方法。A partition plate provided at the boundary between the two containers, comprising a container (flux charging container) containing Al and GaAs charged with the vertical crucible and a container (crystal growth container) for growing an AlGaAs single crystal. The container in which the fluxes in both containers are connected through a hole having a diameter of 2 to 5 mm, and the Al, GaAs charged on the upper part of the partition plate becomes a melt to grow the AlGaAs single crystal through the hole ( 3. The method for producing an AlGaAs single crystal according to claim 1, wherein the method enters a crystal growth vessel . 原料融解るつぼを内部に配備した縦型ボートと、るつぼに駆動機構が装備されてなる電磁誘導撹拌式垂直ブリッジマン炉を用いた結晶製造装置において、原料融解るつぼの外周囲部には希土類磁石を周回せしめる希土類磁石回転機構が設けてあると共に、上部にAl、GaAsを投入する原料投入口が設けられ、さらに該ルツボ内にフラックスを上下に分割するための小孔を有する仕切板を設けてあることを特徴とするAlGaAs単結晶の製造装置。In a crystal manufacturing apparatus using a vertical boat with a raw material melting crucible inside and an electromagnetic induction stirring vertical Bridgman furnace equipped with a drive mechanism in the crucible, a rare earth magnet is placed on the outer periphery of the raw material melting crucible. A rotating rare earth magnet rotating mechanism is provided, a raw material inlet for introducing Al and GaAs is provided at the top, and a partition plate having small holes for dividing the flux vertically is provided in the crucible. An apparatus for producing an AlGaAs single crystal.
JP29359295A 1995-10-17 1995-10-17 Manufacturing method of AlGaAs single crystal by flux method and manufacturing apparatus used therefor Expired - Fee Related JP3654314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29359295A JP3654314B2 (en) 1995-10-17 1995-10-17 Manufacturing method of AlGaAs single crystal by flux method and manufacturing apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29359295A JP3654314B2 (en) 1995-10-17 1995-10-17 Manufacturing method of AlGaAs single crystal by flux method and manufacturing apparatus used therefor

Publications (2)

Publication Number Publication Date
JPH09110577A JPH09110577A (en) 1997-04-28
JP3654314B2 true JP3654314B2 (en) 2005-06-02

Family

ID=17796723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29359295A Expired - Fee Related JP3654314B2 (en) 1995-10-17 1995-10-17 Manufacturing method of AlGaAs single crystal by flux method and manufacturing apparatus used therefor

Country Status (1)

Country Link
JP (1) JP3654314B2 (en)

Also Published As

Publication number Publication date
JPH09110577A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
US4040895A (en) Control of oxygen in silicon crystals
US4622211A (en) Apparatus for solidification with resistance heater and magnets
US5314667A (en) Method and apparatus for single crystal silicon production
JPH06239691A (en) Method for growing single crystal
US3353914A (en) Method of seed-pulling beta silicon carbide crystals from a melt containing silver and the product thereof
JPH076972A (en) Growth method and device of silicon single crystal
US4303465A (en) Method of growing monocrystals of corundum from a melt
JP2006306723A (en) Gallium arsenide single crystal
JPS6168389A (en) Apparatus for growing single crystal
US3261722A (en) Process for preparing semiconductor ingots within a depression
JP3654314B2 (en) Manufacturing method of AlGaAs single crystal by flux method and manufacturing apparatus used therefor
JP3069656B1 (en) Method for producing spherical metallic titanium and titanium compound
JP2690419B2 (en) Single crystal growing method and apparatus
JPH06128096A (en) Production of compound semiconductor polycrystal
JPH04305091A (en) Method and device for pulling up single crystal
JP3885245B2 (en) Single crystal pulling method
JP3018738B2 (en) Single crystal manufacturing equipment
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP2677859B2 (en) Crystal growth method of mixed crystal type compound semiconductor
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JP7318884B2 (en) Single crystal growth method for iron-gallium alloy
JPS61146788A (en) Method for growing single crystal
JP2758038B2 (en) Single crystal manufacturing equipment
JP2850561B2 (en) Single crystal pulling device
KR100194363B1 (en) Method and apparatus for manufacturing single crystal silicon

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees