JPS63293862A - Method of flattening semiconductor substrate having step difference - Google Patents

Method of flattening semiconductor substrate having step difference

Info

Publication number
JPS63293862A
JPS63293862A JP12932387A JP12932387A JPS63293862A JP S63293862 A JPS63293862 A JP S63293862A JP 12932387 A JP12932387 A JP 12932387A JP 12932387 A JP12932387 A JP 12932387A JP S63293862 A JPS63293862 A JP S63293862A
Authority
JP
Japan
Prior art keywords
film
silica
semiconductor substrate
silica sol
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12932387A
Other languages
Japanese (ja)
Inventor
Takashi Uehara
隆 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12932387A priority Critical patent/JPS63293862A/en
Publication of JPS63293862A publication Critical patent/JPS63293862A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To provide an interlayer insulating film having improved flatness and to improve the reliability of interconnections, by rotatively applying silica sol having siloxane bonds on a semiconductor substrate having step differences, and heat treating the silica sol for vitrifying the same and forming a silica film. CONSTITUTION:A silicon substrate 1 is thermally oxidized to form an underlying SiO2 film 2. Aluminum interconnection pattern 3 is formed thereon. Silica sol 7 having three-dimensional siloxane bonds is applied rotatively and is heat treated to vaporize the diluent thereof. The silica sol is further heat treated in the air. In this manner, an interlayer insulating film having improved flatness can be obtained and the reliability of the interconnection can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は段差を有する半導体基板上に形成される層間絶
縁膜の平坦化方法に関し、特に多層配線工程で生ずる段
差の平坦化に関するもので□ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for planarizing an interlayer insulating film formed on a semiconductor substrate having steps, and particularly relates to planarizing steps that occur in a multilayer wiring process.

従来の技術 半導体装置の製造において配線パターンやトランジスタ
ーのWtm化に伴い下地段差を眉間絶縁膜により平坦化
する必要が出てきた。従来の平坦化の方法としてはボロ
ン・リンを含むシリカガラス(以下BPSG膜という)
を900℃以上の高温で流動させて平坦化するメルトフ
ロー法や、シロキサン系化合物を含む溶液(以下塗布液
という)の回転塗布により絶縁膜(以下シリカフィルム
膜という)を形成するSOG法などが挙げられる。
2. Description of the Related Art In the manufacture of semiconductor devices, as wiring patterns and transistors become more WTM, it has become necessary to flatten the underlying step with a glabella insulating film. The conventional planarization method is to use silica glass containing boron and phosphorus (hereinafter referred to as BPSG film).
The melt flow method, which flattens the material by flowing it at a high temperature of 900°C or higher, and the SOG method, which forms an insulating film (hereinafter referred to as silica film) by spin coating a solution containing a siloxane compound (hereinafter referred to as coating solution), etc. Can be mentioned.

このうちメルトフロー法では、900’C以上の高温を
要する為、AIを用いた多層配線行程では第1層Al配
線の形成以降には適用できない。故に第1層At配線の
形成以降では450℃以下の熱処理でシリカフィルム膜
を形成するSOG法を用いて眉間絶縁膜の平坦化が行わ
れる。以下に従来のSOG法を用いた平坦化方法を第4
図を用いて説明する。
Among these methods, the melt flow method requires a high temperature of 900'C or more, so it cannot be applied after the formation of the first layer Al wiring in a multilayer wiring process using AI. Therefore, after the formation of the first layer At wiring, the glabellar insulating film is flattened using the SOG method in which a silica film is formed by heat treatment at 450° C. or lower. Below is a fourth planarization method using the conventional SOG method.
This will be explained using figures.

第4図は第1層Al配線によって生じた段差の平坦化工
程を示す断面図であり、簡単化のために第1層Al配線
工程以前で形成されるトランジスター等は省略しである
。まず半導体基板1上に絶縁層として二酸化シリコン膜
(以下5i02膜という)2を熱酸化法或はCVD法に
よって形成し、その後第1層Al配線3を形成する。更
に5i02膜4をCVD法により形成し、その後塗布液
を回転塗布により300nm形成し450°C30分の
熱処理を加えてガラス1ヒしてシリカフィルムrt!A
5を形成する。この後さらに5i02膜6をCVD法に
よって形成して平坦1ヒが終了する。
FIG. 4 is a cross-sectional view showing the process of flattening the step caused by the first layer Al wiring, and for the sake of simplicity, transistors and the like formed before the first layer Al wiring process are omitted. First, a silicon dioxide film (hereinafter referred to as 5i02 film) 2 is formed as an insulating layer on a semiconductor substrate 1 by a thermal oxidation method or a CVD method, and then a first layer Al wiring 3 is formed. Furthermore, a 5i02 film 4 was formed by the CVD method, and then the coating solution was spin-coated to form a thickness of 300 nm, heat treated at 450°C for 30 minutes, and the glass was heated to form a silica film RT! A
form 5. Thereafter, a 5i02 film 6 is further formed by the CVD method to complete the flattening process.

従来、前記シリカフィルム膜5を形成するための塗布液
としては、シロキサン系1ヒ合物たとえばRn5i(○
H)4−nで表されるシロキサンのモノマー又はオリゴ
マーを含む溶液や、一般に次の構造式 で表される一次元もしくはラダー型の鎖状ポリシロキサ
ンを含む溶液が用いられる。上記構造式中の記号Rは、
CH3,C2H3,C6H5など有機基を示す。シロキ
サンのモノマー又はオリゴマーを含む溶液をシリカフィ
ルム膜として用いた場合、膜厚が300nm以上になる
とクラックが発生する。
Conventionally, as a coating liquid for forming the silica film membrane 5, a siloxane-based compound such as Rn5i (○
H) A solution containing a siloxane monomer or oligomer represented by 4-n, or a solution containing a one-dimensional or ladder type chain polysiloxane generally represented by the following structural formula is used. The symbol R in the above structural formula is
Indicates an organic group such as CH3, C2H3, C6H5. When a solution containing a siloxane monomer or oligomer is used as a silica film, cracks occur when the film thickness exceeds 300 nm.

故にその平坦性は極めて悪く、急峻な段差にゆるやかな
テーパーをつける程度に留まる。これに対し鎖状ポリシ
ロキサンを含む溶液°をシリカフィルム膜として用いた
場合、平坦部では1μm程度まで厚膜にでき、またシリ
コンや5i02膜により形成された段差上では比較的良
好な平坦性が得られる。しかし広い面積のAI配線上及
びAI配線の線幅が2.0μm以下の部分ではやはりク
ラックが発生する。
Therefore, its flatness is extremely poor, and it remains at the level of a gentle taper on a steep step. On the other hand, when a solution containing chain polysiloxane is used as a silica film, it can be made as thick as about 1 μm on flat areas, and relatively good flatness can be achieved on steps formed by silicon or 5i02 films. can get. However, cracks still occur on AI wiring having a large area and in portions where the line width of the AI wiring is 2.0 μm or less.

上記の様なシロキサン系化合物は、熱処理を施す事によ
り例えば次式 %式% で示される縮重合反応によりガラス化する。この反応は
900°C−1000℃でほぼ集結するが、450°C
30分程度では完全には進行しない。前記シロキサン系
化合物では分子中に含まれるアルキル基などの有機成分
の含有率が極めて高く、反応生成物及び溶媒の膜中への
取り込みや未反応の有機成分がシリカフィルム膜中に残
存して、絶縁性の低下やデバイスの信頼性に悪影響を及
ぼす。
The above-mentioned siloxane compounds are vitrified by heat treatment through a polycondensation reaction represented by the following formula %. This reaction almost converges at 900°C-1000°C, but at 450°C
It will not progress completely in about 30 minutes. The siloxane compound has an extremely high content of organic components such as alkyl groups in the molecule, resulting in reaction products and solvents being incorporated into the film and unreacted organic components remaining in the silica film. This adversely affects insulation properties and device reliability.

又、前記塗布絶縁膜にポリイミド系樹脂を用いる方法も
ある。ポリイミド系樹脂は、前記シリカフィルム膜に比
べて平坦性がよい、クラックが起こりにくいので厚膜化
できる等の長所がある反面、シリカフィルム膜に比べて
吸湿性が大きく、不純物の含有量が多いうえに分極率が
大きい為、トランジスターの性能を悪化させる等の欠点
も多い。
There is also a method of using polyimide resin for the applied insulating film. Polyimide resin has advantages such as better flatness than the silica film membrane, and can be made thicker because it is less prone to cracking, but on the other hand, it has greater hygroscopicity and a higher content of impurities than the silica film membrane. Furthermore, since the polarizability is high, there are many drawbacks such as deterioration of transistor performance.

発明が゛解決しようとする問題点 半導体素子の微細化に伴い、絶縁膜の平坦化は必要不可
欠な技術となっている。回転塗布による層間絶縁膜の形
成は低温で、工程も簡便であり、しかもダメージのない
平坦化の方法として今後益々重要になる。しかしながら
現在の塗布液では平坦性、厚膜性、耐クラツク性、絶縁
性、耐湿性、高純度等全ての条件を満足するものはない
。これらの条件を同時に満たす材料の1つとしてはシラ
ノール系化合物で5i02膜の構造に近く、有機成分の
少ない、すなわち熱分解による反応生成物の少ない材料
が有効である。本発明では、以上の観点から、厚膜可能
で平坦性の優れた、しかも有機成分が少なく絶縁性の高
い眉間絶縁膜を用いて、段差を有する半導体基板の平坦
化方法を提供することを目的としている。
Problems to be Solved by the Invention With the miniaturization of semiconductor devices, planarization of insulating films has become an indispensable technique. Formation of an interlayer insulating film by spin coating is low temperature, the process is simple, and it will become increasingly important in the future as a method for planarization without damage. However, there is no current coating liquid that satisfies all the requirements such as flatness, film thickness, crack resistance, insulation, moisture resistance, and high purity. One effective material that satisfies these conditions at the same time is a silanol compound, which has a structure similar to that of the 5i02 film and has a small amount of organic components, that is, a material that produces few reaction products due to thermal decomposition. In view of the above, an object of the present invention is to provide a method for planarizing a semiconductor substrate having steps using a glabellar insulating film that can be thickly filmed, has excellent flatness, and has low organic components and high insulation properties. It is said that

問題点を解決するための手段 本発明は、シロキサン結合(−Si−〇−3L−)を三
次元的に有するシリカゾルを前記塗布液として用い、段
差を有する半導体基板上に回転塗布した後、熱処理して
ガラス1ヒし、シリカフィルム膜を形成することを特徴
とする、段差を有する半導体基板の平坦化方法である。
Means for Solving the Problems The present invention uses a silica sol having three-dimensional siloxane bonds (-Si-〇-3L-) as the coating liquid, spin coats it onto a semiconductor substrate having steps, and then heat-treats it. This is a method for planarizing a semiconductor substrate having steps, which is characterized by forming a silica film on a glass substrate.

作用 シリカゾルは粒子径10〜1100n程度のシリカ微粒
子が溶媒中に分散したものである。末端の有機基はシリ
カ微粒子の表面のみに存在し、その内部は三次元的なシ
ロキサン結合(−Si−0−3i−)で構成されている
。そのため縮重合反応時に於ける反応生成物が少ない、
即ち熱処理による膜の収縮が抑えられる。故に本発明に
よる方法を用いると、厚膜でクラックが生じず、平坦性
に優れた層間絶縁膜を形成することができる。又、シリ
カフィルム膜中に残存する未反応の有機成分や反応生成
物の膜中への取り込みを低減することができる。
The functional silica sol is one in which fine silica particles having a particle size of about 10 to 1100 nm are dispersed in a solvent. The terminal organic group exists only on the surface of the silica fine particles, and the inside thereof is composed of three-dimensional siloxane bonds (-Si-0-3i-). Therefore, there are fewer reaction products during the polycondensation reaction.
That is, shrinkage of the film due to heat treatment is suppressed. Therefore, by using the method according to the present invention, it is possible to form a thick interlayer insulating film with no cracks and excellent flatness. Further, it is possible to reduce the incorporation of unreacted organic components and reaction products remaining in the silica film into the film.

実施例 以下、図面に基づいて本発明について更に詳しく説明す
る。
EXAMPLES The present invention will be explained in more detail below based on the drawings.

実施例1 下地段差は第1図に示すように、まずシリコン基板1を
1000℃で熱酸化して下地5i02膜2を400nm
の厚さに形成し、その上にAIの配線パターン3を形成
した。A1の配線パターンは、最小線幅が1.2μm、
最小スペースが1.0μmでA】の膜厚即ち第1図中の
記号すの値は1.0μmである。この様にして形成され
たAIの配線3上に、シロキサン結合(−Si−0−3
i−)を三次元的に有するシリカゾル、例えば水および
イソプロピルアルコールの混合溶媒中に平均粒子径が2
0nmの微粒子を15wt%の濃度に分散させたシリカ
ゾルを、200Orpm30秒の条件で回転塗布し、1
20℃、30分の熱処理で溶媒を蒸発させ、空気中で2
00°C130分更に450°C130分の熱処理を行
った。
Example 1 As shown in FIG. 1, the base level difference is made by thermally oxidizing the silicon substrate 1 at 1000° C. to form the base 5i02 film 2 with a thickness of 400 nm.
The wiring pattern 3 of AI was formed thereon. The wiring pattern of A1 has a minimum line width of 1.2 μm,
When the minimum space is 1.0 μm, the film thickness of A], that is, the value indicated by the symbol in FIG. 1 is 1.0 μm. Siloxane bonds (-Si-0-3
i-), for example, a silica sol having an average particle size of 2 in a mixed solvent of water and isopropyl alcohol.
A silica sol containing 0 nm fine particles dispersed at a concentration of 15 wt% was spin-coated at 200 rpm for 30 seconds.
The solvent was evaporated by heat treatment at 20°C for 30 minutes, and the
Heat treatment was performed at 00°C for 130 minutes and then at 450°C for 130 minutes.

この様にして形成されたシリカフィルム膜7の膜厚は、
平坦面で1.1μmであった。平坦性を第1図中の記号
a、bを用いて(1−a/b )で表すと、A1のスペ
ースCに対する平坦性は第3図に示すように良好な結果
になった。この平坦性は従来のポリイミド系樹脂等と比
較しても同等であった。また従来のシラノール系化合物
と異なり、広い面積のAt配線上でも、またAt配線の
スペースが1.0μmの部分でもクラックは発生しなか
った。
The thickness of the silica film membrane 7 formed in this way is
It was 1.1 μm on a flat surface. When the flatness is expressed as (1-a/b) using the symbols a and b in FIG. 1, the flatness of A1 with respect to the space C was good as shown in FIG. This flatness was comparable to that of conventional polyimide resins. Also, unlike conventional silanol-based compounds, no cracks occurred on the At wiring over a wide area or even in areas where the At wiring space was 1.0 μm.

実施例2 より従来例に近い場合として、第2図に示すように下地
段差に実施例1で用いたAt配線3の上に、更にCVD
法により5i02膜4を200nm堆積した後、上記実
施例1と同様にシリカフィルム膜7を形成した。平坦性
を上記実施例1と同様に、第2図中の記号dとeを用い
て(1−d/e)で表すと、シリカフィルム膜の平坦性
は、上記実施例1と同等であった。この場合、下地段差
の溝の幅fは、5i021i14の堆積によりAIのス
ペースよりも全体に狭くなり、0.6μmの幅の溝でも
クラックなしに良好な平坦性が得られた。この様にAl
配線3とシリカフィルム膜7との間にCVD法による5
i02膜4を挟むことにより、塗布液の溶媒によるAI
の腐食を防ぐことが出来る。
Example 2 As a case closer to the conventional example, as shown in FIG.
After depositing the 5i02 film 4 to a thickness of 200 nm by the method, a silica film film 7 was formed in the same manner as in Example 1 above. If the flatness is expressed as (1-d/e) using the symbols d and e in FIG. 2 as in Example 1 above, the flatness of the silica film is equivalent to that in Example 1 above. Ta. In this case, the width f of the groove of the base step became narrower overall than the AI space due to the deposition of 5i021i14, and good flatness was obtained without cracking even with a groove width of 0.6 μm. In this way, Al
5 by CVD method between the wiring 3 and the silica film membrane 7
By sandwiching the i02 film 4, AI caused by the solvent of the coating solution can be removed.
can prevent corrosion.

尚、実施例1、実施例2におけるAt配線は、AIとS
tやCuなどとの合金であってもよい。
In addition, the At wiring in Example 1 and Example 2 consists of AI and S.
It may also be an alloy with t, Cu, or the like.

また5i02膜4の形成は、CVD法に限るものではな
く、バイアススパッタやバイアスECRによってもよい
。また5i02膜4やシリカフィルム膜7にリンやボロ
ンを不純物として加えてもよい。
Furthermore, the formation of the 5i02 film 4 is not limited to the CVD method, but may also be performed by bias sputtering or bias ECR. Further, phosphorus or boron may be added to the 5i02 film 4 or the silica film film 7 as an impurity.

特にリンを加えることによりゲッタリング効果が生じ、
At配線の劣化を抑えることが出来る。
In particular, the addition of phosphorus produces a gettering effect,
Deterioration of At wiring can be suppressed.

今度は段差のないシリコン基板上に、上記実施例1と同
様にシリカフィルム膜を形成し、熱処理前の膜厚と熱処
理後の[厚を測定した。熱処理後の膜厚は熱処理後の膜
厚に対して95〜98%であった。従来の塗布液の70
〜80%と比較すると、膜の収縮がかなり抑えられた。
This time, a silica film was formed on a silicon substrate without steps in the same manner as in Example 1, and the film thickness before heat treatment and after heat treatment were measured. The film thickness after heat treatment was 95 to 98% of the film thickness after heat treatment. 70 of conventional coating liquid
Compared to ~80%, membrane shrinkage was significantly suppressed.

発明の効果 本発明による方法を用いると、簡単な工程により平坦性
に優れた眉間絶縁膜を形成することができ、上層At配
線の断線が生じにくくなり、配線の信顆性が著しく向上
する。又、フォトリソ行程に於て、より@:fMなパタ
ーンの形成が容易に行えるようになる。更に本発明によ
る方法を用いることにより、シリカフィルム膜中に残存
する未反応の有機成分や反応生成物及び溶媒の膜中への
取り込みを低減でき、絶縁性が向上し、またデバイスへ
の悪影響を防ぐことができる。
Effects of the Invention By using the method of the present invention, a glabellar insulating film with excellent flatness can be formed through a simple process, the upper layer At wiring is less likely to be disconnected, and the reliability of the wiring is significantly improved. Further, in the photolithography process, a more @:fM pattern can be easily formed. Furthermore, by using the method according to the present invention, it is possible to reduce the incorporation of unreacted organic components, reaction products, and solvents remaining in the silica film into the film, improve insulation properties, and reduce adverse effects on devices. It can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明にかかる平坦化方法を用い
た一実施例を説明するための半導体基板の部分拡大断面
図、第3図は本発明による平坦化方法を用いた時の本発
明シリカフィルム膜のAt配線のスペースに対する平坦
性特性図、第4図は従来のSOG法による層間絶縁膜の
平坦化方法を説明するための半導体基板の部分拡大断面
図である。 1・・・半導体基板、2.4.6・・・5i02膜3・
・・AI配線、7・・・シリカゾルを用いたシリカフィ
ルム膜。 代理人の氏名 弁理士 中尾敏男はか1名第1図 第 2 図 第3図 A、eのスペーんろか匹 第4図 A1盾己諜
1 and 2 are partially enlarged sectional views of a semiconductor substrate for explaining an embodiment using the planarization method according to the present invention, and FIG. 3 is a partial enlarged sectional view of a semiconductor substrate using the planarization method according to the present invention. FIG. 4 is a diagram showing the flatness characteristic of the invention silica film film with respect to the space of the At wiring. FIG. 4 is a partially enlarged sectional view of a semiconductor substrate for explaining a method for flattening an interlayer insulating film by the conventional SOG method. 1...Semiconductor substrate, 2.4.6...5i02 film 3.
...AI wiring, 7...Silica film membrane using silica sol. Name of agent: Patent attorney Toshio Nakao (1 person) Figure 1 Figure 2 Figure 3 A, e space figure 4 A1 Shield agent

Claims (1)

【特許請求の範囲】[Claims] シロキサン結合(−Si−O−Si−)を三次元的に有
するシリカゾルを、段差を有する半導体基板上に回転塗
布することにより塗布絶縁物を形成し、前記塗布絶縁物
を熱処理してガラス化することを特徴とする段差を有す
る半導体基板の平坦化方法。
A coated insulator is formed by spin-coating a silica sol having three-dimensional siloxane bonds (-Si-O-Si-) onto a semiconductor substrate having steps, and the coated insulator is heat-treated to vitrify it. A method for planarizing a semiconductor substrate having steps, characterized in that:
JP12932387A 1987-05-26 1987-05-26 Method of flattening semiconductor substrate having step difference Pending JPS63293862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12932387A JPS63293862A (en) 1987-05-26 1987-05-26 Method of flattening semiconductor substrate having step difference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12932387A JPS63293862A (en) 1987-05-26 1987-05-26 Method of flattening semiconductor substrate having step difference

Publications (1)

Publication Number Publication Date
JPS63293862A true JPS63293862A (en) 1988-11-30

Family

ID=15006743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12932387A Pending JPS63293862A (en) 1987-05-26 1987-05-26 Method of flattening semiconductor substrate having step difference

Country Status (1)

Country Link
JP (1) JPS63293862A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203551A (en) * 1989-02-02 1990-08-13 Sony Corp Forming method for multilayer wiring
JP2005223034A (en) * 2004-02-04 2005-08-18 Sony Corp Wiring structure and panel type display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203551A (en) * 1989-02-02 1990-08-13 Sony Corp Forming method for multilayer wiring
JP2005223034A (en) * 2004-02-04 2005-08-18 Sony Corp Wiring structure and panel type display device

Similar Documents

Publication Publication Date Title
JP3174416B2 (en) Method for forming silicon oxide film
JP3174417B2 (en) Method for forming silicon oxide film
JPH03200329A (en) Method of silicating spin-on glass
US7238627B2 (en) Organosilicate polymer and insulating film therefrom
JPH08148559A (en) Manufacture of semiconductor device with insulation film
JPH06181204A (en) Method of forming silicon oxide film
JPH08250490A (en) Reforming hydrogen silsesquioxane sog application
US5877080A (en) Method of manufacturing semiconductor device
JP4142643B2 (en) Organosilicate polymer and insulating film containing the same
JPH1140554A (en) Insulating film forming material, and method for forming insulating film and semiconductor device using it
JPS63293862A (en) Method of flattening semiconductor substrate having step difference
EP0424638A2 (en) Fabrication of a semiconductor device including a step for prodiving a layer of insulating material formed from an organo-silica sol
JP3489946B2 (en) Method for forming insulating film of semiconductor device and material for forming insulating film
JP2738033B2 (en) Method for manufacturing multilayer wiring structure
JPH0329298B2 (en)
JPH0799759B2 (en) Method for manufacturing semiconductor device
EP0265619A2 (en) Planarization through silylation
JPH09241518A (en) Resin composition and method for forming multilayer interconnection
JPS6165459A (en) Manufacture of semiconductor device
JP2000021872A (en) Low-dielectric const. resin compsn., method of forming low-dielectric const. insulation film and manufacturing semiconductor device
JPH02192729A (en) Manufacture of insulating layer
JP2002134610A (en) Method for manufacturing semiconductor device
JPS62154643A (en) Manufacture of semiconductor device
JPH01302823A (en) Flattening of semiconductor substrate
JPH0120531B2 (en)