JPH02291151A - Manufacture of multilayer interconnection structure - Google Patents

Manufacture of multilayer interconnection structure

Info

Publication number
JPH02291151A
JPH02291151A JP11152689A JP11152689A JPH02291151A JP H02291151 A JPH02291151 A JP H02291151A JP 11152689 A JP11152689 A JP 11152689A JP 11152689 A JP11152689 A JP 11152689A JP H02291151 A JPH02291151 A JP H02291151A
Authority
JP
Japan
Prior art keywords
film
component
aromatic
formulas
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11152689A
Other languages
Japanese (ja)
Inventor
Tetsuya Honma
哲哉 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11152689A priority Critical patent/JPH02291151A/en
Publication of JPH02291151A publication Critical patent/JPH02291151A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To improve a bonding property to an inorganic film, to reduce a deterioration in a film quality and to enhance a transmission factor of visible light by a method wherein a fluorine compound is contained at least in one out of an aromatic tetracarboxylic acid dianhydride component and an aromatic diamine component, an aminosilicon compound component is contained, a polyamide acid solution is coated and heat-treated and an interlayer insulating film is formed. CONSTITUTION:A coating liquid used to form a resin film is formed of the following three compounds: diaminodiphenyl ether whose main component is an aromatic diamine component; p-aminophenyl trimethoxysilane as an aminosilicon compound component; 2,2-bis(3, 4-dicarboxyphenyl) hexafluoropropane. A solution of dimethylacetoamide is used as a solvent. After a phosphate glass film 102 has been formed on an element substrate 101, a first aluminum wiring part 103 is formed. Then, the coating solution used to form the resin film is spin-coated; it is heat-treated in an oven. In succession, an annealing operation is executed; a resin film 104 is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製造方法に関し、特に、弗素化
合物と、シリコン化合物とを含有するポリイミド膜を層
間絶縁膜として用いる多層配線構造体の製造方法に関す
る。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a multilayer wiring structure using a polyimide film containing a fluorine compound and a silicon compound as an interlayer insulating film. Regarding the manufacturing method.

〔従来の技術〕[Conventional technology]

従来、この種の多層配線に用いる層間絶縁膜としては、
例えば、特公昭6 0−3 9 8 4 7号公報にあ
るように、ポリイミド樹脂膜が用いられている。すなわ
ち、第5図に示すように、シリコン基板501上に酸化
膜502を形成し、第1層配線(シリコン含有アルミニ
ウム)503を形成する。
Conventionally, the interlayer insulating film used for this type of multilayer wiring is
For example, as disclosed in Japanese Patent Publication No. 60-39847, a polyimide resin film is used. That is, as shown in FIG. 5, an oxide film 502 is formed on a silicon substrate 501, and a first layer wiring (silicon-containing aluminum) 503 is formed.

続いて、ポリイミド樹脂層間絶縁膜504を形成し、ス
ルーホール505,第2層配線506を形成することに
よって、2層配線を形成する。
Subsequently, a polyimide resin interlayer insulating film 504 is formed, and a through hole 505 and a second layer wiring 506 are formed to form a two-layer wiring.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のポリイミド樹脂膜は、吸湿性が高いこと
、また、吸湿に起因する膜特性の劣化があること、さら
にシリコン酸化膜、シリコン窒化膜等の無機膜との接着
性が悪いこと等の欠点があり、これらを多層配線層間膜
として用いた超LSIの信頼性を著しく低下させてしま
うという問題がある。
The conventional polyimide resin film described above has high hygroscopicity, deterioration of film properties due to moisture absorption, and poor adhesion with inorganic films such as silicon oxide films and silicon nitride films. There is a problem in that the reliability of VLSIs using these as interlayer films for multilayer wiring is significantly lowered.

また、一般にポリイミド樹脂膜は、可視光の透過率が低
いため、撮像用CCD(Charge Coupled
Device)等のように光学用途では、配線層間絶縁
膜として用いることができない。
In addition, since polyimide resin films generally have low visible light transmittance, they are used in CCDs (Charge Coupled CCDs) for imaging.
In optical applications such as devices, it cannot be used as an interlayer insulation film for wiring.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の多層配線構造体の製造方法は、芳香族テトラカ
ルボン酸二無水成分と、芳香族シアミン成分の少くとも
1つに弗素化合物を含有し、かつ、ハ゛ アミノシリコン化合物性分を含有してなるポリアミド酸
溶液を塗布・熱処理せしめることによって形成した膜を
層間絶縁膜として用いており、上記の、芳香族テトラカ
ルボン酸二無水物成分,芳香族ジアミン成分,弗素を含
有する芳香族テトラポン酸二無水物成分,弗素を含有す
る芳香族シアミン成分,アミノシリコン化合物成分は、
それぞれ、式(1)〜(5)で表わされる。
The method for producing a multilayer wiring structure of the present invention includes a method for producing a multilayer wiring structure in which at least one of an aromatic tetracarboxylic dianhydride component and an aromatic cyamine component contains a fluorine compound, and also contains a diaminosilicon compound component. A film formed by applying and heat-treating a polyamic acid solution is used as an interlayer insulating film. The anhydride component, fluorine-containing aromatic cyamine component, and amino silicon compound component are
Each is represented by formulas (1) to (5).

Nll,− R’ − NH2     − −  (
2)式(1)〜(5)において、R1は4個の炭素環式
芳香族基な表わし、R2ぱ、炭素数6−30個の芳香脂
肪族基、又は、炭素数6〜30個の炭素環式芳香族基、
R3&ひR4は独立に炭素数1〜6のアル・)・ル基又
はフェニル基であり、1(ぱ1≦[ぐ≦3の整数てある
Nll, - R' - NH2 - - (
2) In formulas (1) to (5), R1 represents 4 carbocyclic aromatic groups, R2 represents an aromatic aliphatic group having 6 to 30 carbon atoms, or an aromatic aliphatic group having 6 to 30 carbon atoms. carbocyclic aromatic group,
R3 & R4 are independently an aru group having 1 to 6 carbon atoms or a phenyl group, and are an integer of 1≦[g≦3.

本発明においては、ボリイミl−樹脂膜成分中に、アミ
ノシリコン化合物成分を化学的に結合せしめることによ
り、無機膜との接着性を改善し、さらに撥水性の高い弗
素化合物を化学的に結合せしめることにより、吸湿によ
る膜質劣化を軽減し、かつ、可視光の透過率を向上せし
めた樹脂膜を層間絶縁膜のして用いる。
In the present invention, an amino silicon compound component is chemically bonded to the polyimi l-resin film component to improve adhesion to the inorganic film, and a fluorine compound with high water repellency is further chemically bonded. As a result, a resin film that reduces film quality deterioration due to moisture absorption and improves visible light transmittance is used as an interlayer insulating film.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

本実施例で用いた樹脂膜形成用塗布液として、主成分が
芳香族ジアミン成分であるジアミノジフェニルエーテル
と、アミノシリコン化合物成分であるP・アミノフェニ
ルトリメトキシシランと、また、弗素化合物を含む酸二
無水物成分である2.2−ビス( 3. 4−ジカルボ
キシフェニル)へキザフルオロプロパンとの3つの化合
物から成り、溶媒がジメチルアセトアミドである溶液を
用いた。P・アミノフェニルトリメトキシシラン成分,
2.2一ビス(3.4−ジカルボキシフェニル)ヘキサ
フリオロプロパン2無水物成分の樹脂中濃度は、それぞ
れ、20mo1%,50mo1%とした。また、溶液中
の固形分濃度を25weight%2粘度を約2 5 
0 cmpoiseとした。
The resin film-forming coating liquid used in this example contained diaminodiphenyl ether whose main components were aromatic diamine components, P-aminophenyltrimethoxysilane which was an aminosilicon compound component, and acid diphenyl ether containing a fluorine compound. A solution consisting of three compounds with 2,2-bis(3.4-dicarboxyphenyl)hexafluoropropane as an anhydride component and dimethylacetamide as a solvent was used. P-aminophenyltrimethoxysilane component,
The concentrations of the 2.2-bis(3.4-dicarboxyphenyl)hexafluoropropane dianhydride component in the resin were 20 mo1% and 50 mo1%, respectively. In addition, the solid concentration in the solution is 25 weight%2 the viscosity is approximately 25
It was set to 0 cmpoise.

本発明の第1の実施例では、本発明に基づく樹脂膜を2
層アルミニウム配線の層間絶縁膜として用いた場合につ
いて述べる。
In the first embodiment of the present invention, two resin films based on the present invention are used.
The case where it is used as an interlayer insulating film for layered aluminum wiring will be described.

第1図(a)〜(d)は、2層アルミニウム配線の形成
方法を示す工程断面図である。
FIGS. 1(a) to 1(d) are process cross-sectional views showing a method of forming a two-layer aluminum wiring.

第1図(a)に示すように素子基板101上に厚さ約0
8μmのリンガラス膜102を形成後、厚さ約lμmの
第1のアルミニウム配線103を形成する。次に、本発
明に基づく樹脂膜形成用塗布溶液を4000回転/分で
30秒間、回転塗布し、100℃で30分間,250℃
で30分間,窒素ガス雰囲気のオーブン中で熱処理する
。続いて、350℃で60分間、窒素ガス雰囲気の炉内
でアニールを行うことによって、同図(b)のように厚
さ約1.2μmの樹脂膜1. 0 4を形成する。次に
、公知のフォトリングラフィー,ドライエッチング技術
により、同図(c)に示すように形成した樹脂膜に開口
105を形成し、次に、厚さ約1μmの7kミニウム膜
をスパッタ法により形成し、フォトリソグラフィー ド
ライエッチングにより厚さ約1μmの第2のアルミニウ
ム配線を形成することによって同図(d)に示すように
2層アルミニウム配線が形成できる。
As shown in FIG. 1(a), a layer of about 0 thickness
After forming the phosphorus glass film 102 with a thickness of 8 μm, a first aluminum wiring 103 with a thickness of about 1 μm is formed. Next, the coating solution for forming a resin film based on the present invention was spin-coated at 4000 rpm for 30 seconds, then at 100°C for 30 minutes and then at 250°C.
Heat-treated in an oven under a nitrogen gas atmosphere for 30 minutes. Subsequently, by annealing at 350° C. for 60 minutes in a furnace with a nitrogen gas atmosphere, a resin film 1.2 with a thickness of about 1.2 μm is formed as shown in FIG. Form 0 4. Next, using known photolithography and dry etching techniques, an opening 105 is formed in the formed resin film as shown in FIG. However, by forming a second aluminum wiring with a thickness of about 1 μm by photolithography and dry etching, a two-layer aluminum wiring can be formed as shown in FIG.

形成した2層アルミニウム配線の1層−2層配線間の接
続歩留りは98%以上と良好であり、配線抵抗を含む接
続抵抗は、直径1μmの開口で、約120mΩと小さく
、実用上、問題ないものである。また、本発明に基づく
層間絶縁膜のリーク電流は、第2図に示すように従来の
ポリイミド膜を用いた場合の175と小さい値である。
The connection yield between the 1st layer and 2nd layer wiring of the formed 2-layer aluminum wiring is good at over 98%, and the connection resistance including wiring resistance is as small as about 120 mΩ for an opening with a diameter of 1 μm, so there is no problem in practical use. It is something. Further, the leakage current of the interlayer insulating film according to the present invention is as small as 175 when a conventional polyimide film is used, as shown in FIG.

また、純水中で30日間放置し、リーク電流の経時変化
を調べたところ、従来のポリイミド膜では、経時変化が
認められたが、本発明に基づく樹脂膜では、リーク電流
の増加は全く認められなかった。
Furthermore, when the leakage current changed over time after being left in pure water for 30 days, it was found that the conventional polyimide film showed a change over time, but the resin film based on the present invention showed no increase in leakage current. I couldn't.

第2の実施例では、撮像用、CODの遮光用金属膜と、
Aρ配線との層間絶縁膜の一部に本発明に基づく樹脂膜
を用いた場合について述べる。
In the second embodiment, a metal film for imaging and for COD light shielding,
A case will be described in which the resin film based on the present invention is used as a part of the interlayer insulating film with the Aρ wiring.

第3図(a)〜(e)は、木発明の第2の実施例の工程
断面図である。第3図(a)な示すように、フォトダイ
オード、CODが形成された基板301において、ゲー
ト酸化膜302を介して形成されたゲート電極303上
に、同図(b)に示すように厚さ約0.3μmのシリコ
ン酸化膜304を形成する。次に同図(C)に示すよう
にスパッタ法により厚さ約0.2μmのアルミニウム膜
又は、タングステン膜等の金属膜を形成した後パターニ
ングすることによって、遮光膜305を形成する。続い
て同図(d)に示すように本発明に基づく樹脂膜306
を第1の実施例と同条件で塗布・熱処理形成する。
FIGS. 3(a) to 3(e) are process cross-sectional views of the second embodiment of the wooden invention. As shown in FIG. 3(a), on a substrate 301 on which a photodiode and a COD are formed, a gate electrode 303 formed through a gate oxide film 302 is coated with a thickness as shown in FIG. 3(b). A silicon oxide film 304 of approximately 0.3 μm is formed. Next, as shown in FIG. 3C, a light shielding film 305 is formed by forming a metal film such as an aluminum film or a tungsten film with a thickness of about 0.2 μm by sputtering and then patterning the film. Subsequently, as shown in the same figure (d), a resin film 306 based on the present invention is formed.
was coated and heat-treated under the same conditions as in the first embodiment.

次に公知のフォトリソグラフィー・ドライエッチング技
術を用いて、開口を形成後、厚さ約1μmのアルミニウ
ム膜を形成・パタ一二ソグすることニヨって、同図(e
)に示すように、アルミニウム配線307を形成する。
Next, after forming an opening using a known photolithography/dry etching technique, an aluminum film with a thickness of approximately 1 μm was formed and patterned.
), an aluminum wiring 307 is formed.

以上の工程で形成した、撮像用CCDは層間絶縁膜が平
坦であることから、その撮像特性は良好なものであった
Since the imaging CCD formed through the above steps had a flat interlayer insulating film, its imaging characteristics were good.

また、本発明で用いた厚さ約1.2μmの樹脂膜の可視
光における透過率は第4図に示すように、400〜70
0nmの波長範囲で95%以上であり、これは、従来の
ポリイミド膜の透過率に比べて、高いものであり、撮像
用CCDの層間膜として充分適用可能であることを示し
ている。
Furthermore, the visible light transmittance of the resin film with a thickness of about 1.2 μm used in the present invention is 400 to 70, as shown in FIG.
The transmittance is 95% or more in the wavelength range of 0 nm, which is higher than the transmittance of conventional polyimide films, indicating that it is sufficiently applicable as an interlayer film for imaging CCDs.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、ポリイミド樹脂膜中に
アミノシリコン化合物と、弗素化合物を含有せしめるこ
とによって、無機膜との接着性を改善し、かつ、吸湿に
起因する膜特性の劣化をおさえた樹脂膜を多層配線層間
絶縁膜として用いることにより、信頼性を著しく改善し
た超LSIの製造が可能となるという効果がある。
As explained above, the present invention improves adhesion with an inorganic film and suppresses deterioration of film properties due to moisture absorption by containing an aminosilicon compound and a fluorine compound in a polyimide resin film. By using the resin film as an insulating film between multilayer wiring layers, it is possible to manufacture a very large scale integrated circuit (VLSI) with significantly improved reliability.

また、本発明に基づく樹脂膜は、可視光の透過率が高い
という利点を合せ持つようになり、従来のポリイミド膜
では不可能であった。光学用途、例えば、撮像用CCD
の層間絶縁膜として充分適用可能であるという利点があ
り、かつ、平坦性の高い配線構造が得られることから、
その撮像特性は著しく改善されるという効果を有してい
る。
Furthermore, the resin film based on the present invention also has the advantage of high visible light transmittance, which was not possible with conventional polyimide films. Optical applications, e.g. CCD for imaging
It has the advantage of being fully applicable as an interlayer insulating film, and also provides a highly flat wiring structure.
This has the effect that the imaging characteristics are significantly improved.

以上、述べたように、本発明の多層配線構造体の製造方
法は、超LSIに多犬な効果をもたらす。
As described above, the method for manufacturing a multilayer wiring structure according to the present invention brings many benefits to VLSI.

さらに、層間絶縁膜としてばかりでなく、表面保護膜と
しても充分適用可能である。
Furthermore, it is fully applicable not only as an interlayer insulating film but also as a surface protective film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は、本発明の第1の実施例である
。2層アルミニウム配線の製造方法を示す工程断面図で
ある。同図において、 101・・・・・・素子基板、102・・・・・リンガ
ラス膜、103・・・・・・第1のアルミニウム配線、
104・・・・本発明に基づく樹脂膜、105・・・・
・開口、106・・・・・・第2のアルミニウム配線で
ある。 第2図は、本発明に基づく樹脂膜を送還絶縁膜として用
いるときの効果を示す図である。同図において、横軸は
、放置時間、縦軸は、リーク電流密度である。 第3図(a)〜(e)は、本発明の第2の実施例である
。撮像用CODの製造方法を示す工程断面図である。同
図において、 301・・・・・・基板、302・・・・・・ゲート酸
化膜、303・・・・・・ゲー1・電極、304 ・・
・シリコン酸化膜、305・・・・・遮光膜、306・
・・・・本発明に基づく樹脂膜、307・・・・・・ア
ルミニウム配線である。 第4図は、本発明に基づく樹脂膜を、撮像用CCDの層
間絶縁膜として用いる場合の効果を示す図である。同図
において、横軸は、波長、縦軸は透過率である。 第5図は、従来のポリイミド膜を層間絶縁膜として用い
た2層アルミニウム配線構造体の、断面を示す図である
。 同図において、50]・・・・・シリコン基板、502
・・・・・酸化膜、503・・・・・・第1層配線(シ
リコン含有アルミニウム)、504・・・・ポリイミド
樹脂層間絶!膜、5 0 5・・・・・・スルーホール
、506・・第2層配線(シリコン含有アルミニウム)
である。 代理人 弁理士  内 原   晋
FIGS. 1(a) to 1(d) show a first embodiment of the present invention. FIG. 3 is a process cross-sectional view showing a method for manufacturing a two-layer aluminum wiring. In the figure, 101... element substrate, 102... phosphor glass film, 103... first aluminum wiring,
104... Resin film based on the present invention, 105...
- Opening, 106... Second aluminum wiring. FIG. 2 is a diagram showing the effect when the resin film based on the present invention is used as a return insulating film. In the figure, the horizontal axis is the standing time, and the vertical axis is the leakage current density. FIGS. 3(a) to 3(e) show a second embodiment of the present invention. It is a process sectional view showing the manufacturing method of COD for imaging. In the figure, 301...substrate, 302...gate oxide film, 303...gate 1 electrode, 304...
・Silicon oxide film, 305... Light shielding film, 306.
. . . Resin film based on the present invention, 307 . . . Aluminum wiring. FIG. 4 is a diagram showing the effect when the resin film based on the present invention is used as an interlayer insulating film of an imaging CCD. In the figure, the horizontal axis is wavelength and the vertical axis is transmittance. FIG. 5 is a cross-sectional view of a two-layer aluminum wiring structure using a conventional polyimide film as an interlayer insulating film. In the same figure, 50]...Silicon substrate, 502
... Oxide film, 503 ... First layer wiring (silicon-containing aluminum), 504 ... Polyimide resin layer intermission! Film, 5 0 5... Through hole, 506... 2nd layer wiring (aluminum containing silicon)
It is. Agent Patent Attorney Susumu Uchihara

Claims (2)

【特許請求の範囲】[Claims] (1)芳香族テトラカルボン酸二無水物成分と、芳香族
ジアミン成分の少くとも1つに弗素化合物を含有し、か
つ、アミノシリコン化合物成分を含有してなるポリアミ
ド酸溶液を塗布・熱処理せしめることによって形成した
膜を層間絶縁膜として用いることを特徴とする多層配線
構造体の製造方法。
(1) Applying and heat-treating a polyamic acid solution containing a fluorine compound in at least one of an aromatic tetracarboxylic dianhydride component and an aromatic diamine component, and also containing an aminosilicon compound component. A method for manufacturing a multilayer wiring structure, characterized in that a film formed by the method is used as an interlayer insulating film.
(2)前記芳香族テトラカルボン酸二無水物成分、前記
芳香族ジアミン成分、前記弗素を含有する芳香族テトラ
カルボン酸二無水物成分、前記弗素を含有する芳香族ジ
アミン成分、前記アミノシリコン化合物成分は、それぞ
れ、式(1)〜(5)で表わされることを特徴とする多
層配線構造体の製造方法。 ▲数式、化学式、表等があります▼……(1) NH_2−R^2−NH_2……(2) ▲数式、化学式、表等があります▼……(3) ▲数式、化学式、表等があります▼……(4) ▲数式、化学式、表等があります▼……(5) 式(1)〜(5)において、R^1は4価の炭素環式芳
香族基を表わし、R^2は、炭素数6〜30個の芳香脂
肪族基、又は、炭素数6〜30個の炭素環式芳香族基、
R^3及びR^4は独立に炭素数1〜6のアルキル基又
はフェニル基であり、Kは1≦K≦3の整数である。
(2) The aromatic tetracarboxylic dianhydride component, the aromatic diamine component, the fluorine-containing aromatic tetracarboxylic dianhydride component, the fluorine-containing aromatic diamine component, and the aminosilicon compound component A method for manufacturing a multilayer wiring structure, characterized in that these are represented by formulas (1) to (5), respectively. ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(1) NH_2-R^2-NH_2...(2) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(3) ▲Mathematical formulas, chemical formulas, tables, etc. Yes▼...(4) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(5) In formulas (1) to (5), R^1 represents a tetravalent carbocyclic aromatic group, and R^ 2 is an aromatic aliphatic group having 6 to 30 carbon atoms or a carbocyclic aromatic group having 6 to 30 carbon atoms;
R^3 and R^4 are independently an alkyl group having 1 to 6 carbon atoms or a phenyl group, and K is an integer satisfying 1≦K≦3.
JP11152689A 1989-04-28 1989-04-28 Manufacture of multilayer interconnection structure Pending JPH02291151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11152689A JPH02291151A (en) 1989-04-28 1989-04-28 Manufacture of multilayer interconnection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11152689A JPH02291151A (en) 1989-04-28 1989-04-28 Manufacture of multilayer interconnection structure

Publications (1)

Publication Number Publication Date
JPH02291151A true JPH02291151A (en) 1990-11-30

Family

ID=14563569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11152689A Pending JPH02291151A (en) 1989-04-28 1989-04-28 Manufacture of multilayer interconnection structure

Country Status (1)

Country Link
JP (1) JPH02291151A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100231127B1 (en) * 1995-10-13 1999-11-15 슈틀러, 에스. 쇤 Polyimide Alignment Film from 2,2-Bis(3,4-Dicarboxyphenyl)-Hexafluoropropane Dianhydride and Ortho-Substituted Aromatic Diamines for Active Matrix Liquid Crystal Displays

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100231127B1 (en) * 1995-10-13 1999-11-15 슈틀러, 에스. 쇤 Polyimide Alignment Film from 2,2-Bis(3,4-Dicarboxyphenyl)-Hexafluoropropane Dianhydride and Ortho-Substituted Aromatic Diamines for Active Matrix Liquid Crystal Displays

Similar Documents

Publication Publication Date Title
US5132386A (en) Insulating resin composition and semiconductor device using the same
US4972251A (en) Multilayer glass passivation structure and method for forming the same
US5872402A (en) Interlayer insulating film for semiconductor device
US7067193B2 (en) Structure and method for improved adhesion between two polymer films
JPH01307247A (en) Manufacture of semiconductor device
JPH1140554A (en) Insulating film forming material, and method for forming insulating film and semiconductor device using it
JPH02291151A (en) Manufacture of multilayer interconnection structure
DE2937547A1 (en) METHODS OF IMPROVING THE PHYSICAL PROPERTIES OF POLYIMIDE SILICONE COPOLYMERS INCLUDING POLYMERIC SUBSTANCES
JP2561244B2 (en) Method for manufacturing semiconductor device
JP3079740B2 (en) Polyimide and wiring structure using the same
JP3396791B2 (en) Method of forming insulating film
Matsuoka et al. Ester‐type photosensitive polyimide precursor with low thermal expansion coefficient
JPH0334558A (en) Manufacture of multilayer wiring structure body
JPH01225339A (en) Manufacture of multilayer wiring structure using resin interlayer film
JP2894565B2 (en) Adhesive heat-resistant coating agent
JPH05275417A (en) Wiring structure and its manufacture
JPH06345866A (en) Siloxane-modified polyimide resin
JPS63293862A (en) Method of flattening semiconductor substrate having step difference
JPH02192729A (en) Manufacture of insulating layer
JPS60247947A (en) Manufacture of semiconductor device
JPS6125219B2 (en)
JPS6227745B2 (en)
JPH029458B2 (en)
JPH0397247A (en) Multilayered wiring semiconductor device
JPH01302823A (en) Flattening of semiconductor substrate