JPH09110577A - Production of aluminum-gallium-arsenic single crystal by flux method and production unit therefor - Google Patents

Production of aluminum-gallium-arsenic single crystal by flux method and production unit therefor

Info

Publication number
JPH09110577A
JPH09110577A JP29359295A JP29359295A JPH09110577A JP H09110577 A JPH09110577 A JP H09110577A JP 29359295 A JP29359295 A JP 29359295A JP 29359295 A JP29359295 A JP 29359295A JP H09110577 A JPH09110577 A JP H09110577A
Authority
JP
Japan
Prior art keywords
flux
gaas
single crystal
crucible
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29359295A
Other languages
Japanese (ja)
Other versions
JP3654314B2 (en
Inventor
Choju Nagata
長寿 永田
Takeharu Yamamura
武晴 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP29359295A priority Critical patent/JP3654314B2/en
Publication of JPH09110577A publication Critical patent/JPH09110577A/en
Application granted granted Critical
Publication of JP3654314B2 publication Critical patent/JP3654314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To mass-produce a three-component single crystal in a short time by inexpensive and simple means by fluxing a stock comprising Ga and GaAs followed by adding Al being in shortage to the flux to grow an AlGaAs single crystal having a required composition. SOLUTION: The upper and lower spaces of a partition plate 11 having a tiny hole 12 in a longitudinal crucible 1 for melting stocks are first charged with Ga and GaAs stocks which are then heated and melted into a flux 2 which is agitated by rotating a rare earth metal magnet 4. (1) The Al-free flux is brought into contact with a GaAs seed 3 to effect seeding. (2) Al granules are charged in an amount <=1/1,000wt. times that of the flux via a stock inlet 16 into the flux at specified time intervals to adjust the amount of the Al in the flux to a specified concentration. (3) The flux is charged with Al granules and GaAs granules alternately or simultaneously so that the weight ratio Al/Ga comes to that with the aimed composition; thereby the objective AlGaAs single crystal having a target composition is grown to produce an ingot of single crystal form.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、縦型ボートを用いた三
元系の単結晶体の製造方法およびその製造装置に関し、
さらに詳しくは縦型ボート内に装填されたフラックス
(融液)を攪拌しながら結晶を成長せしめる多成分系単
結晶の製造方法およびその製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for manufacturing a ternary single crystal body using a vertical boat.
More specifically, the present invention relates to a method and an apparatus for manufacturing a multi-component single crystal in which crystals are grown while stirring a flux (melt) loaded in a vertical boat.

【0002】[0002]

【従来の技術】従来より、多成分系単結晶の製造方法と
しては、原料融液中に種結晶(シード)を入れ、この種
結晶についた単結晶を回転させながら引き上げるチョコ
ラルスルキー法や、筒状の縦型ボートの中に原料を入れ
て融液化した後、その融液の温度をボート下部から下げ
て行き、ボート内に結晶を成長させる縦型ボート法など
が広く知られている。
2. Description of the Related Art Conventionally, as a method for producing a multi-component single crystal, a choral sulky method in which a seed crystal (seed) is put into a raw material melt and the single crystal attached to this seed crystal is pulled while rotating, A vertical boat method in which a raw material is put into a cylindrical vertical boat to melt it and then the temperature of the melt is lowered from the bottom of the boat to grow crystals in the boat is widely known.

【0003】この他、目的組成の化合物半導体が析出す
るような原料組成のフラックスを生成させた後、これを
GaAs単結晶シード上にエピタキシャル成長させる方
法や、目的組成のAlGaAsをフラックスの上部に浮
かせ、これをフラックス下部に析出させて目的組成のA
lGaAs単結晶を育成する方法等も知られるようにな
った。
In addition to the above, a method of generating a flux having a raw material composition such that a compound semiconductor having a desired composition is deposited and then epitaxially growing the flux on a GaAs single crystal seed, or floating AlGaAs having a desired composition above the flux, This is deposited in the lower part of the flux and the target composition of A
A method for growing an lGaAs single crystal has also become known.

【0004】しかしながら、これら従来の結晶成長方法
によると、結晶の成長速度が極めて遅いという問題があ
った。これは結晶の成長速度は、原料がフラックス中に
拡散する速度によって左右されるものであるが、従来の
技術においてはフラックスを攪拌するための好適な手段
がなく、原料のフラックス中への拡散速度は自然拡散支
配に基づいていたためである。
However, according to these conventional crystal growth methods, there is a problem that the crystal growth rate is extremely slow. This is because the crystal growth rate depends on the rate at which the raw material diffuses into the flux, but in the prior art there is no suitable means for stirring the flux, and the rate of diffusion of the raw material into the flux is Because it was based on natural diffusion control.

【0005】これらの欠点を解消する一手段として、本
発明者等は先に特開平6−340489号「多成分系単
結晶体の製造方法およびその製造装置」において、フラ
ックスを容易に攪拌できる希土類磁石回転機構を開示し
たが、この方法により相当の効果をあげることができ
た。
As a means for solving these drawbacks, the present inventors have previously disclosed in JP-A-6-340489 "Method and apparatus for producing a multi-component single crystal body" in which a rare earth which can easily stir a flux is used. Although a magnet rotating mechanism has been disclosed, this method has been able to achieve a considerable effect.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、その後
の研究で多成分系半導体化合物のうち、特にAlGaA
s三元系単結晶を製造する過程で結晶成長時にAlの偏
析が著しいことによってフラックス中のAl分が減少す
ることや、AlGaAs化合物のGaに対する溶解度が
小さいことから、目的とするAl/Ga比を有するAl
GaAs組成の単結晶とすることができない上、フラッ
クス量に対して僅かな量のAlGaAs単結晶しか生成
できないということが判明した。
However, in the subsequent research, among the multi-component semiconductor compounds, particularly AlGaA
Since the segregation of Al during crystal growth during the process of producing a ternary single crystal reduces the Al content in the flux and the solubility of the AlGaAs compound in Ga is small, the target Al / Ga ratio is With Al
It was found that a single crystal having a GaAs composition cannot be formed and only a small amount of AlGaAs single crystal can be produced with respect to the flux amount.

【0007】従って本発明は、上記の課題を解決し、均
一かつ高品質なAlGaAs単結晶を、安価かつ簡易な
手段によって短時間で大量に製造できるAlGaAs単
結晶体の製造方法およびその製造装置を提供することを
目的とする。
Therefore, the present invention solves the above-mentioned problems and provides a method and an apparatus for producing an AlGaAs single crystal body capable of producing a uniform and high-quality AlGaAs single crystal in a large amount in a short time by an inexpensive and simple means. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明者等は、上記目的
を達成するために鋭意研究した結果、希土類磁石でフラ
ックス内に電磁誘導電流を誘起させることによってフラ
ックスを攪拌すると共に、一旦二元系化合物をフラック
ス化させた後に不足するAl系化合物を添加することに
よって所望の成分比の組成を有するAlGaAs単結晶
を製造できることを見いだし本発明を提供することがで
きた。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to achieve the above object, and as a result, the flux is agitated by inducing an electromagnetic induction current in the flux with a rare earth magnet, and the binary It has been found that an AlGaAs single crystal having a desired composition ratio can be manufactured by adding a deficient Al compound after fluxing the compound to provide the present invention.

【0009】すなわち本発明の第1は、底部にGaAs
シード体を配置したるつぼ内にGaとGaAsとからな
る原料を装入した後、これを融解して得たフラックスを
GaAsシート体に接触させてシーディングする第一工
程,次いでAl粒を上記フラックス内に添加してAlを
所定濃度に調整した後、Al粒とGaAsとを交互に添
加してAlGaAs単結晶体を得る第二工程,から成る
ことを特徴とするフラックス法によるAlGaAs単結
晶の製造方法に関する。
That is, the first aspect of the present invention is that GaAs is formed on the bottom.
A first step of seeding by placing a raw material consisting of Ga and GaAs in a crucible in which a seed body is placed, and then melting the resulting material to bring it into contact with a GaAs sheet body for seeding, and then using Al particles as the above flux A second step of obtaining AlGaAs single crystal by alternately adding Al grains and GaAs after adjusting Al to a predetermined concentration by adding Al in the inside to produce AlGaAs single crystal by the flux method. Regarding the method.

【0010】本発明の第2は、縦型るつぼを用いてフラ
ックス法によりGaAs種結晶上にAlGaAs単結晶
を製造する方法であって、成長を開始する第一工程、A
l組成を増加する第二工程および目的組成の単結晶を成
長させる第三工程から成り、前記第一工程ではGaとG
aAsとからなりかつAlを含まないフラックスを使用
してGaAsシード上にシード付けを行い、前記第二工
程ではフラックス量の1/1000(重量)以下の金属
Alを一定の時間間隔でフラックス中に投入し、前記第
三工程ではAl/Ga重量比が目的組成の重量比となる
ように金属AlとGaAsを同時または交互にフラック
ス中に投入することを特徴とするAlGaAs単結晶の
製造方法に関する。
A second aspect of the present invention is a method for producing an AlGaAs single crystal on a GaAs seed crystal by a flux method using a vertical crucible, the first step of starting the growth, A
l The second step of increasing the composition and the third step of growing a single crystal of the target composition are included.
Seeding is performed on a GaAs seed using a flux that is composed of aAs and does not contain Al. In the second step, 1/1000 (weight) or less of the flux amount of metallic Al is introduced into the flux at regular time intervals. The present invention relates to a method for producing an AlGaAs single crystal, characterized in that, in the third step, the metal Al and GaAs are simultaneously or alternately introduced into the flux so that the Al / Ga weight ratio becomes the weight ratio of the target composition.

【0011】本発明の第3は、前記縦型るつぼが投入さ
れたAlおよびGaAsを収容する容器(フラックス投
入容器)とAlGaAsの単結晶を成長させる容器(結
晶成長容器)とからなり、両容器の間の境界に設けられ
た直径2〜5mmの穴を通して両容器内のフラックスが
連結されていることを特徴とする前記第2に記載のAl
GaAs単結晶の製造方法に関する。
A third aspect of the present invention comprises a container (flux charging container) for containing Al and GaAs in which the vertical crucible is charged and a container for growing a single crystal of AlGaAs (crystal growth container). The flux in both containers is connected through a hole having a diameter of 2 to 5 mm provided at a boundary between the Al and the Al according to the second aspect.
The present invention relates to a method for manufacturing a GaAs single crystal.

【0012】本発明の第4は、原料融解るつぼを内部に
配備した縦型ボートと、るつぼに駆動機構が装備されて
なる結晶製造装置において、原料融解るつぼの外周囲部
には希土類磁石を周回せしめる希土類磁石回転機構が設
けてあると共に、上記原料融解るつぼは熱伝導率の異な
る2種の素材から構成され、さらに該るつぼ内にフラッ
クスを上下に分割するための小孔を有する仕切板を設け
てあることを特徴とするAlGaAs単結晶の製造装置
に関する。
A fourth aspect of the present invention is a crystal manufacturing apparatus comprising a vertical boat having a raw material melting crucible provided therein and a driving mechanism provided in the crucible, wherein a rare earth magnet is circulated around the outer periphery of the raw material melting crucible. A rare earth magnet rotating mechanism is provided, and the raw material melting crucible is made of two kinds of materials having different thermal conductivities, and a partition plate having a small hole for vertically dividing the flux is provided in the crucible. The present invention relates to an apparatus for producing an AlGaAs single crystal, which is characterized in that

【0013】[0013]

【作用】本発明において図1に示す製造装置を用い、予
め原料融解るつぼ1内の仕切板上下にGaとGaAs原
料とを装入して炉内の中央、上部、下部の各ヒーター1
3、14、15で1170℃まで加熱し、前記るつぼ内
の原料を融解する。
In the present invention, using the manufacturing apparatus shown in FIG. 1, Ga and GaAs raw materials are charged in advance above and below the partition plate in the raw material melting crucible 1, and the central, upper and lower heaters 1 in the furnace are charged.
The materials in the crucible are melted by heating to 1,170 ° C. in 3, 14, and 15.

【0014】この場合、るつぼ内の仕切板上下の原料が
融解し始めると、中央ヒーター13外周部に設けられた
希土類磁石4が周回してこれらの融解液を攪拌し、仕切
板上部の原料が融液(以下、フラックスという)となっ
て、仕切板の小孔12を通ってるつぼ1内に入り、一
方、るつぼ内のフラックスはるつぼ底部に予め設けられ
たシード体にシード付けされる(第一工程)。
In this case, when the raw materials above and below the partition plate in the crucible begin to melt, the rare earth magnet 4 provided on the outer peripheral portion of the central heater 13 orbits to agitate these melts, and the raw material above the partition plate It becomes a melt (hereinafter referred to as a flux) and enters the crucible 1 through the small holes 12 of the partition plate, while the flux in the crucible is seeded on a seed body previously provided at the bottom of the crucible (No. 1). One step).

【0015】次いで該製造装置上部に設けた原料投入口
16からAl粒(0.06g/一個)を10分毎に投入
して重量でフラックス量の1/1000以下の割合とな
るように金属Al粒を投下して、フラックス中にAlを
一定濃度混入させる。
Next, Al particles (0.06 g / one piece) are charged from the raw material charging port 16 provided at the upper part of the manufacturing apparatus every 10 minutes, so that the weight ratio of the metallic Al is 1/1000 or less. Grains are dropped to mix a certain concentration of Al in the flux.

【0016】次いで炉温を5℃/hrの割合で徐冷させな
がら同時に、GaAs0.5gを5分毎に、またAl粒
を10分毎に投入して得られたフラックスが仕切板下部
のGaAs主体のフラックスと混合するように操作して
AlGaAs単結晶を育成し、最終的にAlGaAs単
結晶体のインゴットを製造した(第二工程)。
Next, while gradually cooling the furnace temperature at a rate of 5 ° C./hr, 0.5 g of GaAs was introduced every 5 minutes and Al particles were introduced every 10 minutes, and the flux obtained was GaAs under the partition plate. The AlGaAs single crystal was grown by operating so as to mix with the main flux, and finally an ingot of the AlGaAs single crystal was manufactured (second step).

【0017】上述のように第一工程ならびに第二工程に
おいて、フラックス(融液)内に希土類磁石によって電
磁誘導電流を誘起させることにより、誘起した電磁誘導
電流によってフラックスが攪拌され、原料がフラックス
中に拡散する速度が速くなる上、電磁誘導電流でのフラ
ックスの攪拌によるとコンタミネーション等の発生がな
いため、極めて均一かつ高品質なAlGaAs単結晶を
短時間で製造することができるようになる。
As described above, in the first step and the second step, the electromagnetic induction current is induced in the flux (melt) by the rare earth magnet, the flux is agitated by the induced electromagnetic induction current, and the raw material is in the flux. In addition to increasing the diffusion speed, the contamination of the flux due to the electromagnetic induction current does not cause contamination, so that an extremely uniform and high quality AlGaAs single crystal can be manufactured in a short time.

【0018】一方、本発明のAlGaAs単結晶体の製
造装置は、縦型ボートと、るつぼに駆動機構が装備され
てなる結晶製造装置であるが、中央ヒーターの外周囲部
に希土類磁石を周回せしめる希土類磁石回転機構が設け
られている。このような結晶製造装置としては、例えば
従来の垂直ブリッジマン型多成分系単結晶製造装置の外
部に希土類磁石回転機構を設置したものを使用すること
ができ、これにより単結晶を製造することができる。
On the other hand, the AlGaAs single crystal production apparatus of the present invention is a crystal production apparatus having a vertical boat and a driving mechanism provided in a crucible. A rare earth magnet is circulated around the outer periphery of the central heater. A rare earth magnet rotating mechanism is provided. As such a crystal production apparatus, for example, a conventional vertical Bridgman-type multi-component single crystal production apparatus provided with a rare earth magnet rotation mechanism outside can be used, whereby a single crystal can be produced. it can.

【0019】本装置の他の特色の一つは、ヒーター内部
に設けたるつぼの中に小孔を有する仕切板を配置して、
生成したフラックスをシード体に付着させた後、原料投
入口から添加して得たAl粒の融液を上記フラックスに
少しずつ仕切板の小孔を通してフラックス中に混入させ
ることである。
Another feature of this apparatus is that a partition plate having small holes is arranged in a crucible provided inside a heater,
After the generated flux is attached to the seed body, a melt of Al particles obtained by adding it from the raw material charging port is mixed little by little into the flux through the small holes of the partition plate.

【0020】これにより従来法の欠点である結晶成長時
のAl偏析を防止し、フラックス中に均一に混入するこ
とができるようになった。
This makes it possible to prevent Al segregation during crystal growth, which is a drawback of the conventional method, and to mix the flux uniformly in the flux.

【0021】本発明装置の第二の特色は、るつぼの材質
として従来のグラファイト材単独に代え、グラファイト
とビトロカーボン(日本カーボン社製ガラス質カーボン
の商品名)の特殊な素材を組合わせてるつぼを形成し温
度勾配をもたせてあることである。
The second feature of the apparatus of the present invention is that the crucible is made of a special material of graphite and vitro carbon (trade name of vitreous carbon manufactured by Nippon Carbon Co., Ltd.) instead of the conventional graphite material alone. To form a temperature gradient.

【0022】これはグラファイト材単独であると熱伝導
率が良すぎるため、熱が逃げ易い性質を有しており、こ
のため熱伝導率がグラファイト材より1/20〜1/5
0の素材であるビトロカーボン材を使用している。さら
に該るつぼ外側には約0.1mm位のビトロコーティング
を施して、るつぼ内のガスもれを防止すると効果がよい
ことを確認している。
Since the graphite material alone has a too high thermal conductivity, it has a property that heat easily escapes. Therefore, the thermal conductivity is 1/20 to 1/5 that of the graphite material.
It uses the zero carbon material, vitro carbon. Furthermore, it has been confirmed that it is effective to coat the outside of the crucible with a Vitro coating of about 0.1 mm to prevent gas leakage in the crucible.

【0023】以下、実施例を参照して本発明について詳
細に説明するが、本発明の範囲はこれらに限定されるも
のではない。
The present invention is described in detail below with reference to examples, but the scope of the present invention is not limited to these.

【0024】[0024]

【実施例1】図1に示す同和鉱業製電磁誘導攪拌式垂直
ブリッジマン炉(VGF炉)を用い、まず原料としてG
a300gとGaAs580gとを2インチ内径の特殊
カーボンるつぼに装入するが、この場合先ずGaAsシ
ード体3(φ52×15t:方位[100])の上部に
適量装入した後、仕切板11を定位置に装備し、さらに
残部を仕切板11上に装入し、アルゴン雰囲気で加熱し
た。
Example 1 An electromagnetic induction stirring vertical Bridgman furnace (VGF furnace) manufactured by Dowa Mining Co., Ltd. shown in FIG.
300 g of a and 580 g of GaAs are loaded into a special carbon crucible having a 2-inch inner diameter. In this case, first, an appropriate amount is loaded on the upper part of the GaAs seed body 3 (φ52 × 15t: orientation [100]), and then the partition plate 11 is fixed. , And the rest was placed on the partition plate 11 and heated in an argon atmosphere.

【0025】ある程度、原料が融解し始めたところで希
土類磁石4を100rpm の回転速度で周回させ、電磁誘
導攪拌をしながら生成したフラックスを均一に混合して
るつぼ温度を1170℃とし、得られたフラックスをG
aAsシード体3にシード付けを行なった(第一工
程)。
When the raw material begins to melt to some extent, the rare earth magnet 4 is circulated at a rotation speed of 100 rpm, the flux produced is uniformly mixed under electromagnetic induction stirring, the crucible temperature is set to 1170 ° C., and the obtained flux is obtained. To G
The aAs seed body 3 was seeded (first step).

【0026】次いで原料投入口16から金属Al粒
(0.06g/個)を10分毎に投入して融解し、得ら
れたAl融液を仕切板11に設けたφ2〜φ5の複数の
小孔12からるつぼ1内部のフラックス2中に装入し
て、混入し続けフラックス量の全量の1/1000(重
量比)以下となるように調整した後、炉温を5℃/hrの
割合で徐冷すると同時にGaAs0.5gを5分毎に2
60回、Al粒(0.06g)を10分毎に130回投
入して上記同様、得られた融液をるつぼ内部のフラック
スに混入せしめて、最終的にAlを30〜35%含有す
るAlGaAs単結晶(φ52×10mm)を含むインゴ
ットを得た(第二工程)。
Next, metal Al particles (0.06 g / piece) are charged from the raw material charging port 16 every 10 minutes to be melted, and the obtained Al melt is provided in the partition plate 11 and a plurality of small particles of φ2 to φ5 are provided. After charging through the hole 12 into the flux 2 inside the crucible 1 and adjusting so as to keep mixing and to be 1/1000 (weight ratio) or less of the total amount of flux, the furnace temperature is set at 5 ° C./hr. Gradually cool and simultaneously add 0.5 g of GaAs every 5 minutes to 2
60 times, Al particles (0.06 g) are charged 130 times every 10 minutes, and the obtained melt is mixed with the flux inside the crucible in the same manner as above, and finally AlGaAs containing 30 to 35% of Al is added. An ingot containing a single crystal (φ52 × 10 mm) was obtained (second step).

【0027】[0027]

【実施例2】実施例1に示す装置を用いて、第一工程を
同一条件で制御した。
Example 2 Using the apparatus shown in Example 1, the first step was controlled under the same conditions.

【0028】次いでAl粒を10分毎に100ケ投入し
てAl濃度を調整した後、15℃/cmの温度勾配中を
0.25mm/hrの速度でるつぼを下げながら、GaAs
(0.5g)を5分毎260回、Al粒(0.06g)
を10分毎130回投入して上記同様、得られた融液を
るつぼ内部のフラックスに混入せしめて、最終的にAl
を30〜35%含むAlGaAs単結晶(φ52×10
mm)を含むインゴットを得た(第二工程)。
Next, 100 Al grains were introduced every 10 minutes to adjust the Al concentration, and then GaAs was lowered in a temperature gradient of 15 ° C./cm at a rate of 0.25 mm / hr while lowering the crucible.
(0.5 g) 260 times every 5 minutes, Al particles (0.06 g)
Was added 130 times every 10 minutes to mix the resulting melt with the flux inside the crucible, and finally the Al
AlGaAs single crystal containing 30 to 35% (φ52 × 10
mm) was obtained (second step).

【0029】[0029]

【比較例1】実施例1と同様の装置を用い、るつぼ内部
にGa300g、GaAs580g、Al13.2gを
同時に入れ、るつぼ底部に設けられているGaAsシー
ド体(φ52×15t)と1200℃で反応させてシー
ド付けを行なった(第一工程)。
Comparative Example 1 Using the same apparatus as in Example 1, 300 g of Ga, 580 g of GaAs, and 13.2 g of Al were simultaneously placed in the crucible and reacted at 1200 ° C. with a GaAs seed body (φ52 × 15 t) provided at the bottom of the crucible. Seeding was performed (first step).

【0030】次いで15℃/cmの温度勾配の雰囲気中を
100rpm の電磁誘導攪拌をしながら0.25mm/hrの
速度でるつぼを下げて冷却して単結晶化を図ったが、多
結晶AlGaAsしか得られなかった。
Then, a single crystallization was attempted by cooling the crucible at a rate of 0.25 mm / hr in an atmosphere with a temperature gradient of 15 ° C./cm while electromagnetically stirring the mixture at 100 rpm to obtain a single crystal. I couldn't get it.

【0031】[0031]

【発明の効果】従来法においてはAlGaAsダイオー
ドを作製する手段としてAlGaAs単結晶の製造が不
可能であったため、GaAs基板上にAlGaAsエピ
タキシャル層を作成した後GaAs基板をエッチングに
より取り除く手段しかなかったが、本発明法によりAl
GaAs単結晶の製造が可能となり、生産性の向上に寄
与するところが大である。
According to the conventional method, since it was impossible to manufacture an AlGaAs single crystal as a means for manufacturing an AlGaAs diode, there was only means for removing the GaAs substrate by etching after forming the AlGaAs epitaxial layer on the GaAs substrate. , Al according to the method of the present invention
It is possible to manufacture a GaAs single crystal, which largely contributes to improvement in productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る製造装置の断面概略図である。FIG. 1 is a schematic sectional view of a manufacturing apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 るつぼ底部(グラファイト) 1´ るつぼ側部(ビトロカーボン) 2 フラックス 3 GaAsシード体 4 希土類磁石 5 上部ヒーターセンサー 6 中央ヒーターセンサー 7 るつぼ受台センサー 8 下部ヒーターセンサー 9 断熱材 10 水冷ジャケット 11 仕切板 12 小孔 13 中央ヒーター 14 上部ヒーター 15 中央ヒーター 16 原料投入口 1 crucible bottom (graphite) 1'crucible side (vitrocarbon) 2 flux 3 GaAs seed body 4 rare earth magnet 5 upper heater sensor 6 central heater sensor 7 crucible cradle sensor 8 lower heater sensor 9 heat insulating material 10 water cooling jacket 11 partition plate 12 Small hole 13 Central heater 14 Upper heater 15 Central heater 16 Raw material inlet

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年11月22日[Submission date] November 22, 1995

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Correction target item name] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】 すなわち本発明の第1は、底部にGaA
sシードを配置したるつぼ内にGaとGaAsとからな
る原料を装入した後、これを融解して得たフラックスを
GaAsシードに接触させてシーディングする第一工
程,次いでAl粒を上記フラックス内に添加してAlを
所定濃度に調整した後、Al粒とGaAsとを交互に添
加してAlGaAs単結晶体を得る第二工程,から成る
ことを特徴とするフラックス法によるAlGaAs単結
晶の製造方法に関する。
That is, the first aspect of the present invention is that GaA is formed on the bottom.
After the raw material consisting of Ga and GaAs was charged into the crucible in which the s seed was placed, the flux obtained by melting it was used.
First step of seeding by contacting with GaAs seed , then adding Al grains into the above flux to adjust Al to a predetermined concentration, and then alternately adding Al grains and GaAs to obtain an AlGaAs single crystal body The present invention relates to a method for producing an AlGaAs single crystal by the flux method, which comprises the second step.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0014】 この場合、るつぼ内の仕切板上下の原料
が融解し始めると、中央ヒーター13外周部に設けられ
た希土類磁石4が周回してこれらの融解液を攪拌し、仕
切板上部の原料が融液(以下、フラックスという)とな
って、仕切板の小孔12を通ってるつぼ1内に入り、一
方、るつぼ内のフラックスはるつぼ底部に予め設けられ
シードにシード付けされる(第一工程)。
In this case, when the raw materials above and below the partition plate in the crucible begin to melt, the rare earth magnet 4 provided on the outer periphery of the central heater 13 orbits to agitate these melts, so that the raw material above the partition plate It becomes a melt (hereinafter referred to as a flux) and enters the crucible 1 through the small holes 12 of the partition plate, while the flux in the crucible is seeded with a seed previously provided at the bottom of the crucible (first). Process).

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0019】 本装置の他の特色の一つは、ヒーター内
部に設けたるつぼの中に小孔を有する仕切板を配置し
て、生成したフラックスをシードに付着させた後、原料
投入口から添加して得たAl粒の融液を上記フラックス
に少しずつ仕切板の小孔を通してフラックス中に混入さ
せることである。
Another feature of the present apparatus is that a partition plate having small holes is arranged in a crucible provided inside a heater, the generated flux is attached to a seed , and then added from a raw material charging port. The melt of the Al particles obtained in this way is mixed little by little into the flux through the small holes of the partition plate.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Name of item to be corrected] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0024】[0024]

【実施例1】図1に示す同和鉱業製電磁誘導攪拌式垂直
ブリッジマン炉(VGF炉)を用い、まず原料としてG
a300gとGaAs580gとを2インチ内径の特殊
カーボンるつぼに装入するが、この場合先ずGaAsシ
ード3(φ52×15t:方位[100])の上部に適
量装入した後、仕切板11を定位置に装備し、さらに残
部を仕切板11上に装入し、アルゴン雰囲気で加熱し
た。
Example 1 An electromagnetic induction stirring vertical Bridgman furnace (VGF furnace) manufactured by Dowa Mining Co., Ltd. shown in FIG.
300 g of a and 580 g of GaAs are loaded into a special carbon crucible with an inner diameter of 2 inches.
Over de 3: After an appropriate amount charged to the top of (φ52 × 15t orientation [100]), equipped with a partition plate 11 in position, further charged with the remainder on the partition plate 11, and heated in an argon atmosphere.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Name of item to be corrected] 0025

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0025】 ある程度、原料が融解し始めたところで
希土類磁石4を100rpm の回転速度で周回させ、電磁
誘導攪拌をしながら生成したフラックスを均一に混合し
てるつぼ温度を1170℃とし、得られたフラックスを
GaAsシード3にシード付けを行なった(第一工
程)。
To some extent, when the raw material begins to melt, the rare earth magnet 4 is circulated at a rotation speed of 100 rpm, the flux produced is uniformly mixed while stirring with electromagnetic induction, the crucible temperature is set to 1170 ° C., and the obtained flux is obtained. To
The GaAs seed 3 was seeded (first step).

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0029】[0029]

【比較例1】実施例1と同様の装置を用い、るつぼ内部
にGa300g、GaAs580g、Al13.2gを
同時に入れ、るつぼ底部に設けられているGaAsシー
(φ52×15t)と1200℃で反応させてシード
付けを行なった(第一工程)。
Comparative Example 1 Using the same apparatus as in Example 1, 300 g of Ga, 580 g of GaAs, and 13.2 g of Al were simultaneously placed in the crucible, and the GaAs sheet provided at the bottom of the crucible was used.
De reacted with (φ52 × 15t) and 1200 ° C. which was subjected to seeding (first step).

【手続補正8】[Procedure amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】符号の説明[Correction target item name] Explanation of sign

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【符号の説明】 1 るつぼ底部(グラファイト) 1´ るつぼ側部(ビトロカーボン) 2 フラックス 3 GaAsシード 4 希土類磁石 5 上部ヒーターセンサー 6 中央ヒーターセンサー 7 るつぼ受台センサー 8 下部ヒーターセンサー 9 断熱材 10 水冷ジャケット 11 仕切板 12 小孔 13 中央ヒーター 14 上部ヒーター 15 中央ヒーター 16 原料投入口17 試料温度測定用センサー [Explanation of Codes] 1 Crucible bottom (graphite) 1'Cruise side (vitro carbon) 2 Flux 3 GaAs seed 4 Rare earth magnet 5 Upper heater sensor 6 Central heater sensor 7 Crucible cradle sensor 8 Lower heater sensor 9 Insulating material 10 Water cooling Jacket 11 Partition plate 12 Small hole 13 Central heater 14 Upper heater 15 Central heater 16 Raw material inlet 17 Sample temperature measuring sensor

【手続補正10】[Procedure amendment 10]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 底部にGaAsシード体を配置したるつ
ぼ内にGaとGaAsとからなる原料を装入した後、こ
れを融解して得たフラックスをGaAsシート体に接触
させてシーディングする第一工程,次いでAl粒を上記
フラックス内に添加してAlを所定濃度に調整した後、
Al粒とGaAsとを交互に添加してAlGaAs単結
晶体を得る第二工程,から成ることを特徴とするフラッ
クス法によるAlGaAs単結晶の製造方法。
1. A crucible having a GaAs seed body at the bottom thereof is charged with a raw material made of Ga and GaAs, and the flux obtained by melting the raw material is brought into contact with a GaAs sheet body for seeding. Step, then add Al particles into the above flux to adjust Al to a predetermined concentration,
A method for producing an AlGaAs single crystal by a flux method, which comprises a second step of alternately adding Al grains and GaAs to obtain an AlGaAs single crystal.
【請求項2】 縦型るつぼを用いてフラックス法により
GaAsシード上にAlGaAs単結晶を製造する方法
であって、成長を開始する第一工程、Al組成を増加す
る第二工程および目的組成の単結晶を成長させる第三工
程から成り、前記第一工程ではGaとGaAsとからな
りかつAlを含まないフラックスを使用してGaAsシ
ード上にシード付けを行い、前記第二工程ではフラック
ス量の1/1000(重量)以下の金属Alを一定の時
間間隔でフラックス中に投入し、前記第三工程ではAl
/Ga重量比が目的組成の重量比となるように金属Al
とGaAsを同時または交互にフラックス中に投入する
ことを特徴とするAlGaAs単結晶の製造方法。
2. A method for producing an AlGaAs single crystal on a GaAs seed by a flux method using a vertical crucible, which comprises a first step of starting growth, a second step of increasing Al composition and a single composition of a target composition. A third step of growing a crystal is used. In the first step, seeding is performed on a GaAs seed using a flux composed of Ga and GaAs and containing no Al. Metal Al of 1000 (weight) or less is charged into the flux at regular time intervals, and in the third step, Al is used.
Metal Al so that the weight ratio of / Ga becomes the weight ratio of the target composition.
And a method of manufacturing an AlGaAs single crystal, wherein GaAs and GaAs are simultaneously or alternately introduced into the flux.
【請求項3】 前記縦型るつぼが投入されたAlおよび
GaAsを収容する容器(フラックス投入容器)とAl
GaAsの単結晶を成長させる容器(結晶成長容器)と
からなり、両容器の間の境界に設けられた直径2〜5m
mの穴を通して両容器内のフラックスが連結されている
ことを特徴とする請求項2記載のAlGaAs単結晶の
製造方法。
3. A container (flux charging container) for accommodating Al and GaAs in which the vertical crucible is charged, and Al
It is composed of a container for growing a single crystal of GaAs (crystal growth container) and has a diameter of 2 to 5 m provided at the boundary between both containers.
The method for producing an AlGaAs single crystal according to claim 2, wherein the fluxes in both containers are connected through a hole of m.
【請求項4】 原料融解るつぼを内部に配備した縦型ボ
ートと、るつぼに駆動機構が装備されてなる結晶製造装
置において、原料融解るつぼの外周囲部には希土類磁石
を周回せしめる希土類磁石回転機構が設けてあると共
に、上記原料融解るつぼは熱伝導率の異なる2種の素材
から構成され、さらに該るつぼ内にフラックスを上下に
分割するための小孔を有する仕切板を設けてあることを
特徴とするAlGaAs単結晶の製造装置。
4. A crystal production apparatus comprising a vertical boat having a raw material melting crucible arranged therein and a driving mechanism in the crucible, wherein a rare earth magnet rotating mechanism for rotating a rare earth magnet around an outer periphery of the raw material melting crucible. In addition, the raw material melting crucible is composed of two kinds of materials having different thermal conductivities, and a partition plate having a small hole for vertically dividing the flux is provided in the crucible. An AlGaAs single crystal manufacturing apparatus.
JP29359295A 1995-10-17 1995-10-17 Manufacturing method of AlGaAs single crystal by flux method and manufacturing apparatus used therefor Expired - Fee Related JP3654314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29359295A JP3654314B2 (en) 1995-10-17 1995-10-17 Manufacturing method of AlGaAs single crystal by flux method and manufacturing apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29359295A JP3654314B2 (en) 1995-10-17 1995-10-17 Manufacturing method of AlGaAs single crystal by flux method and manufacturing apparatus used therefor

Publications (2)

Publication Number Publication Date
JPH09110577A true JPH09110577A (en) 1997-04-28
JP3654314B2 JP3654314B2 (en) 2005-06-02

Family

ID=17796723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29359295A Expired - Fee Related JP3654314B2 (en) 1995-10-17 1995-10-17 Manufacturing method of AlGaAs single crystal by flux method and manufacturing apparatus used therefor

Country Status (1)

Country Link
JP (1) JP3654314B2 (en)

Also Published As

Publication number Publication date
JP3654314B2 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP4810346B2 (en) Method for producing sapphire single crystal
Hoshikawa et al. Liquid encapsulated, vertical bridgman growth of large diameter, low dislocation density, semi-insulating GaAs
US3353914A (en) Method of seed-pulling beta silicon carbide crystals from a melt containing silver and the product thereof
JP2009149452A (en) Method for growing semiconductor crystal
JP3551242B2 (en) Method and apparatus for producing oxide single crystal
EP1574602A1 (en) Process for producing single crystal of compound semiconductor and crystal growing apparatus
JPH09110577A (en) Production of aluminum-gallium-arsenic single crystal by flux method and production unit therefor
Wang et al. Melt growth of twin-free ZnSe single crystals
JP3069656B1 (en) Method for producing spherical metallic titanium and titanium compound
JP5262346B2 (en) Method for producing silicon single crystal
JP2000319087A (en) Arsenic dopant and production of silicon single crystal using the same
JPH06128096A (en) Production of compound semiconductor polycrystal
JPH04305091A (en) Method and device for pulling up single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
KR102673789B1 (en) Manufacturing methode for siliconcarbide single crystal
JP2004203721A (en) Apparatus and method for growing single crystal
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JP2677859B2 (en) Crystal growth method of mixed crystal type compound semiconductor
JPS61163187A (en) Process and device for preparing compound semiconductor single crystal
JP2009190914A (en) Method for producing semiconductor crystal
JP2010030847A (en) Production method of semiconductor single crystal
KR100194363B1 (en) Method and apparatus for manufacturing single crystal silicon
JPH03193689A (en) Production of compound semiconductor crystal
JPH085736B2 (en) Method and apparatus for growing silicon single crystal
JPS6117498A (en) Synthesis of compound semiconductor from element in group iii to v

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20040206

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Effective date: 20040318

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041116

A131 Notification of reasons for refusal

Effective date: 20041130

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050128

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050222

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050222

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080311

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080311

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080311

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090311

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100311

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110311

LAPS Cancellation because of no payment of annual fees